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Inequality and inequity 
in network‑based ranking 
and recommendation algorithms
Lisette Espín‑Noboa1,2,3, Claudia Wagner  1,4,5, Markus Strohmaier1,4,6 & Fariba Karimi1*

Though algorithms promise many benefits including efficiency, objectivity and accuracy, they may 
also introduce or amplify biases. Here we study two well-known algorithms, namely PageRank 
and Who-to-Follow (WTF), and show to what extent their ranks produce inequality and inequity 
when applied to directed social networks. To this end, we propose a directed network model 
with preferential attachment and homophily (DPAH) and demonstrate the influence of network 
structure on the rank distributions of these algorithms. Our main findings suggest that (i) inequality 
is positively correlated with inequity, (ii) inequality is driven by the interplay between preferential 
attachment, homophily, node activity and edge density, and (iii) inequity is driven by the interplay 
between homophily and minority size. In particular, these two algorithms reduce, replicate and 
amplify the representation of minorities in top ranks when majorities are homophilic, neutral and 
heterophilic, respectively. Moreover, when this representation is reduced, minorities may improve 
their visibility in the rank by connecting strategically in the network. For instance, by increasing 
their out-degree or homophily when majorities are also homophilic. These findings shed light on 
the social and algorithmic mechanisms that hinder equality and equity in network-based ranking and 
recommendation algorithms.

Online social networks and information networks have become integral parts of our everyday life. However, 
the opportunities offered by such networks are often constrained not only by our previous interactions1–5, but 
also by algorithms. For instance, algorithms could make some people or content more visible than others via 
classification6, ranking or recommendations7. In this regard, search engines and recommender systems are 
increasingly used for various applications such as whom to follow, whom to cite, or whom to hire. Typically, 
these applications use algorithms to order items (e.g., people and academic papers) based on “importance” or 
“relevance”, and may therefore produce social inequalities by discriminating certain individuals or groups of 
people in top ranks. In fact, it has been shown that recommender systems such as Who-to-Follow (WTF)8 tend 
to increase the popularity of users who are already popular7,9,10. A similar effect has been found in PageRank11, 
where nodes in high ranks stabilize their position and give little opportunity to other nodes to occupy higher 
positions12. This tendency towards the “popular” arises because these algorithms harness structural information, 
in particular, the in- and out-degree of nodes. For this reason, modeling the directionality of links—which is often 
left out for simplicity—is crucial to really understand how these algorithms work on different types of networks.

However, social networks are complex systems, and many other structural properties may also alter the 
distribution of nodes and groups in the ranking. For example, previous studies have shown that homophily—
the tendency to connect to similar others—affects the visibility of minorities in degree rankings13 and people 
recommender systems14. Consequently, it can reinforce societal issues such as the glass ceiling effect15–17 and 
the invisibility syndrome18. Despite these findings, little is known about the extent to which the combination of 
multiple structural properties can alter the visibility of minorities in top ranks from ranking and recommenda-
tion algorithms. A further complication is that debiasing ranking outcomes and making them fair is very chal-
lenging since they can be mitigated in different ways19: by intervening on the score distribution of candidates20, 
on the ranking algorithm21, or on the ranked outcome22. While most of these studies tackle fairness in ranking, 
they do not explore the effects of networked data in ranking. This paper is a step towards this goal. Since such 
algorithms are so deeply involved in social, economic, and political processes, we need to first understand how 
our connections affect them to then apply appropriate interventions towards fair results.
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To this end, we propose DPAH, a network model that generates directed scale-free networks with binary-
attributed nodes. It encodes two main mechanisms of edge formation found in social networks: homophily and 
preferential attachment23–25 (see Methods for more details). Moreover, it allows to control for the fraction of 
minorities, edge density, and the skewness of the out-degree distribution. By using this model, we systematically 
study how these structural properties of social networks impact the ranking of nodes in PageRank and WTF. 
In particular, we investigate two ranking issues, inequality and inequity, and show how they get affected by the 
ranking algorithm together with the type of network. We measure inequality by quantifying the skewness of the 
rank distribution of nodes that PageRank and WTF produce, and inequity as how well-represented the minori-
ties are in the top of the rank compared to the proportion of minorities in the network. In this work we study 
both ranking issues and measure their correlation. Furthermore, we quantify them globally using the whole 
rank distribution, and locally within each top-k% rank. The goal is to identify both the overall inequality and 
inequity trend that these algorithms produce, and the tipping points where minorities start gaining visibility in 
the top of the rank.

As an example, consider the directed networks shown in Fig. 1. Every column represents a network with 
two types of nodes, minority (orange) and majority (blue), and different levels of homophily within groups. 
Homophily h, is a parameter ranging from 0 to 1 and determines the tendency of two nodes of the same color to 
be connected. hMM and hmm represent homophily within majorities and minorities, respectively. When nodes 
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Figure 1.   Inequality and inequity. Every column represents a network with certain level of homophily. All 
networks contain 20 nodes: 20% belong to the minority group (orange), and 80% to the majority group (blue). 
Edges follow a preferential attachment with homophily mechanism. The top row shows the graph and the 
level of homophily within groups (MM: majorities and mm: minorities). The second row shows all nodes in 
descending order (from + to −) based on their PageRank scores. The third row represents the rank inequality: 
Gini coefficients of the rank distribution for every top−k% (black line). Giniglobal refers to the Gini coefficient 
of the entire rank distribution (i.e., at top-100% ). We see that the lower the k, the lower the Gini of the rank 
distribution. The bottom row represents the rank inequity: Percentage of minorities found in each top-k% of 
the rank distribution (orange line). ME is the mean error of these percentages compared to a fair baseline or 
diversity constraint (i.e., how much the orange line deviates from the dotted line across all top-k’s). Here we see 
three main patterns: (a, b) When the majority group is heterophilic, minorities are on average over-represented, 
ME > 0.0 . (d, e) When majorities are homophilic, minorities are on average under-represented, ME < 0.0 . (c) 
When both groups are neutral, the observed fraction of minorities is almost as expected, ME ≈ 0.
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are ranked using PageRank (second row), the position of the minorities in the rank varies systematically. For 
instance, when majorities are heterophilic ( hMM = 0.2 , columns a and b), minorities often appear at the top (+). 
In contrast, when majorities are homophilic ( hMM = 0.8 , columns d and e), minorities tend to appear at the tail 
of the rank (-). Next, we explain this systematic ranking behavior in top ranks by further varying the structure 
of the network.

Results
Inequality and inequity in ranking.  Inequality refers to the dispersion or distribution of importance 
among individuals. This importance is the ranking score assigned to every node by the algorithm. We compute 
the Gini coefficient of the rank distribution to measure how far the ranking scores of individuals deviate from a 
totally equal distribution (see Methods for more details). As shown in Fig. 2, a very low Gini score ( Gini < 0.3 ) 
means that individuals are very similar with respect to their ranking scores. If the Gini score is extremely high 
( Gini ≥ 0.6 ), it means that only a few individuals capture most of the rank. In other words, the rank distribu-
tion is very skewed. Values in between ( 0.3 ≤ Gini < 0.6 ) represent moderate skewed distributions. Note that 
we measure inequality globally by using the whole rank distribution, and locally for each top-k%. From our 
example in Fig. 1, we see that PageRank on average generates moderate skewed ranking distributions for all the 
depicted networks ( Giniglobal ≈ 0.5 ). However, for very small top-k%’s, the Gini is very low. This means that the 
top individuals possess very similar ranking scores.

Inequity refers to group fairness. In particular, it measures the error distance between the fraction of minori-
ties in the top-k% and a given fair baseline (e.g., a diversity constraint or quota). This baseline may be adjusted 
depending on the context of the application19,26,27. Here, a ranking is fair when its top-k% preserves the propor-
tional representation of groups in the network (i.e., equivalent to demographic parity19,28). Therefore, the error 
represents the local inequity at each top-k%, and ME the mean of these errors across all top-k% ranks or global 
inequity. As shown on the last row of Fig. 1, we measure the local inequity in two steps. First, we compute the 
fraction of minorities that appear in each top-k% rank (orange line). Second, we compute the error between the 
observed fraction of minorities in each top-k% rank and a fair baseline (e.g., the actual fraction of minorities 
in the network, in this example 20% ). Then, we average these error scores across all top-k% ranks to determine 
the global inequity score (ME values). Ideally, a fair ranking should reach ME = 0 . However, in order to allow 
for small fluctuations we introduce the smoothing factor β . Thus, a fair ranking is such that −β ≤ ME ≤ β . 
The value of β is arbitrary, and allows for a smooth definition of “low mean error” or fairness. We set β = 0.05 . 
As shown in Fig. 2, when ME > β , then minorities are over-represented in the top-k% (blue region). When  
ME < −β , then minorities are under-represented (red region), otherwise the ranking is representing very well 
the minorities in the top of the rank (green region). Alternatively, we can say that the top rank (i) replicates the 
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Figure 2.   Regions of disparity. We measure inequality (y-axis) as the skewness of the rank distribution, and 
inequity (x-axis) as the mean differences between the proportional representation of groups in top-k% ranks 
and the network. Highly skewed distributions lie in regions I to III (darker colors), and fair rankings, where 
minorities are well represented in top ranks, lie in regions II, V, VIII (green). We set β = 0.05 which is arbitrary 
and allows for a flexible region of group fairness.
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proportional representation of groups when ME is zero or very low, (ii) amplifies the representation of minor-
ity nodes when ME > β , and (iii) reduces the representation of minority nodes—and benefits the majority 
group—when ME < −β . Note that ME ≈ 0 may be an artifact of a numerical cancellation as in (c), the neutral 
case in Fig. 1. In such cases, we could argue that the ranking is still fair since overall it was biased towards both 
groups across all top-k’s.

Finally, we refer to the relationship between inequality and inequity as disparity. For example, if a ranking 
distribution achieves Gini = 0.65 and ME = 0.5 , we say that the disparity lies in the region III (dark blue), i.e., 
high inequality and high inequity, see Fig. 2.

Growth network model with homophily and directed links.  In order to examine the effect of homo-
phily on the ranking of minorities in social networks, first we need to develop realistic network models that 
capture not only a variety of group mixing, but also the directionality of links. Many online social networks are 
directed networks in their nature, including the follower-followee structure on Twitter, citation networks29, and 
the hyperlink structure of the Web. Directed links are the key components of many algorithms such as Google 
Scholar30 PageRank and Who-to-Follow.

To this end, we prop ose DPAH, a directed pref erential attachment with homophily network growth model. 
We generate these networks by adjusting the number of nodes n = 2000 , the edge density d = 0.0015 , the frac-
tion of minorities fm ∈ {0.1, 0.2, 0.3, 0.4, 0.5} , the in-class homophily hMM , hmm ∈ {0.0, 0.1, . . . , 1.0} , and the 
power-law exponents of the activity distributions γM = γm = 3.0 . We refer to the minority group as m, and to 
the majority group as M. Note that the between-class homophily is the complement of the in-class homophily. 
That is, hMm = 1− hMM and hmM = 1− hmm . Furthermore, an activity score is assigned to every node. This 
score is drawn from a power-law distribution and determines with what probability the existing node becomes 
active to create additional links to other nodes. This means that more active nodes possess higher out-degree (see 
Methods for more details). Each combination of network structure is generated 10 times, nodes are ranked using 
PageRank and WTF separately, and inequality and inequity scores are computed and averaged across network 
types (and top-k’s for local disparity) for each algorithm.

Figure 3a illustrates the generation of a network using the DPAH model. First, n labeled nodes are created. 
In this example n = 8 . Then, at time t, node p is selected as source node with a probability proportional to its 
activity. Then, p connects to an existing node j with a probability related to their pair-wise homophily hpj and 
preferential attachment that is based on kinj  , the in-degree of node j. By this process, we ensure that the out- and 
in-degree distributions of nodes follow seemingly power-law distributions that have been observed in many 
large social networks31. The algorithm stops once the network reaches an expected density. Note that source 
nodes can be either new nodes joining the network for the first time (e.g., node p at time t) or existing nodes 
(e.g., node l at time t + 1 ). Since the network size is given, “a node joining the network for the first time” is a 
0-degree node that has been selected to create its first edge. Once a source node connects to a target node suc-
cessfully, the source node becomes available in the next rounds to become a target candidate. This means that 
in the beginning the model faces a cold start problem since there are no existing (target) nodes to connect to. 
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Figure 3.   DPAH  model and ranking of nodes. (a) Illustration of the directed network model with preferential 
attachment and homophily (DPAH). First, n = 8 nodes are created and randomly labeled according to the 
fraction of minorities fm = 0.25 . Then, the following algorithm repeats until a desired edge density is fulfilled. 
At time t, a source node p is drawn from a power-law (activity) distribution, and a target node j is drawn with a 
probability proportional to the product of its in-degree Kin

j = 4 and the pair-wise homophily hpj = hmM = 0.9 . 
At time t + 1 , a new edge is added between nodes l → o based on the same mechanism. (b) The PageRank score 
of each node is shown under PR. Nodes in each top-k% of the rank are grouped based on the unique PageRank 
scores. In this example, the top-60% of nodes concentrate most of the PageRank and their scores are somewhat 
similar (i.e., low Gini). Also, the ranking is fair from top-80% onwards, since they capture the same fraction of 
minorities as in the population, 25%. Local values are measured per top-k%, and global values are measured 
using the whole distribution for inequality (Gini), and the average across all top-k% ranks for inequity (mean 
error).
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Thus, the first 1% of new edges are between a source node (drawn from the activity distribution) and any other 
node with probability as in Equation (3). For the sake of completeness we show the computation of local and 
global disparities of this network in Fig. 3b.

How do homophily and directional links influence the ranking of minorities globally and 
locally?  Global disparity. As expected, we found that the Gini coefficient of the rank distributions is large. 
Giniglobal ≥ 0.6 (regions I, II and III; dark colors) for both PageRank (see Fig. 4) and WTF (see Supplementary 
Figure  S1). As we will see later, this is mainly due to the preferential attachment mechanism32,33. Moreover, 
we find that on average: (i) Balanced networks ( fm = 0.5 ) can get a fair ranking (green) when both groups 
possess the same homophily scores ( hMM = hmm ). The same applies for neutral networks ( hMM = hmm = 0.5 ) 
regardless of their fraction of minorities ( fm ≤ 0.5 ). (ii) When the fraction of minorities decreases ( fm < 0.5 ), 
groups can be fairly represented in the rank in two regimes: First, when both groups are homophilic, homo-
phily within minorities must be higher than homophily within majorities ( hmm > hMM > 0.5 ). Second, when 
both groups are heterophilic, homophily within majorities must be higher than homophily within minorities 
( hmm < hMM < 0.5 ) to balance the importance of groups.

Local disparity.  We also compute inequality and inequity within each top-k% rank in order to see to what 
extent they ch ange when k increases. In the case of PageRank, we see in Fig. 5 that inequality varies (i.e., from 
light to dark col or s) in different regimes mainly due to the size of k (x-axis), and inequity due to the interplay 
between homophily within groups, hMM and hmm . In particular: (i) Only at the top-5% of the rank we see a few 
cases of low inequality (regions VII, VIII and IX; very light colors), this means that nodes at the very top possess 
very similar ranking scores, but they are very far from the rest of the population, i.e., the larger the top-k%, the 
hig her the Gini (darker colors). This holds for WTF up to roughly the top-30% (see Supplementary Figure S2). 
Overall, PageRank converges to high inequality faster than WTF. (ii) Inequity (regions: red, blue, green) is con-
sistent across all top-k% ranks for both algorithms. In other words, if the ranking algorithm favors or harms one 
group in the top-5%, it will continue to do so until converging to the fair regime (regions II, V, VIII; green). With 
a few exceptions, this fair regime is only reached when k is very large. For example, if a minority group is under-
represented at the top-5%, it will remain under-represented at the top-80% (see hmm = 0.1 and hMM ≥ 0.7 in 
Fig. 5 for PageRank, and Supplementary Figure S2 for WTF). (iii) Minorities are often over-represented when 
majorities are heterophilic hMM < 0.5 ; (regions III, VI, IX; blue). In contrast, minorities are often under-repre-
sented when majorities are homophilic hMM > 0.5 (regions I, IV, VII; red). This is consistent up to ≈ top-80% 
for both algorithms.

In summary, our results sugges t that the size of k does not have an influence on inequity. This means that if the 
algorithm amplifies inequity at the top-5%, it will also amplify inequity at larger top-k%’s. Therefore, increasing 
the selection pool (larger k) does not improve the representation of minorities. This can be explained by the fact 
that the preferential attachment mechanism disproportionately affects nodes ranking12.

Correlation and feature importance.  We compute the Spearman correlation between inequality and 
inequity, and conduct a random forest regression to measure the importance of each network property on both 
inequality and inequity values (see Supplementary Appendix A.3 for more detai ls). Results are shown in Table 1 
for PageRank and Supplementary Table S2 for WTF. We find that inequality and inequity are positively corre-
lated in both global and local regimes. In other words, the more skewed the rank distribution (i.e., high Gini), 
the more unfair with either group (i.e., mean error far from zero), and vice versa. This correlation is stronger  and 
more significant in PageRank than in WTF. In terms of feature importance, we find that global inequality (Gini) 
is mainly explained by both homophily values, whereas g lobal inequity (ME) is mainly driven by homophily 
within majorities. Local inequality ( Ginik ), however, is mainly explained by the top-k% rank, and local inequity 
( MEk ) by the homophily within the majority group. Notice that we added the variable ǫ to verify whether the 

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

h
M

M

fm = 0.1

0.0 0.2 0.4 0.6 0.8 1.0

fm = 0.2

0.0 0.2 0.4 0.6 0.8 1.0
hmm

fm = 0.3

0.0 0.2 0.4 0.6 0.8 1.0

fm = 0.4

0.0 0.2 0.4 0.6 0.8 1.0

fm = 0.5

I
II
III
IV
V
VI
VII
VIII
IX

D
isparity

Figure 4.   The effects of homophily and fraction of minorities in the global disparity of PageRank. Columns 
represent the fraction of minorities in the network, x-axis indicates the homophily within minorities, and 
y-axis the homophily within majoritie s. Colors denote the region where the disparity lies in according to our 
interpretation in Fig. 2. First, we see that, on average, there is never low global inequality (i.e., regions IV to IX—
lighter colors—do not appear). This makes sense because these are scale-free networks. Second, depending on 
the level o f homophily within groups, minorities on average can be under-represented (region I, red), or over-
represented (region III, blue), or well-represented (region II, green). For example, when fm = 0.1 , minorities are 
on average under-represented when hMM ≥ 0.7 and hMM ≥ hmm.
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Figure 5.   The effects of homophily and fraction of minorities in the local disparity of PageRank. Columns 
represent the fraction of minorities (10%, 30% and 50%) and rows show homophily within minorities (from 
top to bottom: heterophilic, neutral and homophilic). The x-axis denotes the top-k% rank and the y-axis shows 
homophily within majorities. Colors refer to the regions of disparity introduced in Fig. 2. One can see that 
the minority suffers most (red) when the majority is homophilic and the minority is either heterophilic or 
neutral. Moreover, inequality is lowest (very light colors) only for a few cases at top-5%. This means that the top 
best ranked nodes are very similar and their ranks are far from the majority of nodes (i.e., due to preferential 
attachment). Moreover, inequity remains mostly consistent regardless of top-k%. In other words, if the ranking 
algorithm favors one group in the top-5% (e.g., red or blue), it will continue to do so until entering the fair 
regime (green).

Table 1.   Ten-fold cross-validation for PageRank. We use a Random Forest Regressor to assess feature 
importance and report the mean and standard deviation of the out-of-sample R2 . Features are ranked in 
descending order based on their mean importance (from left to right) and highlighted if their importance 
represents at least 50% of the total importance. Corr shows the Spearman correlation between inequality and 
inequity scores (p-values ≈ 0 ). ǫ represents random chance.

Type Outcome Corr R
2 Feature Importance

Global
Gini

0.41
0.91 (0.009) hMMhMMhMM ,hmmhmmhmm , fm , ǫ 0.43, 0.31, 0.21, 0.05

ME 0.99 (0.001) hMMhMMhMM , hmm , fm , ǫ 0.61, 0.31, 0.08, 0.0

Local
Ginik

0.21
0.95 (0.002) kkk, hMM , hmm , fm , ǫ 0.73, 0.11, 0.07, 0.06, 0.03

MEk 0.99 (0.001) hMMhMMhMM , hmm , k, fm , ǫ 0.51, 0.27, 0.14, 0.08, 0.01
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network-based features are better than random (see Supplementary Appendix A.3 for more details). In the case 
of PageRank, all network-based features perform better than by chance. However, randomness seems to be more 
relevant for explaining rank inequality (Gini) in WTF.

These results are in agreement with what we see in previous figures; even though majority nodes produce 
most of the inequality and inequity in the rank, their interplay with minority nodes can change or intensify the 
direction of bias. In fact, both homophily values can explain 75% (49%) of Gini, the global inequality in PageRank 
(WTF), 92% (88%) of ME, the global inequity, and 78% (74%) of MEk , the local inequity. However, the top-k% 
rank together with the homophily within majority nodes explain 84% (86%) of Ginik , the local inequality.

How do different social mechanisms of edge formation contribute to disparity?  So far, we show 
that PageRank and WTF on our network model produce high inequality and a wide-range of possible inequity 
outcomes. How much of that inequality or inequity was a product of homophily or preferential attachment? To 
see the effects of these two mechanisms alone, we generate new networks by turning on and off the homophily 
and preferential attachment features (see Methods for the details of the models).

Figure 6 shows the inequality and inequity produced by PageRank on a variety of models: DPA (Directed 
Preferential Attachment), DH (Directed Homophily), Random, and DPAH (see Supplementary Figure S3 for 
WTF). Results from both algorithms show that networks whose nodes connect through preferential attachment 
(DPA) produce on average higher inequality compared to DH and Random. However, when preferential attach-
ment is combined with homophily (DPAH), this inequality increases even further. Additionally, we see that WTF 
produces higher inequality compared to PageRank (see Supplementary Appendix A.4 for more details). Inequity, 
on the other hand, is mainly driven by homophily. This means that, homophily (DPAH and DH) influences both, 
inequality and inequity in both algorithms.

Note that in Fig. 6, we fixed the activity of nodes to γM = γm = 3.0 . However, when we set these parameters 
to γM = γm < 3.0 (more active nodes or lower values of γ as found in several scale-free networks34), inequality 
decreases, see Supplementary Figure S5. This behavior holds even if the minority group is the only one increasing 
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Figure 6.   The effects of homophily and preferential attachment in the global disparity of PageRank. We 
generated directed networks using four different models of edge formation. DPA: only preferential attachment. 
DH: only homophily. DPAH: our proposed model that combines DPA and DH. Random: a baseline where 
nodes are connected randomly. We see the following patterns: (i) Homophily (DH) produces a moderate-
to-high level of inequality ( 0.3 < Gini < 0.8 ), while preferential attachment (DPA) produces a consistent 
moderate inequality ( Gini ≈ 0.5 ). When both mechanisms are combined (DPAH), the rank inequality increases 
even further ( 0.7 < Gini < 0.9 ). (ii) Random and Preferential attachment (DPA) are always fair ( ME = 0 or 
|ME| ≤ β ), while in the cases where homophily is involved (DH and DPAH) inequity is often high ( |ME| > β ). 
Thus, in general preferential attachment is the main driver of inequality, while homophily influences both 
inequality and inequity. Vertical and horizontal error bars represent the standard deviation over 10 runs of the 
Gini and ME, respectively.
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its activity ( γm = 1.5 < γM = 3.0 ) which in turn increases inequity against the majority, see Supplementary 
Figure S6. Additionally, in Supplementary Figure S4, we see that edge density also plays a role in the inequality 
produced by PageRank and WTF. This means that, by further adjusting these two parameters (node activity 
and edge density), we would expect changes only to inequality since inequity is mainly affected by homophily 
as we saw before.

Disparities on empirical networks.  First, we fit the DPA, DH, and DPAH models to each of the empirical 
networks in order to find the mechanism that best explains the inequality and inequity found in the rank. The 
parameters passed to these models are inferred from the real networks and described in Table 3. Second, we rank 
nodes in the empirical and fitted networks using PageRank and WTF, and compute the disparities (inequality 
vs. inequity) found in their rank distribution. Results are shown in Fig. 7 for PageRank and Supplementary Fig-
ure S9 for WTF. Disparity values from the real-world networks are labeled as empirical (black dot), and disparity 
values from the fitted networks are labeled according to the model (x marks). We see that each network tells a 
different story. This can be explained by the nature or domain of these networks. For instance, APS and Hate are 
best explained by the DPA model. This means that scientists tend to cite authors that have already many cita-
tions, and users in Twitter tend to retweet content posted by popular users (i.e., popular in terms of the number 
of retweets they get). Blogs and Wikipedia on the other hand, are best explained by our DPAH model. Notice 
that both are hyper-link networks. In other words, people tend to add not only popular references to their Web 
pages, but also related to their topics (i.e., political leaning in Blogs, and gender in Wikipedia). Note that the 
Hate network shows the lowest (empirical) inequality. This is due to the fact that it possesses low out-degree 
exponents ( γM = 2.2 , γm = 1.7).

Strategies towards a fair ranking.  Results from both algorithms show that while the homophily within 
majorities is the main driver for inequality and inequity, minorities may overcome unfair rankings by connect-
ing strategically in the network. For instance, when both groups are equally active, minorities should adjust 
their homophily based on the homophily of the majority. (i) When majorities are homophilic hMM > 0.5 , 
minorities should increase their homophily such that hmm > hMM . (ii) When majorities are (somewhat) neutral 
( hMM = 0.5± 0.1 ), minorities may connect arbitrarily with any group without being too homophilic, otherwise 
they will become over-represented in the rank. (iii) When majorities are heterophilic hMM < 0.5 , one solution 
to achieve a fair rank is to increase the size of the minority group, and make sure that both groups behave simi-
larly in terms of homophily ( hMM ≈ hmm ). Otherwise, minorities will be over-represented regardless of their 
in-class homophily. On the other hand, when one group is more active than the other, achieving a fair rank 
becomes challenging. Nevertheless, if the objective is to increase the visibility of minorities in the rank, then the 
minorities themselves should be more active in the network by creating more connections to increase their out-
degree. Note that these “strategies” without algorithmic intervention may work in scenarios such as a citation or 
collaboration networks, but they might not work in other scenarios. In such cases, we need additional recom-
mender systems to help under-represented groups discover those “strategic” links that will help them climb to 
higher ranks.

Discussion and future work
In this work we have proposed a systematic study to measure the inequality and inequity produced by PageRank 
and Who-To-Follow (WTF). Our approach disentangles the effect of network structure on the rank distributions 
of these two algorithms by using synthetic networks. By doing so, we control for the properties of the network 
and measure how these changes affect the rankings. In particular, we studied six prominent structural properties 
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Figure 7.   Global disparity in PageRank on empirical networks. Each column represents an empirical network. 
Citation/retweet networks (APS and Hate) and Hyper-link networks (Blogs and Wikipedia). Inequality and 
inequity are shown in the y- and x-axis, respectively. The disparity in ranking that we see in empirical networks 
are best explained as follows: (i) citation/retweet networks by preferential attachment PA, and (ii) hyper-link 
networks by preferential attachment and homophily DPAH.
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of social networks: homophily, preferential attachment, fraction of minorities, edge density, node activity and the 
directionality of links. We found that the systemic bias produced by these algorithms in the rank is mainly due to 
homophily imbalance ( hMM ≫ hmm or hmm ≫ hMM ) for inequity, and the interplay between our six properties of 
interest for inequality. Consequently, our systematic study makes PageRank and Who-To-Follow interpretable 
and explainable since our results show the necessary structural conditions to achieve a fair rank. A potential 
avenue to reduce inequity is to then create synthetic connections before the ranking as it is done for correcting 
the class imbalance problem in supervised learning35. Alternatively, these conditions or strategic connections 
may be added into the network to change its structure as a collective fairness intervention. For instance, recom-
mender systems could suggest relevant articles not only based on popularity and (keyword) similarity but also 
based on fairness by fulfilling diversity constraints.

Notice that our model simplifies the role of homophily and minorities. First, it assumes that all nodes of the 
same group have the same in-class and between-class homophily. This means that rich mixing patterns might 
get ignored since some nodes can exhibit local differences36. Second, while there exist multiple definitions of 
minorities37 we adopted the one by Italian jurist Francesco Capotorti: “a group numerically inferior to the rest 
of the population of a State, in a non-dominant position...”38,39. However, we constrained this population to all 
nodes in a given network (neither the State nor the world population). Notice as well that the ranking ampli-
fies the representation of minorities by reducing the representation of majorities in top ranks (e.g., when the 
majority is heterophilic, see Fig. 1). This aligns with the definition of minorities by Wirth40 that implies that 
“minorities objectively occupy disadvantageous positions in society”. This means that “a minority may actually, 
from a numerical standpoint, be the majority” (e.g., people living in poverty in under-developed countries). In 
other words, under these two definitions, being in disadvantage in the top-k% (inequity) is not a group size issue 
only, but a combination of group size and homophily as we have previously shown. More complex definitions 
of minorities are out of the scope of this paper. A further limitation is that we focus on a single binary attribute 
(e.g., color ∈ {Black,White} ), this means that multiple sources of inequality and inequity (e.g., intersections of 
disadvantage such as being poor and of color) cannot be captured at once41. Addressing these issues is beyond 
the scope of this paper and we leave them for future work.

Finally, we disentangled the individual effects of preferential attachment and homophily in the rank by com-
paring the disparities of our proposed DPAH model with two variants and a baseline: networks with preferential 
attachment only (DPA), networks with homophily only (DH), and directed Erdös-Rényi (Random)42 graphs. 
Further research can investigate other topologies and social mechanisms of edge formation such as clustering43, 
transitivity44, and reciprocity45. Similarly, other structural properties such as monophily46 and second order 
homophily47 can be studied to measure their influence on ranking.

Conclusions
In this work we have investigated under which conditions PageRank and Who-To-Follow (WTF) reduce, replicate 
or amplify the representation of minorities in top ranks. In particular, given the rank distribution produced by 
these algorithms, we computed inequality as the dispersion among individuals in terms of ranking scores, and 
inequity as whether minorities are over-, under- or well-represented in top ranks compared to their represen-
tation in the network. We studied these two metrics separately and in combination to better understand the 
mechanisms that can explain them.

To that end, we proposed DPAH, a growth network model that allows to generate realistic scale-free directed 
networks with different levels of homophily, fraction of minorities, node activity, and edge density. In these net-
works, we found that both inequality and inequity are positively correlated and mainly driven by the homophily 
within majorities. This means that, when the majority group is highly homophilic, the minority group is under-
represented in top ranks. Also, when the majority is highly heterophilic, the minority benefits tremendously 
since it is over-represented in the top-k%. However, minorities can overcome these disparities by connecting 
strategically with others. Thus, equity in ranking is a trade-off between homophily and the fraction of minorities.

Our systematic study makes PageRank and Who-to-Follow explainable and interpretable to help data scien-
tists understand and estimate the disparity that these algorithms produce given the structure of networks, which 
is key for proposing targeted interventions. We hope our results create awareness among majority and minority 
groups about these disparities since they may replicate and even amplify the biases found in social networks.

Data and methods
Synthetic networks.  Network models have been proposed with various social mechanisms. For instance, 
the classic stochastic-block model48 which allows for homophily between and across groups, and the configuration 
model49 which generates links among nodes by preserving a given degree distribution. On the other hand, the 
preferential-attachment model25 produces scale-free networks due to cumulative advantage50. Although these 
models can reproduce certain properties of real-world networks such as degree or homophily, they fail at guar-
anteeing similar visibility of minorities as their empirical counterpart. In this direction, Karimi et al.13 and Fabbri 
et al.14 devise social network models with preferential attachment, adjustable homophily and fraction of minori-
ties. They demonstrate how the degree rank of the minority group in a network is a function of the relative group 
sizes and the presence or absence of homophily. However, the former models undirected networks, and the latter 
did not control for edge density and node activity (i.e., power-law out-degree distributions) as we do in this work 
for minority and majority groups.

Directed network.  We define a directed network as: Let G = (V ,E,C) be a node-attributed unweighted graph 
with V = {v1, . . . , vn} being a set of n nodes, E ⊆ V × V  a set of e directed edges, and C = {c1, . . . , cn} a list of 
binary class labels where each element ci represents the class membership of node vi . The fraction of minorities 
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fm captures the relative size of the minority class—with respect to C—in the network. We refer to the minority 
group as m, and to the majority group as M. A network is balanced when all class labels have the same number of 
nodes ( fm = 0.5 ), otherwise it is unbalanced ( fm < 0.5 ). Networks fulfill a predefined edge density level d. Since 
n and d are given, networks stop growing when e = dn(n− 1).

In order to generate directed links, inspired by the activity-driven network model51, we assign an activity 
score to each node that determines with what probability the existing node becomes active and creates additional 
links to other nodes. It has been shown that in empirical networks the activity of the nodes follows a power-law 
distribution51. Therefore, we assign an activity to each node drawn from a power-law distribution ρ(γ ) = X−γ . 
Note that each group possess its own activity distribution and they are defined by its power-law exponent γM 
and γm for majority and minority nodes, respectively. The level of activity of a group is inversely proportional to 
γ . That is, groups with higher out-degree produce lower γ (more skewed).

Then, the probability of connecting a source (active) node vi to a target node vj (or in other words the prob-
ability of connecting to vj given the source node vi ) is explained by any of the following three mechanisms of 
edge formation.

Preferential attachment (DPA).  Also known as the rich-get-richer effect or cumulative advantage in social 
networks25,50. It indicates that nodes tend to connect to popular nodes. We define popularity as the in-degree 
of the node. Therefore, the probability that a source node vi connects to a target node vj is proportional to the 
in-degree of the target node vj.

Homophily (DH).  It is the tendency of individuals to connect (or interact) with similar others24,49. Thus, the 
probability that a source node vi connects to a target node vj is driven by the homophily between their classes ci 
and cj . We assign a homophily value to each dyad based on pre-defined homophily parameters within majori-
ties and minorities, hMM and hmm , respectively. Homophily values range from 0.0 to 1.0. If the homophily value 
is high, that means that nodes of the same class are attracted to each other more often than nodes of different 
attributes. Following the definitions from previous work13,14,52, nodes of the same class with homophily haa = 0.5 
are referred to as neutral (i.e., they connect randomly to either class), otherwise they are heterophilic if haa < 0.5 
(i.e., more likely to connect to the other class), or homophilic when haa > 0.5 (i.e., more likely to connect to 
the same class). Note that in- and between-class homophily values are complementary: hmm = 1− hmM and 
hMM = 1− hMm.

Preferential attachment with homophily (DPAH) .  We propose DPAH, a directed growth network model with 
adjustable homophily and fraction of minorities. DPAH stands for Directed network with Preferential Attach-
ment and Homophily. This mechanism combines DPA and DH, and is an extension of the BA-Homophily 
model13.

Note that DPA and DH are especial cases of DPAH where only the in-degree mechanism varies. This means 
that, the out-degree distribution remains the same as in DPAH: it is driven by the activity model. Additionally, 
we include a random model where both source and target nodes are chosen at random (i.e., directed Erdös-
Rényi model42). Table 2 shows the parameters adjusted in each model. Number of nodes n and edge density d 
are arbitrary in the sense that they are not part of the edge formation mechanism. Thus, we fix them to make a 
fair comparison across all models.

Empirical networks.  We inspect four networks from different domains and compute the inequalities and 
inequities produced by PageRank and WTF. Table 3 shows the most important properties of these networks.

•	 APS: The American Physical Society citation network wh ose nodes represent articles, and edges represent 
citations. The binary class of each node is pacs and encodes two different Physics sub-field s w he re  05.20.-y 
( C la ssical statistical mechanics) is the minority.

•	 Hate: A retweet network53 where nodes denote users, and edges represent ret weets among them. Users are 
labeled as either hateful or normal depending on the sentiment of their tweets. Hateful users represent the 
minority.

•	 Blogs: An hyper-link network from political blog posts about the 2004 U.S. election54. Nodes represent blog 
pages, and edges hyper-links  among them. Each blog is labeled as either right- or left-leaning. The latter 
represents the minorities.

(1)P(i → j) = P(j|i) =
kinj∑N
l=1 k

in
l

(2)P(i → j) = P(j|i) =
hij∑N
l=1 hil

(3)P(i → j) = P(j|i) =
hijk
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j∑N

l=1 hilk
in
l
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•	 Wikipedia: A Wikipedia hyper-link network where nodes repres ent U.S. politicians55,56 labeled as either 
male or female. Female politicians re present the minorities.

Ranking and recommendation algorithms .  There exist a variety of ranking and recommendation 
algorithms that follow different strategies depending on the nature of the problem. For instance, in informa-
tion systems, items such as content, Web pages, and products are ranked to recommend users what to read or 
buy57. In social networks, however, people are ranked to identify their hierarchy or importance54–60, and recom-
mended to other users in order to establish new connections61–64. These rankings and recommendations are 
based on algorithms that often rely on whom we are already connected with. In this work, we focus on two such 
algorithms widely used in practice65: PageRank11 and Who-to-Follow (WTF)8. While PageRank determines the 
global ranking of nodes in comparison with all other nodes, WTF deals with ranking nodes in a node level and 
thus remains a local measure. For that reason, we focus on these two algorithms to capture both dimensions.

PageRank .  It was invented to rank all web pages in the Web11, and has been used in several applications65. 
For example, to study citation and co-authorship networks66–68. PageRank assigns an importance score to every 
single node in a network. This score takes into account the number and quality of incoming links of each node. 
The PageRank of node i is defined as follows:

(4)PR(i) = (1− α)+ α
∑

j∈Ni

PR(j)

koutj

Table 2 .   Model parameters. Check marks denote that a given model (column) requires a particular parameter 
(row): number of nodes n, fraction of minorities fm , edge density d, in-class homophily haa , and the power-
law exponent of the activity distribution γ. Sub-indices M and m refer to the majority and minority groups, 
respectively. The difference between DH and DPAH is the preferential attachment (in-degree) mechanism. All 
models produce directed networks.

Random DPA DH DPAH

n � � � �

fm � � � �

d � � � �

hMM - - � �

hmm - - � �

γM - � � �

γm - � � �

Table 3.   Empirical Networks. APS, a scientific citation network. Hate, a retweet network. Blogs, a political 
blog hyper-link network. Wikipedia, a hyper-link network of politicians. Each row represents a property of the 
network. E∗∗ represents the fraction of edges within and across groups, and h∗∗ homophily values inferred by 
the DPAH model (see Supplementary Appendix A for derivations).

Dataset APS Hate Blogs Wikipedia

n 1853 4971 1224 3159

Class pacs hate leaning gender

M 05.30.-d normal right male

m 05.20.-y hateful left female

fm 0.37561 0.10943 0.48039 0.15226

d 0.00106 0.00061 0.01271 0.00149

γM 3.22246 2.23026 4.88733 4.22425

γm 8.93993 1.73445 3.22464 6.16567

EMM 0.64981 0.56898 0.47070 0.78469

EMm 0.02859 0.10244 0.04741 0.07824

EmM 0.02721 0.07886 0.04105 0.10685

Emm 0.29439 0.24972 0.44084 0.03022

hMM 0.94000 0.58000 0.92000 0.59000

hmm 0.96000 0.95000 0.90000 0.62000
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where i ∈ V  , Ni represents all neighbors of node vi (e.g., all nodes vi points to), and koutj  the out-degree of node 
vj . The damping factor α , or probability of following links using a Random Walker, is set to 0.85 as suggested by 
Brin and Page69. We use the fast-pagerank70 python package to compute the PageRank score of all nodes 
using sparse adjacency matrices.

Who‑to‑follow (WTF) .  This recommendation algorithm was created and used by Twitter to suggest new peo-
ple to follow8. It is based on SALSA71 which in turn is based on Personalized PageRank72. In a nutshell, for each 
user u (or node vi ∈ V  ), the algorithm looks for its circle of trust, which is the result of an egocentric random 
walk (similar to personalized PageRank)8. Then, based on this circle-of-trust, the algorithm ranks all users that 
are not yet friends with u but are connected through the circle of trust. Then, we take the top-k of these (recom-
mended) users, and add up the counter of being selected as a recommendation to each of them. This is done for 
every node u in the network. At the end, the rank of each node encodes the number of times a user was suggested 
as a recommendation across all nodes in the network. Thus, the WTF score for each node is defined as follows:

where SALSA(j) refers to the top-k users the SALSA algorithm recommends to node j. In this work we select the 
top-10 users as recommendations. 1A(x) denotes the indicator function or boolean predicate function to test 
set inclusion (i.e., whether x ∈ A).

Gini coefficient.  The Gini coefficient was developed by the Italian Statistician Corrado Gini73 to measure 
the income inequality of a society. It is defined as the mean of absolute differences between all pairs of individu-
als for some measure. In our setup this measure is the score given to every node by PageRank and Who-To-
Follow. The minimum value is 0 when all individuals’ scores are equal, and its maximum value is 1 when there is 
a big gap or discrepancy between scores74.

We define the Gini coefficient of the rank distribution X as follows. For more details see75:

where x ∈ X is an observed value in the rank distribution, n̂ = |X| is the number of values observed, and i is the 
rank of values in ascending order.

Data availability
The code and datasets generated during and/or analyzed during the current study are available in the GitHub 
repository, https://​github.​com/​gesis​css/​Homop​hilic_​Direc​ted_​Scale​Free_​Netwo​rks.
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