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ABSTRACT

BACKGROUND: Cognitive ability is an important predictor of lifelong physical and mental well-being, and
impairments are associated with many psychiatric disorders. Higher cognitive ability is also associated with
greater educational attainment and increased household income. Understanding neural mechanisms underlying
cognitive ability is of crucial importance for determining the nature of these associations. In the current study, we
examined the spontaneous activity of the brain at rest to investigate its relationships with not only cognitive ability
but also educational attainment and household income.

METHODS: We used a large sample of resting-state neuroimaging data from the UK Biobank (n = 3950).
RESULTS: First, analysis at the whole-brain level showed that connections involving the default mode network
(DMN), frontoparietal network (FPN), and cingulo-opercular network (CON) were significantly positively associated
with levels of cognitive performance assessed by a verbal-numerical reasoning test (standardized § cingulo-
opercular values ranged from 0.054 to 0.097, Pcorrected < -038). Connections associated with higher levels of
cognitive performance were also significantly positively associated with educational attainment (r = .48, n = 4160)
and household income (r = .38, n = 3793). Furthermore, analysis on the coupling of functional networks showed
that better cognitive performance was associated with more positive DMN-CON connections, decreased cross-
hemisphere connections between the homotopic network in the CON and FPN, and stronger CON-FPN
connections (absolute fs ranged from 0.034 to 0.063, Pcorrected < -045).

CONCLUSIONS: The current study found that variation in brain resting-state functional connectivity was associated
with individual differences in cognitive ability, largely involving the DMN and lateral prefrontal network. In addition, we
provide evidence of shared neural associations of cognitive ability, educational attainment, and household income.
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General cognitive ability is positively associated with higher
educational attainment (1), better workplace performance (2),
and reduced risk of several mental and physical diseases (2-5).
Identifying the associated neural mechanisms will help to
better understand the causes of these associations.

Studies have been conducted to explore the relationship
between resting-state networks (RSNs) and cognitive ability
(6-8). RSNs involving lateral prefrontal cortex (PFC), such as
the executive control network and frontoparietal network
(FPN), have been previously reported to have positive as-
sociations with attention and executive control (9). Newer
evidence suggested that, other than prefrontal networks,
the default mode network (DMN) is an important neurobio-
logical marker for higher network efficiency because it is a
metabolic and neural network hub for the whole brain
(10,11) and is associated with a large number of positive

sociodemographic variables (11). However, prefrontal net-
works and the DMN show distinctive metabolic activity (12),
and in certain tasks they can be neuroanatomically antag-
onistic (13). The ambiguity of biomarkers for cognitive
performance therefore limits the potential of using neural-
network modeling for practical purposes such as assisting
clinical diagnoses and identifying the regional targets for
neuronal interventions.

The variability of results in previous studies (11,14,15) may
be due to relatively small sample sizes, often limited to 100
participants or fewer. This limitation is difficult to overcome
using meta-analysis because methods of extracting functional
networks may vary considerably between studies. Therefore,
there is a need for large-scale studies using a single scanner
and consistent methods of estimating the association of RSN
activity with consistently collected social and psychological
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phenotypes to determine the relationship between resting
functional connectivity and cognitive ability.

In the current study, we examined resting-state data from
the first release of the UK Biobank imaging project (16,17).
Participants from 40 to 75 years old were recruited widely
across the United Kingdom (16,18,19). For the resting-state
functional magnetic resonance imaging (rs-fMRI) data used in
the current study, 3950 subjects underwent the cognitive
assessment using a test of verbal-numerical reasoning (VNR)
(referred to in the UK Biobank as a test of fluid intelligence).
This measurement is genetically and phenotypically repre-
sentative of the latent component of general cognitive perfor-
mance (20,21). This test had a test-retest reliability of .65
between the initial assessment visit in the period 2006-2010
and the first repeat assessment visit in 2012 or 2013 (21,22).
It also shows a significant genetic correlation with childhood
general cognitive ability (r = .81) (20).

In addition to the utility of analyzing a large sample, the
current study benefited from examining the neural associations
between educational attainment and household income. The
rs-fMRI data were available for educational attainment and
household income on samples of 4160 and 3793 subjects,
respectively. Both education and household income show
phenotypic correlations and shared genetic architecture with
cognitive ability (21,23); however, the associations between
cognitive ability and these two variables with respect to func-
tional connectivity remain unclear.

To address the above issues, our analyses were con-
ducted in the following order. First, we examined whole-brain
resting-state connectivity using a very large sample to
identify functional networks associated with cognitive per-
formance. Second, we tested which resting-state connec-
tions were associated with educational attainment and
household income because these two traits are highly rele-
vant to cognitive performance. Third, to determine which
regions are involved with the above three traits, pairwise
correlation analyses were conducted between neural asso-
ciations of cognitive performance, educational attainment,
and household income on all connections over the whole
brain. For these three steps, we conducted the analysis on a
correlation matrix derived from high-resolution brain parcel-
lation. Finally, we moved on to examine the coupling
between bulk RSNs based on a low-resolution parcellation,
focusing on networks identified by the previous two whole-
brain analyses.

METHODS AND MATERIALS

Participants

The study was approved by the National Health Service
Research Ethics Service (No. 11/NW/0382) and by the UK
Biobank Access Committee (Project No. 4844). Written con-
sent was obtained from all participants.

In total, 4162 participants undertook an rs-fMRI assessment
and passed the quality check undertaken by the UK Biobank
(http://www.fmrib.ox.ac.uk/ukbiobank/nnpaper/IDPinfo.txt)
(mean age = 62.20 *= 7.56 years, 47.48% male, 4038
[97.02%] white, 51 [1.23%] Asian, 25 [0.60%] black, 16
[0.38%] mixed race, 21 [0.50%] other, and 11 [0.26%] null
response).
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Imaging Data

We used the network matrices from the imaging-derived
phenotypes that were processed by the UK Biobank imaging
project team (16). The detailed methods of the UK Biobank
imaging processing can be found in a previous protocol article
(16). For clarification, these processes are described briefly
below.

All imaging data were obtained on a Siemens Skyra 3T
scanner (Siemens Medical Solutions, Erlangen, Germany; see
http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=2367).

Data preprocessing, group independent component anal-
ysis (ICA) parcellation, and connectivity estimation were car-
ried out using FSL packages (http://biobank.ctsu.ox.ac.uk/
crystal/refer.cgi?id=1977) by the UK Biobank. Briefly, pre-
processing included motion correction, grand mean intensity
normalization, high-pass temporal filtering, echo-planar image
unwarping, gradient distortion correction unwarping, and
removal of structured artifacts (16).

Group ICAs were then performed on the preprocessed
sample of 4162 people, and two different ICAs were performed
with the dimensionality (D) set as 100 and 25. The D de-
termines the number of distinct ICA components. The dimen-
sionality of D = 100 infers a parcellation of high resolution,
while the setting D = 25 results in low-resolution parcellation
and larger functional networks that can be extracted as a
single component (11,16). After the group ICAs, noise com-
ponents were discarded; this resulted in 55 components in
100-D ICAs and 21 components in 25-D ICAs that remained for
further analysis. The maps of both ICAs can be seen at http://
www.fmrib.ox.ac.uk/datasets/ukbiobank/index.html.

Finally, connections between pairs of ICA components for
each subject were estimated. We used the partial correlation
matrices calculated using the FSLNets toolbox: http://fsl.fmrib.
ox.ac.uk/fsl/fslwiki/FSLNets. A partial correlation matrix was
generated by controlling for the strength of other connections.
The normalized estimation of partial correlation was conducted
with an L2 regularization applied (rho = 0.5 for the Ridge
Regression option in FSLNets). More details can be found in
Miller et al. (16) and the following URL: https://biobank.ctsu.ox.
ac.uk/crystal/docs/brain_mri.pdf.

The final 55x55 and 21X21 partial correlation matrices
were used as measurements of functional connections. The
two matrices are different. A 100X100 matrix has a much
higher spatial resolution and therefore gives better spatial
details in terms of identifying what regions are involved in
significant connections. On the other hand, a 25X25 matrix
has a low spatial resolution but allows us to estimate the
temporal synchronization between bulk networks that are well
known such as the DMN. Hence, the functional networks that
were found in the whole-brain analysis were selected from the
21x21 matrix as networks of interest (NOls), and connections
between the NOIs were tested.

Cognitive Performance

A test of VNR was carried out by the UK Biobank according to
the standard protocol (21,24,25). Questions of the test can be
found in the touchscreen fluid intelligence test protocol
document  (http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=
100231). The data used in the current study were collected
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at the time of imaging assessment (n = 3950, age = 62.07 =
7.54 years, 47.47% male). Descriptive statistics are presented
in the Supplemental Results and Supplemental Figure S1.

Educational Attainment and Household Income

Educational attainment and household income phenotypes
were self-reported. The details are reported in the study
website (http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=
100471 and http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?
id=100256). Descriptive statistics of educational attainment
and household income are presented in the Supplemental
Results and Supplemental Figure S1.

For educational attainment, we used a proxy that was
validated in previous studies (20,21). We created a binary
variable to indicate whether university/college-level education
was achieved. This proxy covered 4160 participants (age =
62.20 + 7.56 years, 47.48% male).

Household income was determined by the average total
income before taxes received by the participant’s household in
five levels (see Supplemental Methods). This measure had
3793 nonempty responses (age = 61.98 * 7.57 years, 49.04%
male).

Statistical Methods

We used the partial correlation matrix as a measurement of
functional connectivity. Values in the matrix are normalized
correlation coefficients. A higher absolute value means stron-
ger strength of connection, and the sign indicates whether the
connection is positive or negative. To enable clearer interpre-
tation of the results, the values of the connections were
transformed into connection strength. This was achieved by
multiplying the raw connection values with the sign of their
mean value. This approach was used in a previous study by
Smith et al. (11).

Analyses were performed in the following sequence. First, a
whole-brain analysis of the association between cognitive
performance (VNR) and resting-state functional connectivity
was performed using the connectivity matrix derived from
high-resolution parcellation. Second, two separate whole-brain
analyses on educational attainment and household income,
respectively, were conducted. Third, we performed correlation
analyses on the global functional connections predicted by
the three phenotypic variables over all the connections in the
55*55 matrix over the whole brain, that is, testing whether the
standardized effect sizes for the VNR score’s link to functional
connections were correlated with the corresponding effect
sizes for educational attainment and household income. Two
correlation analyses were then performed respectively on 1)
the effect sizes of cognitive performance and educational
attainment and 2) the effect sizes of cognitive performance and
household income. Fourth, an NOI analysis was performed.
This method has been validated in various previous studies as
well as in the protocol article for the UK Biobank imaging
project (16,26).

The associations between brain connections and cognitive
performance, educational attainment, and household income
were tested by separate models using the linear generalized
linear model function in R (https://stat.ethz.ch/R-manual/
R-devel/library/stats/html/glm.html). Each trait was set as
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the independent variable in its individual model, and
the connectivity matrix (high/low-resolution matrices,
55%55 for whole-brain analysis and the selected networks
in 2121 matrix for NOI analysis) was set as the dependent
variable. All the models were adjusted for age, age
squared, and sex or gender.

False discovery rate (27) correction was applied over each
set of test over the whole brain as a unit (st = 1485 for 55*55
matrix, nest = 16 for connections of bulk networks) using the
p.adjust function in R, setting g < .05 as the significance level
(https://stat.ethz.ch/R-manual/R-devel/library/stats/html/p.adjust.
html). All B values reported in the Results section are stan-
dardized effect sizes.

RESULTS

Whole-Brain Test of the Association of Cognitive
Performance With Functional Connectivity

A group ICA was applied to parcellate the whole brain into 55
components, and the pairwise functional connectivity between
the components was estimated using FSLNets (http://fsl.fmrib.
ox.ac.uk/fsl/fslwiki/FSLNets). The 55x55 partial correlation
matrix was used for whole-brain analysis. To enable clearer
interpretation of the results, the values of the connections were
transformed into connection strength (11).

Better performance in VNR was significantly associated with
26 connections (absolute Bs ranged from .054 to .097, all
Pcorrected values < .05, Puncorrected < 6.73 X 1074) (See
Supplemental Table S1). These include 18 connections that
showed higher strength of connection in people with higher
VNR and 8 connections that had lower strength with higher
VNR (Supplemental Table S1). The 18 connections largely
involved the DMN, which includes bilateral posterior cingu-
late cortex (PCC), bilateral medial PFC, and right tempor-
oparietal junction (see Figure 1). Additional areas of right
inferior PFC, dorsal anterior cingulate cortex (ACC), bilateral
anterior insula, and visual cortex were also involved. The
connections that were weaker with better cognitive perfor-
mance included bilateral lateral postcentral gyrus and su-
perior ACC (Figure 1).

We then conducted a permutation test on an updated
sample of unrelated people (n = 7749). Half-sized samples (n =
3572) were selected and tested the distributions of the
p values for the significant connections found in our initial
findings. After randomly selecting half our sample 1000 times
and conducting analyses on them, we then compared the
distributions of p values for the significant connections with the
p values for the rest of connections (see Supplement). Two
connections’ p values were higher (t > 6.95 and p < 6.62 X
1072, and those of all others were lower, which takes up
92.3% of the connections that were significant in the initial
findings (all ts ranged from —1076.88 to —2.21 and all ps <
.028) (see Supplemental Figure S7).

Whole-Brain Tests on the Association of
Educational Attainment and Household Income
With Functional Connectivity

There were 33 connections that showed significant associa-
tions with educational attainment (absolute fs ranged
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Figure 1. (A) Connections that showed significant associations with
cognitive performance. The independent component analysis components
were clustered into five categories according to the group mean full correlation
matrix for better illustration and interpretation of the results. This clustering gives
a data-driven, gross overview of the structure of the components, consistent
with previous studies (26,30). The clusters roughly represent the resting-state
networks of default mode network (red), extended default mode network and
cingulo-opercular network (purple), executive control and attention network
(green), visual network (blue), and sensorimotor network (orange). Red lines are
the connections where strength was positively associated with cognitive per-
formance, and blue lines denote negative associations with cognitive perfor-
mance. The widths of lines indicate the effect sizes of the associations between
connection strength and cognitive performance (bigger width indicates a larger
absolute effect size). The significant connections were mostly involved in the
categories of default mode network, executive control/attention network, and
cingulo-opercular network. (B) Spatial map of regions involved with connec-
tions in (A). The spatial maps for the independent component analysis nodes
involved in the significant connections were multiplied by their effect sizes, and
then the spatial map in (B) was generated by summing up the weighted maps.
To better illustrate the regions involving significant connections, a threshold of
50% of the highest intensity was applied so that the regions with intensity higher
than the threshold would show on the map.
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from .103 to .161, all Peorrected Values < .05, Puncorrected <
8.53 x 107% (see Supplemental Table S2). Of these, the
strength of 21 connections was stronger with higher educa-
tional attainment, whereas the strength of 12 was weaker. The
regions involved in connections that were stronger with better
educational attainment included regions in the DMN and
dorsolateral PFC (dIPFC). A large area of ACC was also
involved. Connections that were weaker with higher educa-
tional attainment were located in the inferior part of PCC and
lingual gyrus (Figure 2).

For household income, 15 connections were significant, 11
of which were stronger with higher household income and 4 of
which were weaker (absolute s ranged from .060 to .082, alll
Pcorrected values < '05! Puncorrected < 427 X 1074)
(Supplemental Table S3). The regions of the connections that
were stronger for higher household income again fell in
similar regions as in tests for educational attainment and
cognitive performance, which included PCC, medial PFC,
ventrolateral PFC, and dIPFC (Figure 2). The areas that
showed weaker connections for higher household income
were smaller, which mainly included superior temporal lobe.
Full lists of regions for the above results are presented in
Supplemental Table S4.

The spatial maps for the results of cognitive performance in
VNR, educational attainment, and household income over-
lapped substantially (Figures 2 and 3). By performing correla-
tion analysis at the standardized effect sizes of the whole brain
(see Statistical Methods in Methods and Materials section), we
found a correlation of ry4g3 = .47 (o < 2 X 107 ') between the
global effect sizes for cognitive performance and educational
attainment. The correlation between the effect sizes of cogni-
tive performance and household income was ry483 = .38 (p <
2 x 1079 (Figure 3).

Similar to the permutation test performed on VNR, the dis-
tributions of p values for 93.3% of the significant connections
found for educational attainment were lower than the mean
p value for the rest of connections (all ts ranged from —1429.77
to 11.54, all ps < 4.22 x 10™%) (Supplemental Figure S8), and
all those found for household income were lower (all ts ranged
from —704.07 to —5.49, all ps < 4.97 X 1078 (see
Supplemental Figure S9).

NOI Test on VNR, Educational Attainment, and
Household Income

The whole-brain tests showed that the connections associated
with cognitive performance in VNR, educational attainment,
and household income were predominantly located within the
DMN, covering medial PFC, PCC, and temporal-parietal
junction; cingulo-opercular network (CON), covering ventro-
lateral PFC and dorsal ACC; and FPN, covering dIPFC and
posterior parietal cortex. Therefore, the DMN, CON, and FPN
were selected as NOIs from another group ICA of lower res-
olution so that these networks could be fully extracted (see
Methods and Materials). The pairwise between-network
coupling of these five networks (the DMN was unilateral, and
the CON and FPN were separately extracted on each hemi-
sphere) was tested to determine their association with cogni-
tive performance, educational attainment, and/or household
income. The above components can be viewed in
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Supplemental Figure S2. The valence and values for the
coupling of the above NOIs are shown in Table 1. Similar to the
analyses at whole-brain connectivity, the values of the con-
nections were transformed into coupling strength before they
were fed into the model.

There were eight couplings between functional networks
significantly associated with VNR performance out of 10 con-
nections tested (all Peorrected Values < .05, Puncorrected < -035;
Bs reported below). There were three significant connections
for educational attainment, and none was found to be signifi-
cantly associated with household income.

For the coupling between the DMN and networks involved
with lateral PFC, better VNR performance was associated with
stronger positive connections between the DMN and bilateral
CON (stronger positive connection between the DMN and left
CON: B = .061, Peorectes = 6.7 X 1073 weaker negative
connection of the DMN and right CON: = —.045, Peorrected =
.011).

On the other hand, greater strength of coupling within the
networks involved with lateral PFC was significantly associ-
ated with better cognitive performance. Stronger positive

>
w

oY r=0.47, df=1483

-0.05"

Effect size of educational attainment
Effect size of household income

25 00 25 50 0.05 0.00
Effect size of cognitive performance
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Figure 2. Connections that showed significant
associations with educational attainment and
household income. Red lines are the connections for
which the strength was positively associated with
cognitive performance, and blue lines are the ones
having negative associations. The widths of lines
indicate the effect sizes of the strength of the con-
nections; see the legend of Figure 1. The categori-
zation of components of brain regions in the circular
brain network illustration is identical to that in
Figure 1. As in Figure 1, a threshold of 50% of the
highest value was applied for better illustration of the
projection of brain regions on the Montreal Neuro-
logical Institute template.

Household income

CON-FPN connection was also associated with higher VNR
score. In the same hemisphere, people with better cognitive
performance showed stronger positive CON-FPN connections
(left CON-left FPN: B = .044, pcorrectea = -011; right CON-right
FPN: B = .051, Peorrected = -005), while across hemispheres,
stronger negative CON-FPN connections were higher (left
CON-right FPN: B = .034, Pcorrected = -044; right CON—left FPN:
B = .043, Pcorrected = -011). Finally, higher VNR scores were
associated with weaker cross-hemisphere connections be-
tween the homotopic network components (left-right FPN:
B = —.040, Pcorrected = .018; left-right CON: B = —.063,
Deorrected = 8.7 X 107%). The above results are presented in
Table 1 and Supplemental Figure S3.

Educational attainment and household income had gener-
ally smaller associations with network coupling, and fewer
significant connections were found. People with higher
educational attainment showed a stronger positive connection
between the DMN and right FPN (B = .104, Peorrectea = -004)
and lower positive connection between the DMN and right
CON (B = —.149, Poorrectea = 1.99 X 1075). A stronger positive
connection between the right FPN and CON was associated

Figure 3. Correlations of the effect sizes of
cognitive performance and educational attainment
(A) and cognitive performance and household in-

® 2 come (B) on whole-brain connections using 55x55

partial correlation matrix as the proxy. Regression
lines with 95% confidence intervals (shaded) are
shown.

r=0.38, df=1483

0.05 0.10

Effect size of cognitive performance

882 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging October 2018; 3:878-886 www.sobp.org/BPCNNI


http://www.sobp.org/BPCNNI

Biological
Psychiatry:
CNNI

Resting-State fMRI, Cognition, Education, and Income

Table 1. Significant Associations Between the Connections of Networks of Interest and Cognitive Performance (Verbal-
Numerical Reasoning) and Educational Attainment

95% Confidence

Mean Value of Interval of Value of

Type Connection B Standard Error t p Poorrected Connection Connection

Verbal-Numerical Reasoning

Interhemisphere  Left FPN-right FPN —.040 0.016 -2.493 1.27 X 10, .018 1.156 1.127 1.185
Right CON-left CON —.063 0.016 —-3.923 8.89 x 10° 6.67 x 10* 0.379 0.356 0.402

CON-FPN Left CON-right FPN .034 0.016 -2.106  3.52 x 10? .044 —1.359 —1.387 —-1.330
Right CON-left FPN .043 0.016 -2.714 6.68 x 10° .011 —2.088 —2.122 —2.054
Left CON-left FPN .044 0.016 2732  6.33 x 10° .011 1.043 1.018 1.067
Right CON-right FPN .051 0.016 3200 1.38 x 10° .005 0.648 0.620 0.676

DMN Related Left CON-DMN .061 0.016 3.824 1.33 X 10* 6.67 x 10* 0.675 0.652 0.698
Right CON-DMN —.045 0.016 2797 5.18 x 10° .011 -0.275 —0.300 —0.250

Educational Attainment

CON-FPN Right CON-right FPN .086 0.031 2,736 6.24 x 10° .021 0.648 0.620 0.676

DMN Related Right FPN-DMN .104 0.031 -3.335 859 x 10* .004 -0.710 —0.738 —0.682
Right CON-DMN —.149 0.031 4761 1.99 x 10°  1.99 x10° -0.275 —0.300 —0.250

The values of connections were transformed into strength before conducting the analyses by multiplying the connection values with the signs of
their means. This approach was consistent with (28). Mean values and their 95% confidence intervals of connections reported here are the values

before being transformed into strength.

CON, cingulo-opercular network; DMN, default mode network; FPN, frontoparietal network.

with better educational attainment (8 = .086, Pcorrected = 6.24 X
1079). No significant association between household income
and the coupling of networks was found (all pcorrected Values >
124).

For the connections that were significant for both
cognitive performance and educational attainment, we
performed mediation analysis using lavaan in R to test
whether the effect between educational attainment and bulk
network connections was mediated by cognitive perfor-
mance (Supplemental Figure S6). Network connectivity was
set as the predictor, and cognitive performance was set as
the dependent variable. Educational attainment was speci-
fied as the mediator. We found that the association between
right FPN-right CON and right CON-DMN connectivity and
educational attainment was mediated by cognitive perfor-
mance (18.4% and 76.2% of direct path mediated by indi-
rect path, respectively, for each model, comparative fit

We used a large sample and provided evidence that in
addition to the broadly suggested idea of lateral PFC that in-
volves dIPFC in the FPN and inferior frontal gyrus in the CON,
playing a crucial role in cognitive processing, the DMN was
also associated with cognitive performance (Bs of connections
positively associated with cognitive ability ranged from .054 to
.097) (24,28,29). Previous studies showed that the DMN serves
as a hub for the whole brain (13). In comparison with other
functional networks, the DMN showed a higher metabolic rate
in resting state (12), stronger connections with the rest of the
whole brain in both task-free and task-engaging situations (30),
and a key role in maintaining basic levels of wakefulness/
alertness in the brain (31). Higher efficiency within the DMN
was reported to be associated with various cognitive func-
tions, including memory (32), theory of mind (33), working
memory (34), and performance in general intelligence tests
(85). The high-level cognitive abilities mentioned above often

index = Tucker-Lewis index = 1) (see Supplemental involve the activity of multiple, spatially distant brain regions
Figure S6). (32,36). Therefore, the DMN, as a communicative hub, con-
tributes to functional efficiency over the whole brain (35),
potentially producing better integration and cooperation in
DISCUSSION

In the current study, we used a large population-based sample
of ~4000 participants and found that strength of connections
involved with the DMN regions, anterior insula and dIPFC in the
FPN, and inferior frontal gyrus in the CON were positively
associated with performance in a VNR test. The brain regions
associated with cognitive performance also overlapped with
those related to educational attainment and household in-
come. These results were validated in a bigger updated sample
of n > 7000 people. For cognitive performance in particular,
better cognitive functioning was marked by a more strongly
positive DMN-CON connection, weaker cross-hemisphere
connections of the left-right CON and left-right FPN, and
stronger CON-FPN connections.

core regions that are important for cognitive tasks.

In addition, the current study tested the coupling between
networks of interest. Stronger positive DMN-CON coupling
was associated with better cognitive ability (absolute § > .045).
In addition to the well-recognized, task-positive lateral PFC
(therefore anticorrelated with the DMN), our findings in this
large single-scanner sample lend substantial credence to
increasing evidence that the CON itself (37,38), and its positive
coupling with the DMN in both resting-state (39) and event-
related (40) studies, is highly pertinent for important aspects
of cognitive performance. The role of the CON was related to
maintaining task-engaging status (37,41) and flexibly switching
between the DMN and central executive network based on
experimental context (42,43). The experimental context in
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which the CON and DMN were found to be simultaneously
activated was often about goal-directed cognition (43), which
involves self-driven retrieval of memory or learned experience
and self-regulatory planning (15). Because the DMN is asso-
ciated with self-referential processing (13) and self-driven
cognition such as retrieval of personal experience (44) and
planning (15,45), positive coupling of the CON and DMN may
indicate recruitment of self-referential and goal-oriented ac-
tivity. Therefore, successful DMN-CON coupling may be useful
in maintaining internal mechanisms that support cognitive
processing and long-term learning (43).

The connections between networks involving lateral PFC
showed that better cognitive performance was associated with
stronger CON-FPN connections (absolute f > .034). This
result is consistent with previous structural and functional
findings that support the key role of prefrontal areas in
cognitive performance (29,46). We also found that better
cognitive performance was related to between-hemisphere
dissociation within networks (absolute § > .040). Whereas
this is the first time to our knowledge that this has been
examined in a study of a large sample, such reduced structural
connection between the left and right lateral PFC has been
observed in patients with schizophrenia with impaired cogni-
tive performance (47). More lateralization of the brain is asso-
ciated with better cognitive performance (48,49), whereas less
lateralization, especially in the PFC, is associated with reduced
specialization of brain functions across hemispheres; there-
fore, the advantageous anticorrelated connection we report
here potentially denotes increased brain efficiency (48,50).

The whole-brain connection map for cognitive performance
overlaps substantially with the maps for educational attain-
ment and household income. Further analyses showed that
there were global correlations of cognitive ability with educa-
tional attainment (r = .47) and with household income (r = .38).
Genome-wide association studies found that cognitive per-
formance and educational attainment share a similar genetic
architecture (r = .906) (1,20). There was, in particular, an
overlapping finding for educational attainment and cognitive
performance in the right FPN-right CON connection and the
right CON-DMN connection. We found that cognitive perfor-
mance significantly mediated the association between NOI
connectivity and educational attainment (Supplemental
Figure S6). The right hemisphere connection for the two pre-
frontal networks (FPN and CON) may therefore reveal the as-
sociation between education and executive control abilities
that was shown to be consistently associated with the right
lateral PFC (51). Early life intelligence [relatively stable across
the life course (52,53)] and educational attainment show
partially overlapping associations with some structural brain
measures in older age (54). Taken together, one interpretation
of these data is that the functional hallmarks of a more intel-
ligent and better-educated brain are related to income by virtue
of these temporally preceding factors. It could equally be the
case that income confers additional lifestyle benefits that also
influence these cerebral characteristics; the causal direction
that gives rise to the highly overlapping functional connectivity
reported here would be more adequately addressed with lon-
gitudinal multimodal data.

A limitation of the current study is that the VNR test, as a
brief measure, might not confer the same level of reflection on
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general cognitive ability as other longer, in-depth general
cognitive measures. The test-retest reliability was moderate,
mainly because rather than the usual short time period be-
tween test and retest, this was performed in the UK Biobank
between 2 and 5 years of age, which may contribute to the
relatively low value. However, given that previous studies
found that VNR shared significant genetic and phenotypic
correlation with the latent component of general cognitive
performance (20,21), it confers adequate representativeness of
general cognitive ability. Another limitation is that the sample
covers an older age range and so there is potential bias for
healthy, better-educated people. A notable strength of the
current study is that we used a large sample, providing
compelling evidence that both dorsal prefrontal areas and the
DMN were associated with cognitive ability, educational
attainment, and household income. To disentangle how mul-
tiple networks were involved in the cognitive ability, we
examined functional connectivity by estimating connections
between brain components derived in two different resolu-
tions, giving us another strength of studying both the con-
nections over the whole brain and the connections of bulk
intrinsic functional networks within a single dataset. Finally, in
addition to visual checking of overlapping regions of the sig-
nificant connections, we statistically compared the functional
connectivity associated with cognitive ability, educational
attainment, and household income over the whole brain, giving
a magnitude of neural associations among them.

Conclusions

The current study used a large, population-based sample of
individuals who provided multidimensional rs-fMRI data and
found substantial evidence for functional neural associations
of cognitive ability (VNR) in both whole-brain dynamics and the
coupling of intrinsic functional networks. The findings also
characterized the degree of rs-fMRI overlap between cognitive
ability and educational and socioeconomic level, providing
evidence of the overlapping biological associations on the
neurological level.
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