
1.  Introduction
Ocean color sensors measure spectral top-of-atmosphere radiances, Lt(λ) (W m−2 sr−1 nm−1), which are rou-
tinely separated into atmospheric and oceanic components using atmospheric correction (AC) algorithms 
(Frouin et al., 2019). The derived spectral water-leaving radiance signal, Lw(λ) (W m−2 sr−1 nm−1), in the 
visible domain (400–700 nm) is directly attributable to the types and relative concentrations of optically ac-
tive matter present in the ocean's near-surface. For NASA's standard bio-optical algorithms, the radiometric 
quantity known as remote sensing reflectance signal, Rrs (sr−1), is typically used as a model input. Where Rrs 
is defined as the ratio of the water-leaving radiance signal, Lw (W m−2 sr−1 nm−1), to down-welling planar 
irradiance signal at the sea surface, Ed (W m−2 nm−1).

A range of AC and bio-optical algorithms have been developed that allow marine geophysical parameters to 
be derived from sensor-observed radiometry. Over the last two decades, synoptic near-daily spatiotemporal 
observations collected by ocean color sensors have greatly improved our understanding of near-surface 
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physical, biological, and biogeochemical oceanic processes. Indeed, some ocean color satellite-observed var-
iables, such as chlorophyll a pigment concentration, Chla (mg m−3), are now considered essential climate 
variables (Franz et al., 2017).

Most legacy ocean color algorithms used for deriving marine parameters such as Chla, a proxy for phyto-
plankton abundance, are typically empirical band ratio-type algorithms (O'Reilly & Werdell, 2019). Such 
algorithms rely on statistical relationships between the ratio of blue/green sensor bands and in situ meas-
urements of Chla. Thus, from sensor-observed blue and green Rrs Chla can be quantified. Whilst such em-
pirical Chla algorithms have mostly met mission accuracy objectives (McClain, 2009), they are best suited 
to oceanic waters, are not ubiquitously robust in optically complex (e.g., highly turbid and hypereutrophic) 
coastal and shelf waters, and can even be limited in oligotrophic waters (Hu et al., 2012). In such locations, 
alternative algorithms are necessary. Addressing this need are semi-analytical algorithms (SAAs) that make 
use of simplified radiative transfer theory as well as empiricism.

SAAs are radiative transfer-based and derive water-column optical properties directly from Rrs (Werdell 
et al., 2018). Once determined by an SAA, the total absorption, a (m−1), and backscattering, bb (m−1), co-
efficients, collectively referred to as the inherent optical properties (IOPs), can be separated into optically 
distinct non-water sub-components (Werdell et al., 2018). NASA's standard SAA for deriving IOPs is the 
Generalized Inherent Optical Properties algorithm framework (GIOP) (Werdell et al., 2013) which has a 
modular structure thereby allowing end-users to select their own SAA parameterization. We note that a 
default configuration of the GIOP is used to produce NASA's standard IOP data products.

A number of key biogeochemical parameters used to study phytoplankton ecology, marine biogeochemis-
try, and ecosystem responses to climate change can be derived from IOPs. These so-called “IOP-based” data 
products depend on the accuracy of derived IOPs. One such parameter, particulate organic carbon (POC) 
(mg m−3), can be used to study oceanic carbon fluxes and can be modeled as a function of the spectral partic-
ulate backscattering coefficient, bbp(λ) (m−1) (Evers-King et al., 2017). In oligotrophic oceanic waters, where 
Chla < 0.05 mg m−3, very low abundances of phytoplankton and sub-micron matter contribute significantly 
to bbp(λ) (Dall'Olmo et al., 2009; Stramski et al., 2004; Zhang et al., 2020). In these locations, SAA retrievals 
of bbp(λ) are often biased high (Lee & Huot, 2014) even when the corrections for inelastic Raman scatter-
ing are applied (McKinna et al., 2016). Sub-optimal bbp(λ) retrievals in oligotrophic gyres, which represent 
<40% of the global ocean, may impede the accuracy of bbp-based models for estimating POC (Evers-King 
et al., 2017).

Several studies have demonstrated Chla-based empirical models for deriving bbp(λ) (Antoine et al., 2011; 
Brewin et al., 2012; Huot et al., 2008; Morel, 1988; Morel & Maritorena, 2001). This approach is particularly 
attractive for use in oligotrophic waters where SAA models can underperform. To utilize Chla-based bbp(λ) 
models first requires accurate satellite derivation of Chla, which can be challenging in oligotrophic waters 
where legacy band-ratio type algorithms perform sub-optimally. Hu et al. (2012) demonstrated that a three-
band color-index (CI) difference metric, or reflectance line height (LH), -based approach to estimate Chla in 
oligotrophic waters is equally accurate to the blue-green band ratio models. Because the LH-based model is 
based on a reflectance difference, the approach is more robust to residual sunglint contamination, unknown 
errors from AC, and straylight contamination than reflectance ratio-based models (Hu et al., 2012, 2019). To 
reduce model complexity, we propose using a LH metric as an empirical predictor of bbp(λ) as opposed to us-
ing a Chla-based approach that requires one to estimate LH in an intermediate calculation. We note that Hu 
et al. (2012) mathematically showed that the magnitude of LH is more sensitive to changes in absorption in 
oligotrophic waters rather than bbp(λ). To that end, we will consider over what range of trophic conditions 
a LH-based bbp(λ) model is feasible and consider its expected limitations in phytoplankton-dominated, low 
Chla, oceanic waters.

Ocean color algorithms are routinely validated via “matchup” studies. These analyses are pair-wise com-
parisons of satellite-derived (Mi) with in situ observations (Oi) of the parameter of interest (e.g., Chla or bbp). 
Aside from assessing a single algorithm's skill, matchup analyses can also be extended to inter-comparison 
studies that assist in algorithm selection (Brewin et al., 2015; Seegers et al., 2018). For continuous varia-
bles, commonly used matchup metrics include, but are not limited to, the coefficient of determination (R2), 
type II linear regression metrics, mean bias, and mean absolute error (MAE). As oceanic biogeochemical 
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variables predominantly follow log-normal distributions (Campbell, 1995), validation metrics are often cal-
culated using log10-transformed data. Recently, Seegers et al.  (2018) suggested that mean bias and MAE 
were robust skill assessment metrics and were adopted by NASA's OB.DAAC for standard ocean color data 
product validation (https://seabass.gsfc.nasa.gov/).

Uncertainties have traditionally been overlooked during ocean color algorithm development. However, the 
ocean color community does recognize the importance of model and in situ observation uncertainty prove-
nance and has recently provided detailed guidance on the topic (IOCCG, 2020). Nonetheless, uncertainties 
are rarely considered during model validation. This is likely due to previously limited knowledge of model 
and observation uncertainties. In other disciplines, such as watershed and climate modeling, progress has 
been made toward incorporating model and observation uncertainties into model skill assessment (Eyring 
et al., 2019; Harmel et al., 2010). As we continue to improve our understanding of satellite sensor and in 
situ observation uncertainties it is critical that: (i) ocean color algorithms with empirical aspects account 
for uncertainties in the data sets used to train the model, (ii) algorithms are capable of estimating derived 
product uncertainties, and (iii) we develop techniques that consider uncertainties during model validation 
analyses. Here, we use our LH-based bbp(λ) empirical modeling exercise as a case study to demonstrate how 
uncertainties can be incorporated into model development, validation, and inter-comparison.

The objective of this study was twofold: (i) determine if an empirical LH-based model can be used to derive 
bbp(555) and associated standard uncertainties u(bbp(555)) and (ii) explore how measurement uncertainties 
might be used in ocean color algorithm validation. We perform exploratory analysis and model develop-
ment using two in situ datasets: the DS3 dataset (Stramski & Reynolds, 2018) and the Ocean Color Climate 
Change Initiative (OC-CCI) dataset (Valente et al., 2019). Specifically, we use the DS3 dataset to train the 
LH-based model and then the OC-CCI dataset is used to validate it. The skill of the GIOP and the Huot 
et al. (2008) Chla-based model are also assessed using the OC-CCI dataset. In our validation studies, we 
correct difference metrics for measurement uncertainty and consider how one might use skill assessment 
metrics to guide algorithm selection.

2.  Data and Methods
2.1.  Reflectance LH Metric

Reflectance line height metrics quantify the magnitude of a sensor-observed radiometric observation (e.g., 
Rrs) at a given band relative to a linear baseline interpolated between two adjacent bands. Some LH metrics 
used in ocean color remote sensing include, but are not limited to, the maximum chlorophyll index (MCI) 
(Gower et al., 2008), the normalized fluorescent line height (Behrenfeld et al., 2009), the floating algae index 
(Hu, 2009), the cyanobacteria index (Lunetta et al., 2015), the maximum peak height (Matthews & Oder-
matt, 2015), the color difference metric (Mitchell et al., 2017), and the CI (Hu et al., 2012).

A LH metric can generally be expressed as:

         
   

 
 

    
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LH ,g b
rs g rs b rs r rs b

r b
R R R R� (1)

where λb, λg, and λr denotes band-center wavelengths of sensor-specific blue, green, and red sensor bands, 
respectively. The term inside the square bracket is a linear interpolation between λb and λr. We note that the 
LH metric used in Hu et al. (2012), for example, was developed for NASA's Sea-viewing Wide Field-of-view 
Sensor (SeaWiFS) in which case λb, λg, and λr correspond to 443, 555, and 670 nm, respectively.

Following McKinna et al. (2019), we have used the first-order first-moment formulations to estimate uncer-
tainties due to random radiometric error. This approach is valid when the uncertainty is small relative to the 
measurement. For the LH metric, our estimated uncertainty, u(LH), is calculated as follows:
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where u(Rrs(λ))2 is the variance in the remote sensing reflectance for a given sensor band. The covariance 
terms for the ith and jth remote sensing reflectances are denoted as u(Rrs(λi),Rrs(λj)). Note, in this study we 
have not included the covariances terms in our LH uncertainty estimates as these are unknown, however, 
we acknowledge that they have important implications for estimating data product uncertainties (Lamquin 
et al., 2013; McKinna et al., 2019).

2.2.  Model Development Dataset

2.2.1.  DS3 Dataset

We used the DS3 Ocean Optics Dataset (Stramski & Reynolds, 2018) for model development. The DS3 da-
taset comprises in situ IOP and radiometry measurements collected and processed in a consistent manner 
by a single institute, the Scripps Institute of Oceanography, and was previously used in the development 
of the LS2 inverse bio-optical model (Loisel et al., 2018). The DS3 contains 243 data records (rows) and 
is well-suited for bio-optical model development as it is representative of a range of oceanic conditions 
including very clear waters of the South Pacific Gyre. We note that all bbp data in DS3 were collected with 
HOBI Labs HydroScat fixed-angle volume scattering function meters. Spectral dependency for Rrs and bbp 
is hereafter implied.

Each spectral Rrs record in DS3 has six data fields corresponding to six SeaWiFS spectral bands centered 
on 412, 443, 490, 510, 555, and 670 nm, respectively. The DS3 dataset has four spectral bbp data fields corre-
sponding to 442, 510, 550, and 671 nm, respectively. During model development, data records were excluded 
if the LH value could not be calculated (i.e., where one or more of the required Rrs data fields were missing). 
Similarly, data records were excluded if less than three valid spectral bbp fields were present. Where there 
were three or more valid spectral bbp records present, a curve was fit through the data in log-linear space 
using a power law model of the form:

   


 


 
   

 
0

0
.bp bpb b� (3)

From the model fit, values of bbp(555) were derived as well as the spectral slope coefficient, γ.

2.2.2.  OC-CCI Dataset

For model validation, we used the ESA OC-CCI bio-optical dataset (Valente et al., 2019). The OC-CCI is a 
large merged dataset that comprises 143,935 in situ data records, including the NASA bio-Optical Marine 
Algorithm Dataset (NOMAD; Werdell & Bailey, 2005). We note that not all records have coincident Rrs and 
bbp measurements. The dataset encompasses a wide variety of optical conditions and has spectral Rrs data 
fields that are consistent with several ocean color sensors including the Medium Resolution Imaging Spec-
troradiometer, the Moderate Resolution Imaging Spectroradiometer (MODIS), the Visible Infrared Imaging 
Radiometer Suite, the Ocean and Land Color Instrument (OLCI), and SeaWiFS. Unlike the DS3 dataset, 
the sensors used to measure bbp are varied and are sourced from multiple institutes. To maintain its inde-
pendence from the training data, the OC-CCI dataset was screened and any data records present in the DS3 
dataset were removed.

We used the “satbands6” tables of the OC-CCI dataset meaning that the closest Rrs and bbp spectra measured 
within 6 nm of the SeaWiFS band centers. A total of 340 OC-CCI data records were available for model 
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validation. We used Equation 3 to fit a power law model through OC-CCI bbp records where three or more 
valid spectral measurements were available.

2.2.3.  Satellite Data

We demonstrate the LH-based model with SeaWiFS imagery of two different regions: (i) the North Pacif-
ic Ocean adjacent to Hawaii and (ii) the Chesapeake Bay, USA. The first region is characterized by olig-
otrophic, low scattering waters, while the second region is characterized as optically complex, with highly 
scattering waters. The image of the Hawaiian region was captured on December 1, 2000, and the image of 
the Chesapeake Bay region was captured on April 23, 2003. SeaWiFS level-1 files were downloaded from 
NASA OB.DAAC (NASA Goddard Space Flight Center,  2010) and processed using the l2gen module of 
NASA's Ocean Color Science Software (https://oceandata.sci.gsfc.nasa.gov/ocssw/). NASA's standard AC 
was applied and the following level-2 data products were produced: Rrs(490), Rrs(555), Rrs(670), Chla, and 
bbp(555). Rayleigh-corrected reflectances, used for generating quasi-true color images, were also produced 
at 490, 555, and 670 nm. Chla was derived using the standard NASA algorithm (Hu et al., 2012; O'Reil-
ly et al., 1998) and bbp(555) was derived using the default configuration of the GIOP algorithm (Werdell 
et al., 2013) with the empirical Raman scattering correction of Lee et al. (2013) applied.

Data visualization and analysis were performed using NASA's SeaWiFS Data and Analysis Software pack-
age (SeaDAS; https://seadas.gsfc.nasa.gov/). Quasi-true color images of each region were generated from 
Rayleigh-corrected reflectances using SeaDAS' built-in RGB functions. For our comparisons, we did not 
reproject/map L2 images.

2.3.  Model Fitting

We used Python 3.7.0 for model development. For curve fitting, we selected orthogonal distance regression 
(ODR) as distributed in Python's Scientific library (SciPy). We selected ODR (a type-II regression method), 
as opposed the more traditional ordinary least squares because it considers measurement uncertainty in 
both the dependent and independent variables. After exploratory analyses of the DS3 dataset, we decided to 
model bbp(555) as a log-linear function of LH:

   LH0 1555 10a a
bpb� (4)

where the unknown coefficients a0 and a1 were determined by bootstrapped ODR curve fitting. Incidentally, 
this model is of similar mathematical form as the Hu et al. (2012) LH-based Chla model.

Standard uncertainties in a0 and a1, denoted as u(a0) and u(a1), respectively, were estimated using boot-
strap curve fitting. Specifically, 80% of the DS3 dataset was randomly selected and ODR curve fitting was 
performed to derive a0 and a1. This process was repeated 1,000 times to generate distributions of a0 and a1 
from which the mean was computed. From the covariance matrix of a0 and a1, standard deviations (i.e., the 
standard uncertainties u(a0) and u(a1)) and covariance term u(a0, a1) were estimated.

From Equation 4, we estimated the uncertainty in derived bbp(555) as:
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where ν = a0 + a1LH and u(LH) is computed using Equation 2.

2.4.  Uncertainties

Historically, in situ measurements do not always have accompanying uncertainty estimates and for this 
study we have made assumptions about the standard uncertainties in Rrs and bbp(555). We assumed 5% 
relative standard uncertainty in DS3 and OC-CCI spectral Rrs values (IOCCG Protocol Series, 2019) and 
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5% relative standard uncertainty in bbp measurements due to calibration uncertainty (Sullivan et al., 2013). 
From these relative uncertainties, we computed the standard uncertainty for each quantity. Standard un-
certainties in GIOP-derived bbp(555) were estimated following McKinna et al.  (2019) while standard un-
certainties in Huot-derived bbp(555) were also estimated using a first-order analytical methodology (see 
Appendix A for detail).

We note these relative uncertainties may be somewhat optimistic. Indeed, fixed angle volume scattering 
function meters have been reported as having larger, spectrally dependent uncertainties greater than 5% 
(Dall'Olmo et al., 2009) and McKee et al. (2009) reported bbp uncertainties that do not scale with magnitude. 
However, we believe 5% is still a useful starting point to explore how uncertainties might be considered in 
model skill assessment (validation) metrics. In a similar style to work of McKinna et al. (2019), the model 
skill assessments we present may be repeated or expanded to other models provided one has reasonable 
knowledge (or estimate) of observation and model uncertainties.

2.5.  Model Skill Assessment Metrics

To evaluate the predictive skill of our model(s), we compared model-derived bbp(555) with in situ observed 
values. This approach is also referred to as “model validation.” Our model validation was conducted using 
the OC-CCI dataset. Typically, in ocean color remote sensing, linear regression statistics are reported such 
as R2, slope, intercept, and root mean squared error. However, Seegers et al. (2018) demonstrated that pair-
wise comparison metrics such as the mean bias and mean absolute error (MAE) are robust model assess-
ment metrics, particularly when working with datasets that do not follow Gaussian distribution and have 
outliers present.

In this study, we computed the mean bias and MAE as follows:


 

1

1bias
N

i
i

D
N

� (6)


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1

1MAE
N

i
i

D
N
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where Mi and Oi are the ith modeled (derived) and observed (in situ) data points, respectively, and the differ-
ence, Di, is equal to Mi−Oi. We also computed these metrics for log10-transformed data, following Seegers 
et al. (2018), as ocean color datasets are often log-normally distributed (Campbell, 1995):
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where    10logi iM M  and    10logi iO O . Note, for some calculations the standard uncertainty of 
log10-transformed data was required. We denote modeled and observed log10-transformed standard uncer-
tainties as  iu M  and  iu O , respectively and were estimated as:
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One benefit of using log10-transformed mean bias and MAE is that the metrics have been transformed from 
linear to multiplicative space. For example, a log10-transformed mean bias value of 1.1 means the model on 
average overestimates by 10% relative to in situ measurements. To facilitate historical comparisons, we pres-
ent data in scatter plots and report slope, intercept, and R2 linear regression statistics in log10-space using 
reduced major axis (RMA) regression.

2.6.  Incorporating Model and Observation Uncertainties

We explore three ways one might incorporate uncertainties into model skill assessment (validation): (i) 
independent pair parametric testing based on confidence intervals, (ii) corrected skill metrics based on 
confidence interval overlap, and (iii) zeta-scores.

2.6.1.  Pairwise Independent Sample Z-Testing

We assume that the ith modeled and observed values of bbp(555) have means of Mi and Oi, respectively, that 
are normally distributed with known standard errors (i.e., the standard uncertainties) of u(Mi) and u(Oi). 
We performed two-tailed z-tests for independent samples with a null hypothesis H0: Mi = Oi and alternative 
hypothesis Ha: Mi ≠ Oi at the significance level α = 0.01. We tallied the proportion of all Mi and Oi pairs 
where the null hypothesis was accepted.

Extending the formulation presented in Austin and Hux (2002), we can express the ith z-test metric as:

        

   

 
   

 
  

2 2

,

2.576 c i i i i

test i
i i

DO u M u O u M u O
z

u M u O
� (12)

where DOc, is the critical degree of overlap of the two 99% confidence intervals. If the actual degree of over-
lap is less than DOc then the null hypothesis is rejected. Values of DOc must be computed for each pair of Mi 
and Oi. As an example, if u(Mi) = 0.00095 m−1 and u(Oi) = 0.00035 m−1, then DOc would be 0.22. Detail on 
how to compute the actual degree of overlap is given next.

2.6.2.  Degree of Overlap

Let us consider that the ith pair of modeled and observed bbp(555) data points, Mi and Oi, represent the mean 
of the probability distribution functions pm(mi) and po(oi), respectively, whose dispersion is described by the 
standard uncertainties u(Mi) and u(Oi), respectively. The degree of overlap (DOi) of pm(mi) and po(oi) can be 
expressed as per Equation 7 in Harmel et al. (2010) as:

      
, ,

, ,

M Oi max i max

i m i o i
M Oi min i min

DO p m dm p o do� (13)

                    , , , , .i i i max i i min i i max i i minDO prob o M prob o M prob m O prob m O� (14)

where the Mi,min and Mi,max represent the uncertainty (or confidence) boundaries for pm(mi) and Oi,min and 
Oi,max represent the uncertainty boundaries for po(oi). These lower and upper boundaries are user defined 
and may, for example, be set to 0.05 and 0.95 for a 90% confidence level.

To calculate DOi for each Oi and Mi pair, we used Python 3.7.0 code and the SciPy scientific and engineer-
ing package. First, the values Mi,min, Mi,max, Oi,min, and Oi,max were computed with the function scipy.stats.
norm.pdf for a given uncertainty boundary. Next, the scipy.stats.norm.cdf function was used to compute the 
probabilities in Equation 14. We note that both functions required a mean and standard deviation as inputs. 
For model and observation data we used Mi and u(Mi), and Oi and u(Oi), respectively. For log10-transformed 
model and observation data we used 

iM  and  iu M , and 
iO  and  iu O , respectively.
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2.6.3.  Corrected Difference Metrics

To account for uncertainties in pair-wise comparisons of Mi and Oi, we followed the method of Harmel 
et al. (2010) and computed a correction factor, CFi:

 1 .i iCF DO� (15)

The corrected pair-wise difference, CDi was then calculated as:

  .i i iCD CF D� (16)

Corrected mean bias and mean absolute error was next calculated as:


 

1

1bias
N

i
i

CD
N

� (17)


 

1

1MAE
N

i
i

CD
N

� (18)

Less weight is applied to Di when DOi approaches 1. Essentially, for completely overlapping pm(mi) and 
po(oi), where DOi = 1, the value of CFi will be zero as statistically no difference can be discerned between 
the two overlapping probability distribution functions.

Corrected mean bias and MAE for log10-transformed data was calculated as:

       
    

1

1
logbias 10 ,

N
CF M Oi i iN i� (19)

       
    

1

1
logMAE 10 .

N
CF M Oi i iN i� (20)

2.6.4.  Zeta-Scores and Bland–Altman Plots

Bland–Altman plots are useful for comparing agreement between Mi and Oi (Bland & Altman, 1986). The 
Bland–Altman plot is a scatter plot with Di on the vertical axis and the average of Mi and Oi on the horizontal 
axis. A statistical confidence region (e.g., 95% confidence interval) for Di is also usually plotted. Recently, 
the aerosol remote sensing community has demonstrated Bland–Altman plots as a useful tool for visual-
izing sensor-to-sensor evaluations (Fu et  al.,  2020; Knobelspiesse et  al.,  2019). Similar to Knobelspiesse 
et al. (2019), we explored a modified Bland–Altman-type plot where Di is normalized by model and obser-
vation uncertainties to give the zeta-score metric. The ith zeta-score,  i, is computed as:

   
 


2 2

.i
i

i i

D

u M u O
� (21)

For comparing methods, values of | |  2 are considered satisfactory, 2  | |  3 are considered questiona-
ble, and | |  3 should be considered as unsatisfactory (Analytical Methods Committee Amctb No. 74, 2016). 
When plotting zeta scores in a Bland–Altman style, we color-coded the aforementioned regions in a traffic 
light (green-orange-red) style to assist with interpretation.

We also explored Bland–Altman plots with corrected differences, as per Equation 16, and also corrected zeta 
scores,  i , plots where the score is computed as:

   
  


2 2

.i i
i

i i

CF D

u M u O
� (22)
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3.  Results and Discussion
3.1.  LH-Based Model Fit

Using the DS3 dataset, we found there to be a strong log-linear relation-
ship between LH and bbp(555) when λb, λg, and λr were set to 490, 555, and 
670 nm, respectively. This can be visualized in Figure 1 and quantified with 
a R2 of 0.88. Using bootstrap model fitting, we determined that the best 
fit model coefficients for Equation 4 were a0 = −2.5770 and a1 = 281.27, 
with associated standard uncertainties of u(a0)  =  2.4819  ×  10−2 and 
u(a1)  =  20.777, and a covariance term of u(a0, a1)  =  0.24852. We note 
that in Figure 1 a small cluster of 11 data points fell below the best fit line 
(between LH values of −0.002 and 0). We found that these corresponded 
to nine MALINA cruise stations 9, 10, 21,23, 25, 45, and 50, and three 
ICESCAPE 2011 stations 23, 24 and 32 which were all sampled in Artic 
waters of the Beaufort Sea.

Using the bootstrap resampling approach, we also generated cross-vali-
dated model validation statistics. These statistics are summarized in Ta-
ble 1 and indicated that the model performed with good predictive skill 

with a R2 of 0.787, slope of 1.08, a positive bias of 4%, and a mean absolute error 47%. We next used the 
separate OC-CCI dataset to further evaluate model skill.

3.2.  Scatter Plots and Validation Metrics

We used the OC-CCI dataset to validate the LH-based model. For comparative purposes, we also derived 
bbp(555) using the GIOP model and the empirical Chla-based model of Huot et al. (2008) where Chla and 
its standard uncertainty, u(Chla), were derived first as an intermediate product with NASA's standard em-
pirical algorithm (Hu et al., 2012; O'Reilly & Werdell, 2019). We hereby refer to the Huot et al. (2008) model 
as “Huot.”

The scatter plots shown in Figure 2 are a common tool used to visually interpret ocean color algorithm 
predictive skill. Over the full dynamic range, the scatter plots indicate that model-derived bbp(555) values 
agree reasonably well with in situ observed values. However, when observed bbp(555) < 0.00125 m−1, the 
scatter plots indicate that the LH and GIOP models overestimated whereas the Huot model showed much 
better agreement with observed values. Conversely, when observed bbp(555) ≥ 0.00125 m−1 the GIOP and LH 
models showed good agreement with observed values whereas the Huot model tended to underestimate. 
Visually, the GIOP approach appears to be a better predictor of bbp(555) over the full dynamic range.

Table 2 displays validation metrics for the LH, GIOP, and Huot models. We computed these statistics for 
the full dataset (N = 326) and two arbitrary subsets. The first subset, referred to as the “low-value” subset 
(N = 60), was partitioned based on Oi values of bbp(555) < 0.00125 m−1. The second subset, referred to as 
the “high-value” subset (N = 266), was partitioned where Oi values of bbp(555)  0.00125 m−1. We computed 
bias, MAE, biaslog, and MAElog using both standard and corrected differences. Metrics in Table 2 with a 
prime (′) symbol indicate they were computed with correction factors applied to account for uncertainties 
in both measured and observed quantities. The final column in Table 2 is a tally of the “ wins” to assist with 
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Figure 1.  Scatter plot of LH versus bbp(555) (N = 153) shows a strong log-
linear relationship. Gray bars represent estimated standard uncertainties.

DS3 
median 
(m−1)

DS3 std 
(m−1) DS3 range (m−1) R2* Slope* Bias (m−1) MAE (m−1)

biaslog 
(unitless)

MAElog 
(unitless)

0.00158 5.61 × 10−3 3.79 × 10−4–
4.98 × 10−2

0.787 (0.0342) 1.08 (0.122) −2.63 × 10−4 (4.59 × 10−4) 0.0116 (2.61 × 10−4) 1.04 (0.0896) 1.47 
(0.0432)

Note. The mean and standard deviation of each bootstrapped validation metric distribution is reported. Standard deviations are in parentheses. To contextualize 
the bias metrics, the mean and range of bbp(555) from the DS3 dataset are reported. *Computed in log10–log10 space.

Table 1 
Cross-Validation Results for the LH-Based Model for bbp(555)



Journal of Geophysical Research: Oceans

comparing the LH, GIOP, and Huot models. We define a “win” as the best inter-model performance for a 
given validation metric category.

Results for “All data” in Table 2 show that the three models performed with similar predictive skill. The 
GIOP was considered “best” with 10 wins and outperformed the LH and Huot models. Based on the MAE 
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Figure 2.  Scatter plots comparing bbp(555) derived from radiometry using a model with in situ measurements. Subplots (a)–(c) correspond to the LH, GIOP, 
and Huot models, respectively.

bbp(555) 
range Model N R2* Slope* Bias (m−1) Bias′ (m−1) MAE (m−1) MAE′ (m−1)

biaslog 
(unitless)

bias′log 
(unitless)

MAElog 
(unitless)

MAE′log 
(unitless)

No. 
wins

All data LH 326 0.730 1.35 3.90 × 10−4 2.61 × 10−4 8.01 × 10−4 3.96 × 10−4 1.21 1.12 1.33 1.16 0

GIOP 326 0.733 1.04 1.52 × 10−4 9.51 × 10−5 6.75 × 10−4 3.86 × 10−4 1.06 1.03 1.27 1.15 10

Huot 326 0.699 1.40 −7.38 × 10−4 −5.49 × 10−4 9.15 × 10−4 6.59 × 10−4 0.812 0.834 1.37 1.27 0

<1.25E−3 
m−1

LH 60 0.225 0.764 6.72 × 10−4 5.19 × 10−4 6.75 × 10−4 5.19 × 10−4 1.73 1.55 1.73 1.55 0

GIOP 60 0.049 0.614 2.65 × 10−4 1.77 × 10−4 3.81 × 10−4 2.30 × 10−4 1.24 1.15 1.48 1.29 0

Huot 60 0.235 1.01 1.51 × 10−4 1.47 × 10−4 1.96 × 10−4 1.52 × 10−4 1.17 1.09 1.23 1.10 10

≥1.25E−3 
m−1

LH 266 0.548 1.24 3.25 × 10−4 2.03 × 10−4 8.29 × 10−4 3.69 × 10−4 1.12 1.05 1.26 1.09 1

GIOP 266 0.602 0.947 1.27 × 10−4 7.73 × 10−5 7.41 × 10−4 4.20 × 10−4 1.02 1.00 1.24 1.12 8

Huot 266 0.448 1.28 −9.39 × 10−4 −1.38 × 10−4 1.08 × 10−3 2.64E−4 0.748 0.786 1.41 1.31 1

Note. Bold text indicates best performance for each skill metric. No. wins (last column) indicates number of statistical tests in which respective dataset 
outperformed others. *Computed in log10–log10 space. Difference metrics with correction factor applied.

Table 2 
Model Difference Statistics Comparing Three Models: LH-Based Model, GIOP, and Huot
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and MAElog metrics, the empirical LH and Huot models perform similarly. However, based on the bias 
and biaslog metrics, LH-derived values are on average overestimated by 21%, while the Huot-derived values 
are underestimated by 19%. It is important to note that the correction factor had a noticeable effect on the 
skill metrics. For example, the LH model's MAElog value was 1.33 and the corresponding corrected value, 
MAE′log, was 1.16.

The low-value subset metrics indicated that the Chla-based Huot model performed better than LH and 
GIOP with 10 wins. This is not surprising given that the Chla-based Huot model was developed using in 
situ data collected in the South Pacific Gyre, an area considered to have the “clearest” oceanic waters (Huot 
et al., 2008; Morel et al., 2007). This also suggests that the Hu et al. (2012) model is performing well in con-
text of deriving oligotrophic Chla as an intermediate product needed as an input to the Huot model. The 
high-value subset metrics indicated that the GIOP performed better than the LH and Huot models with 
eight wins. We note that the LH model had bias and MAE metrics, including log10-scaled and corrected 
values, similar to the GIOP model. This result is encouraging given the relative simplicity of the LH model 
compared with the more mathematically complex GIOP model.

Figure 3 shows Bland–Altman-type scatter plots for the LH, GIOP, and Huot models. Panels on the left-hand 
side of Figure 3 show the uncorrected difference between model and observed bbp(555), Di, on the y-axis and 
the method average value on the x-axis. Panels on the right-hand side of Figure 3 show corrected Di scaled 
by CFi. The plots of uncorrected Di show that the LH model typically overestimates bbp(555) values less than 
0.002 m−1 with most Di values lying inside the 97.5% confidence interval. However, when we look at the cor-
rected Bland–Altman plot for LH (Figure 3d), the model appears to have much better skill with many more 
data points in the plot falling closer to zero. We see the same effect for the GIOP and Huot models. Notably, 
both Bland–Altman plots (Figures 2c and 2f) show signs of the Huot model underestimating larger values 
of bbp(555), which is consistent with Figure 2 and statistics in Table 2.

3.3.  Zeta Score Plots

Zeta score plots are shown in Figure 4. The left-hand panel are standard zeta scores while the right-hand 
side are zeta scores computed with corrected Di values. We have color coded the plots, green-yellow-red, to 
assist in visualizing where acceptable, questionable, and poor agreement occur, respectively. Uncorrected 
zeta scores in Figures 4a–4c generally show that the majority of Di values fall within the green zone, mean-
ing they are acceptable. Upon careful inspection we note that Di values are mostly greater than zero for LH, 
seem distributed evenly about zero for GIOP, and often less than zero for Huot. This pattern remains, to a 
lesser extent, in plots of corrected Di values (Figures 4d–4f).

Table 3 shows summary statistics of zeta scores. Tallies of how many zeta scores, both corrected and uncor-
rected, fall within the green, yellow, and red regions are also given. Performance was judged best when zeta 
scores are close to zero and fall mostly within the green zone. Similar to Table 2, we consider zeta scores for 
the entire dataset, the low-value subset, and the high-value subset. The statistics for all data indicate that the 
GIOP performs best with 10 wins. For the low-value subset, the Huot model performs best with 8 wins and 
the LH model narrowly outperforms the GIOP for the high-value subset.

This brief example demonstrates how zeta score plots might complement existing linear regression, mean 
bias, and MAE metrics used in ocean color validation studies if model and observation standard uncertain-
ties are known. Of particular benefit is their ease of interpretability with the “traffic light” color-coded plots. 
The tallied “wins” in Table 3 are similar to those in Table 2 for all data (GIOP performs best) and for the 
low-value subset (Huot model performs best). However, the zeta scores suggest that the LH model performs 
best for the high-value subset.

3.4.  Confidence Interval Z-Tests

We performed multiple two-tailed z-tests for independent samples with H0: Mi  =  Oi and Ha: Mi ≠ Oi at 
a significance level of α = 0.01. In Table 4, we tallied the results where the null hypothesis was retained 
and was considered a “success”. As with previous analyses, we tallied results for the entire dataset, the 
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low-value subset, and the high-value subset. We repeated the analysis in the case where the data had been 
log10-transformed.

When considering the untransformed data, the GIOP had the most successes (73%) for the full dataset, 
the Huot model had the most successes (87%) for the low-value subset, and the LH model had the most 
successes (79%) for the high-value subset. For the log10-transformed data the LH model had the most suc-
cesses for all data (67%) and the high-value subset (77%) while the Huot model had the most successes for 
the low-value subset (64%). These results are consistent with previous analyses with the exception of the 
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Figure 3.  Bland–Altman plots of differences between modeled and observed bbp(555) varying with the method average values of bbp(555). Subplots (a)–(c) 
correspond to LH, GIOP, and Huot models, respectively. Subplots (d)–(f) are Bland–Altman plots with corresponding differences for the LH, GIOP, and Huot 
models, respectively. Dashed horizontal lines represent 97.5% confident interval about zero.
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Figure 4.  Zeta score plots comparing modeled and observed bbp(555) varying with the method average values of bbp(555). Subplots (a)–(c) correspond to LH, 
GIOP, and Huot models, respectively. Subplots (d)–(f) use corrected zeta scores for the LH, GIOP, and Huot models, respectively.
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LH model performing best for all data when log10-transformed. We do note, however, in Table 2 that for all 
data the log10-transformed LH skill metrics, aside from biaslog, were generally similar to those of the GIOP.

4.  Discussion
4.1.  Summary of LH Model

In this study, we developed a LH-based ocean color model for estimating bbp(555). Often measurement 
uncertainties are not considered during empirical ocean color algorithm development. Thus, the objective 
for this exercise was to demonstrate how one might develop an empirical model that takes into account 
the uncertainties in training, validation, and model input data. The inter-comparison of LH with Huot and 
GIOP models primarily allowed us to determine if the LH model was performing with similar “in-family” 
predictive skill relative to the established models. However, the inter-comparison also served as an opportu-
nity to benchmark the three models using a consistent validation dataset that included assumptions about 
measurement uncertainties.

Regression and difference metrics (Table  2), zeta-scores (Table  3), and 
confidence interval z-tests (Table 4) indicated that the GIOP performed 
best when the full validation data set was used. Qualitatively, the scatter 
plots (Figure 2) tend to confirm this result. However, after partitioning 
the validation dataset into low- and high-value subsets, the results re-
vealed that the Huot model consistently outperformed the LH and GIOP 
for the low-value subset (i.e., where bbp(555)  <  1.25  ×  10−3  m−1), sug-
gesting accuracy in model-derived Chla. The LH model outperformed 
Huot and marginally outperformed GIOP, for the high-value subset (i.e., 
where bbp(555) ≥ 1.25 × 10−3 m−1). We note that the LH model did not 
show particularly good performance for the low-value subset. This result 
is not surprising considering Hu et al. (2012) showed that absorption, not 
backscattering, is expected to dominate a LH metric signal in oligotrophic 
waters. The fact the LH model performed well in high-value subset is, 
however, a promising result as SAAs such as the GIOP can have diffi-
culty converging to a valid solution in highly turbid, optically complex 
environments.

While the LH model may not replace existing physics-based SAAs such as 
the GIOP, it may prove useful as a computationally efficient sanity check 
tool or perhaps serve to improve computational efficiency by (i) providing 
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bbp(555) range Model N Mean ζ  (std) Mean ζ ′ (std)
Tally of 

 2ζ
Tally of 

  2ζ
Tally of 
 2 3ζ  Tally of 2 3ζ

Tally of 
 3ζ

Tally of 
  3ζ

No. 
wins

All LH 326 0.888 (1.62) 0.561 (1.36) 249 278 45 22 32 26 0

GIOP 326 0.348 (1.78) 0.234 (1.55) 265 287 35 14 26 25 8

Huot 326 −0.814 (1.63) −0.586 (1.48) 254 272 38 23 34 31 0

<1.25E−3 m−1 LH 60 2.54 (1.31) 1.92 (1.60) 19 31 19 12 22 17 0

GIOP 60 1.08 (1.94) 0.739 (1.79) 45 50 8 3 7 7 1

Huot 60 0.756 (1.22) 0.436 (1.10) 53 55 5 3 2 2 8

≥1.25E−3 m−1 LH 266 0.510 (1.42) 0.252 (1.06) 230 247 26 10 10 9 5

GIOP 266 0.179 (1.72) 0.119 (1.48) 220 237 28 8 19 18 3

Huot 266 −1.17 (1.49) −0.820 (1.45) 201 217 33 20 32 29 0

Note. Bold typeface indicates best performance. Prime symbol (′) indicates corrected difference metrics.

Table 3 
Zeta-Score Statistics and Tallies for Three Models: LH, GIOP, and Huot

bbp(555) range Model N Tally (%) Tally*

All LH 326 230 (70%) 220 (67%)

GIOP 326 238 (73%) 199 (61%)

Huot 326 221 (68%) 145 (44%)

<1.25E−3 m−1 LH 60 20 (33%) 15 (25%)

GIOP 60 40 (67%) 29 (48%)

Huot 60 52 (87%) 39 (64%)

≥1.25E−3 m−1 LH 266 210 (79%) 205 (77%)

GIOP 266 198 (74%) 170 (64%)

Huot 266 169 (64%) 106 (40%)

Note. Percentage of total number is also given. Bold values indicate best 
within-group tally. *log10-transformed data.

Table 4 
Tallies of Statistically Significant Overlap of Modeled and Observed 99% 
Confidence Intervals
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inverse models a good first guess for bbp(555) and/or (ii) helping to constrain the solution space. Similarly, 
the Chla-based Huot model may prove to be a useful in oligotrophic waters where SAAs are also known to 
underperform.

4.2.  Application of LH Model to Satellite Imagery

We applied the LH, GIOP, and Huot models to two sample SeaWiFS scenes. By doing so we could visually 
determine if ​each model resolves oceanographic features in an expected manner or, alternatively, generates 
unwanted spatial artifacts and/or returns an unexpected number of invalid pixels (product failures). The 
first scene shown in Figure 5 is an oligotrophic region of the North Pacific Ocean adjacent to the Hawaiian 
Islands. In such a region, we expect that the oceanic bbp signal is driven primarily by phytoplankton bio-
mass. Qualitatively, the LH and Huot models gave very similar retrievals in oligotrophic waters of the North 
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Figure 5.  SeaWiFS imagery of the Hawaiian Island region of the North Pacific Ocean captured on December 1, 2000. Panel (a) is a quasi-true color image. 
Panels (b)–(d) depict bbp(555) derived using the LH, GIOP, and Huot models, respectively. Red ellipses denote regions where the GIOP exhibits artifacts in the 
retrievals. Cloud contaminated pixels are masked in black.
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Pacific Ocean (Figures 5b and 5d) with scene-wide median values of 4.83 × 10−4 m−1 and 4.75 × 10−4 m−1, 
respectively. For reference, the GIOP scene-wide median was 6.75 × 10−4 m−1.

The LH and Huot models resolved spatial features that were not well-distinguished in the GIOP retrieval 
such as eddies to the southwest of the Island of Hawaii (the largest island) and regions of low bbp(555) to 
the east of Hawaii. In addition, the LH model seemed robust to cloud edge, and straylight from land–areas 
where GIOP algorithm gives unusual retrievals (e.g., the red ellipses in Figure 5). Good performance of the 
LH approach in those areas is not surprising as Hu et al. (2012) demonstrated that LH metrics are robust to 
image artifacts such as cloud edge, straylight, and sunglint.

The second SeaWiFS scene shown in Figure 6 is of the Chesapeake Bay and the Mid-Atlantic Bight region. 
In the quasi-true color image (Figure 6a), the upper and lower red ellipses indicate the positions of the Ches-
apeake Bay and the Pamlico Sound, respectively. These two areas are complex bodies of water where the 
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Figure 6.  SeaWiFS imagery of the Chesapeake Bay region captured on the 28 April 2003. Panel (a) is a quasi-true color image. Panels (b)–(d) depict bbp(555) 
derived using the LH, GIOP, and Huot models, respectively. Red ellipses denote spatial features visible in the quasi-true color image that LH model resolves. 
Cloud contaminated pixels are masked in black.
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optical properties are driven by suspended mineral sediments, colored dissolved organic matter (CDOM), 
and high phytoplankton abundance. Dark-colored patches of water were likely dominated by CDOM. In 
addition, offshore phytoplankton blooms can be seen as green patches in the quasi-true color image.

The LH, GIOP, and Huot models resolve offshore bbp(555) similarly. The distinct gradient in bbp(555) is in-
dicative of the edge of the Gulf Stream current. In the Chesapeake Bay and Pamlico Sound the LH model 
resolves high values of bbp(555), corresponding to bright features in the quasi-true color images, that are 
likely to be sediment or phytoplankton. In addition, the LH model resolves dark-colored patches of water, 
likely to be CDOM-dominated, as having lower bbp(555). The GIOP and Huot models do not retrieve as 
many valid pixels as the LH model nor do they resolve features visible in the quasi-true color image. While 
we cannot comment on the absolute accuracy of the LH model retrievals for that sample image due to a lack 
of validation data, the results suggest the model may be robust in optically complex waters.

4.3.  Uncertainties and Skill Assessment Methods

The second objective of this study was to explore how measurement uncertainties might be incorporated 
into contemporary ocean color algorithm validation and we believe this work represents one of the first 
attempts to examine this. In the current validation paradigm, data pairs Mi and Oi are typically treated as 
exact values and their intrinsic standard uncertainties u(Mi) and u(Oi) are not considered. In an attempt to 
address this, we explored corrected difference metrics (mean bias and MAE), Bland–Altman and zeta-score 
plots, and confidence interval overlap testing.

In this study, we assumed 5% relative uncertainties in both Rrs(λ) and bbp(555). In doing so we treated u(Mi) 
and u(Oi) as though they scale with the magnitude of Mi and Oi, respectively, in equal proportion (i.e., 5%) 
at all sensor wavelengths. We concede this assumption may not necessarily hold true but was still useful for 
demonstrative purposes. Indeed, Hu et al. (2013) demonstrated that relative uncertainties in SeaWiFS and 
MODIS Rrs(λ) vary with both wavelength and bio-optical complexity, while McKee et al. (2009) reported 
bbp(λ) uncertainties that did not scale with magnitude. Furthermore, by assuming 5% relative uncertainties 
globally, one may underestimate absolute uncertainties in low-signal waters (e.g., bbp in oligotrophic waters) 
and overestimate absolute uncertainties in high-signal waters (e.g., bbp in turbid bays and estuaries). Thus, 
routine reporting of radiometric and IOP absolute uncertainties would be beneficial for model development 
and validation purposes.

By using alternative values for u(Mi) and u(Oi) the model skill results presented in this study are likely to 
vary. Nonetheless, our model development and validation framework is still valid and easily extendable 
to situations where improved estimates of u(Mi) and u(Oi) are available. From a metrological perspective, 
no measurement is complete without being reported along with its associated uncertainty and reliable es-
timates of uncertainties are better than having none. Furthermore, uncertainties in climate data records 
measured by Earth observation satellites should be computed and validated in a manner that follows metro-
logical practice (Merchant et al., 2017). Thus, it is critical for the ocean color community to continue efforts 
to routinely characterize and report measurement uncertainties, including covariances, in both satellite and 
in situ datasets. Such characterization would support both algorithm development and satellite data product 
performance assessment activities, as well as use and interpretation of satellite and in situ data records in 
climate modeling studies.

The results in Table 2 indicate that application of the correction factor defined in Equation 15 did indeed 
change the values of the difference metrics and generally improved them. For example, if we consider the 
LH model's log10-transformed difference metrics for “All data,” when the correction factor was applied the 
mean bias reduced from 1.22 to 1.13 and MAE reduced from 1.24 to 1.16. The effect of applying the correc-
tion factor to the LH model performance metrics can be visualized in the Bland–Altman plots where the 
corrected differences (Figure 3d) exhibit less variability about zero than uncorrected differences (Figure 3a).

We suggest the Bland–Altman and zeta-score plots may provide clearer graphical representations of 
model skill than traditional one-to-one scatter plots; a finding consistent with recent work by Knobel-
spiesse et al. (2019). For example, the Bland–Altman plots showed the Huot model performed well when 
bbp(555) < 1.1 × 10−3 m−1 after which it began to underestimate values. The color scheme of the zeta-score 
plots makes them particularly easy to interpret. Indeed, we envisage a “traffic light” classification scheme as 
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a way to improve the communication of validation analyses to end-users. Furthermore, by tallying zeta-score 
class size it is possible to quantitatively interpret the zeta-score plots without adding undue complexity.

As a final example of how uncertainties might complement existing validation metrics, we considered mul-
tiple z-tests. The number of cases where H0 was retained were reported (Table 4). These z-test results were 
generally consistent with the other validation assessments performed. We note that parametric testing re-
quires an assumption that Mi and Oi are normally distributed with known variances. This may not always 
be a valid assumption and as ocean color variables typically follow a log-normal distribution and log10-trans-
form of Mi, Oi, u(Mi), and u(Oi) may be required. Nonetheless, well-known z-tests may still serve as a cursory 
way of extending our understanding of agreement between Mi and Oi.

One caveat when considering these validation analyses are the magnitude of u(Mi) and u(Oi). The CFi met-
ric by definition is dependent on the degree of overlap of pm(mi) and po(oi) whose dispersion we defined as 
u(Mi) and u(Oi), respectively. If these standard uncertainties are very large, the degree of overlap of pm(mi) 
and po(oi) may be so close to 1 that our ability to compute meaningful difference metrics is encumbered. 
This also applies to our zeta-score calculations where large uncertainties in the denominator term may re-
sult in very small zeta-score values. As such, it may be prudent to interpret corrected validation difference 
metrics with thought given to the magnitude of the measurement uncertainties. While this may be chal-
lenging to visualize, graphical presentations such as PomPlots (Spasova et al., 2007) may be useful.

5.  Conclusion
An empirical ocean color algorithm was developed for deriving bbp(555) using LH as the predictor variable. 
Using the simple LH empirical model as a test case, we performed end-to-end algorithm development and 
validation with assumed uncertainties in training, validation, and model input data. Once developed, the 
LH model was compared with the GIOP and Huot models. The LH model showed reasonable predictive 
skill across the entire dynamic range of the validation dataset with its best performance occurring when 
bbp(555) ≥ 1.25 × 10−3 m−1.

By considering u(Mi) and u(Oi) we also demonstrated how standard uncertainties might be incorporat-
ed into ocean color validation. Importantly, our results clearly indicate that validation difference metrics 
(mean bias and MAE) were improved when corrected for measurement uncertainties. We also presented 
Bland–Altman and zeta-score plots as alternative methods to the traditional one-to-one scatter plots com-
monly used for validation. The zeta-score plots are particularly promising as their color-coded appearance 
makes them simpler to interpret. Overall, the study underscores the importance of on-going efforts by the 
ocean color community to characterize both model and observation uncertainties.

We acknowledge there are a number of other models capable of deriving bbp(555) (IOCCG, 2006; Werdell 
et al., 2018) that were not considered as this was beyond the scope of this research. However, a suitable 
framework for benchmarking newly developed ocean color models relative to established ones (e.g., GIOP) 
is particularly relevant to NASA's upcoming Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission 
(Werdell et al., 2019) which has a Science and Applications Team actively developing novel ocean color 
algorithms that take advantage of the PACE mission's hyperspectral and polarimetric capabilities. We ex-
pect methods reported here will complement existing approaches for model inter-comparisons (Brewin 
et al., 2015; Seegers et al., 2018).

Appendix A:  Estimating Huot Backscattering Coefficient Model Uncertainties
The Huot et al. (2008) model derives bbp(555) as a function of Chla:

  555 .bpb Chla� (A1)

The coefficients  and   are calculated from Equations 8a and 8b in Huot et al. (2008) as:

       3 62.267 10 5.058 10 555 550 ,� (A2)
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     40.565 4.86 10 555 550 .� (A3)

We estimated the uncertainty associated with bbp(555) derived using Equation A1 as:

                  
                 

0.52 22 1ln .bpu b u Chla u Chla Chla u Chl Chla� (A4)

The standard uncertainties of model coefficients was estimated by dividing the 95% confidence intervals 
values reported in Table 1 of Huot et al. (2008) by 1.96 to give     41 10u  and    0.02u . Uncertainty 
in chlorophyll-a pigment concentration, u(Chla), was estimated per McKinna et  al.  (2019) with relative 
uncertainties in Rrs(λ) set to 5%. We have not considered covariance terms for Equation A1 as there are 
unreported.

Data Availability Statement
The DS3 dataset is publicly available at doi: 10.1594/PANGAEA.886619 (Stramski & Reynolds, 2018) with 
further description in Loisel et al. (2018). The OC-CCI dataset is available at doi: 10.1594/PANGAEA.854832 
(Valente et al., 2015) with further description in Valente et al. (2019). SeaWiFS level-1 used in this study is 
publicly available at doi: 10.5067/ORBVIEW-2/SEAWIFS/L1/DATA/1.
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