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Abstract: According to recent findings, variances in autism spectrum disorder (ASD) risk factors
might be determined by several factors, including molecular genetic variants. Accumulated evidence
has also revealed the important role of biological and chemical pathways in ASD aetiology. In this
paper, we assess several reviews with regard to their quality of evidence and provide a brief outline
of the presumed mechanisms of the genetic, epigenetic, and environmental risk factors of ASD. We
also review some of the critical literature, which supports the basis of each factor in the underlying
and specific risk patterns of ASD. Finally, we consider some of the implications of recent research
regarding potential molecular targets for future investigations.

Keywords: autism spectrum disorder; genetics; molecular mechanisms; epigenetics; DNA methylation;
rare variants; common variants

1. Introduction

Autistic disorder—or, more broadly, autism spectrum disorders (ASD)—is a lifelong
syndrome with a childhood inception, characterised by challenges in social interaction
and communication, the presence of stereotype rigidity, and ritualistic/repetitive patterns
of behaviour [1]. ASD syndrome has been described by many researchers since it was
first observed in 1943 by Kanner, who described 11 cases of children, mostly boys, with
severe social and variable language dysfunction [2]. The global prevalence of autism is
around one percent, with a male preponderance ratio of four to one [3]. Approximately
50 percent of patients with ASD present with intellectual disabilities (ID), and comorbidity
with neurodevelopmental and psychiatric conditions is common [3,4]. These psychiatric
and medical conditions may include depression, anxiety, attention deficit hyperactivity
disorder (ADHD), sleep illnesses, and gastrointestinal symptoms [5–7]. In addition, more
than 35 percent of autistic individuals suffer from epilepsy, and epileptic EEG abnormalities
can often be found in patients even without the occurrence of seizures [8,9]. However,
the main diagnostic principle of autistic disorder is based upon the consensus opinion of
expert clinicians, albeit with the consideration of the modified criteria under the new ASD
heading [10].

Incontrovertible evidence found in twin studies has proven that genetic factors con-
tribute to susceptibility to this disorder [11,12]. The concordance rate of autism is up
to 30 percent in dizygotic twins (DZ), 70–90 percent in monozygotic twins (MZ), and
3–19 percent in siblings in general [13–17]. The higher disorder cooccurrence in MZ twins
(identical in their genetic material) compared to DZ twins (sharing about 50 percent of
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their genetic material like nontwin siblings) seems to support a genetic aetiology [10]. In
terms of aetiology, for example, family studies comparing the frequency of autism between
the first-degree relatives of affected individuals and the wider population should con-
sider the involvement of genetics in the disease. Another area of evidence that supports
the genetic aetiology of ASD can be found in studies on rare genetic syndromes with
comorbid autism diagnoses. Findings in these studies have shown that sharing the same
in utero environment has a more impactful role than genetics on siblings; however, the
mechanism underlying this notion is still unclear [10,14,18]. Moreover, it has been shown
that molecular alterations can contribute to ASD aetiology, including altered genetic and
epigenetic regulation. Epigenetic mechanisms provide new and critical ways to exam-
ine risk estimates for neurodevelopmental disorders (NDDs) beyond genetic risk alone.
These mechanisms may include DNA methylation (DNAm), histone modification, and
ATP-dependent chromatin remodelling; however, the latter system also modulates the tran-
scriptome and splicing processes, thus impacting transcription initiation and the binding
of transcription factors [19,20]. Genomic alterations of genes involved in epigenetics, for
example, single-nucleotide polymorphisms (SNPs) or copy number variants (CNVs), can
lead to epigenetic dysregulation and, ultimately, ASD (Figure 1).
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Figure 1. Factors regulating the pathogenesis of autism spectrum disorders. Although definitive
etiology and pathogenesis underlying ASD have not yet been identified, accumulated study has
recognized various risk factors, including nature (genes or epigenes) and nurture (environment)
factors. Both genetic and epigenetic factors modulate the penetrance of risk genes, resulting in
a highly heterogeneous disease phenotype for similar pathogenic variants. Examples of genetic
modulators include CNV and mutations. Examples of epigenetic modifiers include methylation,
microRNAs (miRNAs), and chromatin remodelling. Furthermore, majority of the environmental
factors leading to epigenetic changes on chromatin cause increased ASD risk.
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There are over 600 confirmed human genes related to NDD (such as ID and ASD),
including DNA methyltransferase 3A (DNMT3A), HECT, UBA, WWE domain-containing
E3 ubiquitin-protein ligase 1 (HUWE1), and chromodomain helicase DNA-binding protein
8 (CHD8) [21–23]. Emerging evidence suggests that there is a fundamental genetic interfer-
ence risk in neurodevelopmental and neuropsychiatric disorders [24–26]. Many of these
genes are essential to the molecular pathways involved in epigenetic regulation, whereas
others are encoded to proteins involved in neuronal and synaptic pathways [23,26,27].
However, there is no single underlying cause of ASD or its developmentally related chal-
lenges. For a better understanding of the multifactorial aetiologies of ASD, extra work is
needed to elaborate on the natural history of its molecular basis and its regulation during
significant periods of human development. Apparently, the interaction between genetic
and environmental risk factors (GxE) in humans is crucial and is likely facilitated by vital
mechanisms such as epigenetics. Thus, the role of genetics, epigenetics, and the environ-
ment in ASD risk factors, as well as the collective interaction between them, will require
further investigation in order to better classify and diagnose the disorder.

2. Body of the Paper

Currently, ASD is considered to have a strong genetic component, likely resulting
from interactions between various genes. Previous and current twin studies have reported
an estimate of more than 30 percent heritability [14,28,29]. Due to the use of modern tech-
nology, such as next-generation sequencing (NGS), many key points of genetic variability
in patients with ASD (as compared to the general population) have emerged. Sequence
analysis methods, such as whole-genome sequencing (WGS), have many advantages, and
they have been used to discover ASD-relevant mutations in individuals within affected
families [30,31]. One study on families of four (parents and two affected siblings) observed
similar mutations in 31 percent of siblings compared to ASD patients. Thus, such studies
underline the genetic heterogeneity of the disorder even within families [30]. However, for
all the advantages of genomic sequencing, genetic variant classification still poses an impor-
tant challenge. More than 200 ASD-associated genes have been specified in various studies,
and risk variants have only been recorded in 25–40 percent of cases [32–36]. Nevertheless,
in only one percent of ASD cases can a single genetic mutation or copy number variant
be correlated, and, thus, the ASD phenotype is unpredictably impenetrable. According
to recent studies, more than one thousand autism genes have been investigated. Using
the SFARI gene platform, approximately 212 genes (environment interacting genes) have
been studied [37,38]. More recently, studies reported that dysregulated gene expression is
associated with inflammatory cytokines and behavioural severity in ASD [39,40]. Overall,
various genetic variants and six risk-located loci (1q21.1, 3q29, 7q11.23, 16p11.2, 15q11.2–13,
22q11.2) are recognised as being linked with ASD [41–43].

Recent genomic studies have identified many common and rare inherited variants in
ASD families [44,45]. In autism, the majority of the genetic alteration tracked by heritability
is accounted for by common genetic variation, as quantified by SNP-based heritability
which is estimated to be around 50 percent [45]. As with other common neuropsychiatric
conditions, common genetic variants contributing to autism have small effect sizes, re-
quiring large population studies for identification. The latest and largest published ASD
genome-wide association study (GWAS) reported five genome-wide significant loci in an
analysis of 18,381 ASD patients [44]. Larger sample sizes will be necessary to identify
further loci, which are expected to be found given the substantial estimate of SNP-based
heritability [45,46].

Since 2011, a large number of studies have already been published using WGS in
ASD populations, with the identification of rare variants in autism susceptibility genes
already described or newly identified [30,47–49]. These findings have led to an exponential
increase in the number of genes potentially related to autism. However, the increase in de
novo events in individuals with ASD is widely described in the literature [50], and several
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studies highlighted the importance of de novo mutations in a situation of family mutational
burden due to the presence of common and rare variants inherited from parents [46,50,51].

Several studies have shown that various ASD genomic risk variants are involved in
congregating pathways relevant to the natural basis of ASD. These include cell proliferation
and differentiation, neural development, synaptic activity, transcriptional regulators, and
chromatin modifiers [41,51–53]. Interestingly, many ASD-associated genes are expressed in
brain tissues during embryogenesis and formation. These functional groups relate to the
neurocognitive phenotype of ASD and can improve our understanding of its molecular
mechanisms [25,53]. On the other hand, studies on ASD risk-associated genes initiated by
genetic mutation may also help in this attempt at comprehension; their findings suggest
that some ASD-related genes can increase the risk factor for other neurological conditions,
including schizophrenia, motor impairment, epilepsy, sleep disturbance, ADHD, and
ID [25,42,54].

In addition, strong evidence supports the role of epigenetics in the molecular aetiology
of ASD, some of which indicates that other genetic syndromes may have direct control
over its expression. Studies have proven that they contribute to syndromic ASD in ap-
proximately 15 percent of cases [55,56]. Functionally, some epigenetic profiles have been
reported to be associated with an increased risk of ASD: for example, histone deacetylases
(HDACs); lysine demethylases; proteins containing bromo-, chromo-, or Tudor domains;
DNA methyl transferases (DNMTs); histone methyltransferases; acetyltransferases; and
chromatin remodelling factors. While the indirect effects of epigenes have also been ob-
served in noncoding RNA (ncRNA), the processing and recruitment of methyl-CpG-binding
proteins (MBDs) have also been observed, and these are critical in histone modification and
transcription regulation [57,58].

Other lines of evidence implicate other epigenetic markers in the expression of ASD,
such as differentially methylated variants (DMVs) at specific CpG sites (CpGs) or differ-
entially methylated regions (DMRs). Studies have identified multiple CpGs in a variety
of tissue types, including whole blood [59], post-mortem brain tissue [60–62], ectodermal
cells [63], and lymphoblastoid cell lines (19), as well as sperm from the fathers of children
with ASD [64]. However, in concordance with studies on blood–brain DNA methylation,
these high correlations have not been frequently observed at specific sites across tissues,
which is likely due to genetic influences [65,66]. Several studies have reported DNAm
changes in the promoter region in different tissues taken from ASD samples, which has
helped identify candidate genes, including methyl-CpG binding protein 2 (MECP2), reelin
(RELN), glutamic acid decarboxylase 65 (GAD65), oxytocin receptor (OXTR), ubiquitin-
protein ligase E3A (UBE3A), and SHANK3 [67–72]. The effect of changes in DMV at specific
promoter CpG regions has been found to be modest (approximately twofold) in targeted
genes, with a significant gain of methylation (GOM) overall and in a sex-specific manner.
Other studies on DNAm have demonstrated the replication of differentially methylated
positions (DMPs), which are hypomethylated in the 3′ untranslated region (3′UTR) of
genes in the brain samples of ASD individuals, including chromosome 11 open reading
frame 21 (C11orf21), proline-rich transmembrane protein 1 (PRRT1), and tetraspanin 32
(TSPAN32) [61,62]. Other results emphasise the presence of functionally relevant genes,
such as phosphatase and tensin homolog (PTEN) [73], AT-rich interaction domain 1B
(ARID1B) [74], N-methyl-D-aspartate (NMDA) [75], glutamate ionotropic receptor NMDA
type subunit 2B (GRIN2B) [76], neurexin 1 (NRXN1) [64], and PRRT1 [61], which have
critical roles in physiological function and other molecular pathways [77].

Previous studies have reported the enrichment of genome-wide results by primarily
using quantitative trait loci (QTLs) for the purposes of gene expression; supposing these
polymorphisms present some ASD risk through regulatory mechanisms, QTLs offer insights
into the functional biology of GWAS variants [78–80]. Besides investigating the enrichment
of polymorphisms that control epigenetic markers (for example, DNAm), understanding
the regulatory effects of the ASD epigenome will clearly answer whether the disease’s
genetic risks act, in part, through epigenetic regulation. Moreover, the presence of DNAm,
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detected using SNP profiling or methylation QTLs (meQTLs), has been reported in both
autism-associated GWAS and cases of schizophrenia and bipolar disorder, which may
indicate genetic overlap with ASD [78,79,81–83].

Genetic expression levels and epigenetic markers are molecular sensors for many
environmental factors, including diet and chemical toxins, over the course of human
development [84]. At critical times throughout development, typical cell programming can
be dysregulated by environmental exposures, either exogenous or endogenous, leading to
unfavourable long-term health outcomes [85]. Accumulated evidence from observational
studies has demonstrated the association of endogenous environmental factors with ASD
risks, for example, paternal and maternal age [86–88]. Combining these factors, along with
genetic and epigenetic findings, has helped in identifying several de novo mutations in such
disorders, and the majority of cases have been found to be related to paternal age [33,35].
Furthermore, modest increases in ASD and ADHD risk have been found to be associated
with maternal prenatal stress [89,90]. However, while OXTR methylation outcomes were
predicted in many studies, nevertheless, correlations between maternal stress and autistic
traits have not been observed in genetic and methylation changes in the gene [91–93].
Prenatal maternal nutrition, particularly with respect to the folate compound, has been
identified as reducing the risk of ASD through its critical role in one-carbon metabolism
(OCM) and methionine cycles [94–97]. At the molecular level, the recycling of homocysteine
generates amino acids (cysteine and methionine), which are essential in the process of
methylation and antioxidative capacity. This biological process accelerates the formation of
S-adenosyl methionine (SAM), supporting epigenetic mechanisms that are important for
neurobehavioral development and preventing ASD via nutritional supplements [98]. Still,
the molecular mechanisms by which these elements reduce ASD risk have not yet been
fully illustrated.

Moreover, exogenous exposures, for example, smoking, medication (valproic acid,
selective serotonin reuptake inhibitors), alcohol, zinc deficiency, metal ion toxicity, viral
infection, and chemical agents (pesticides, metals, bisphenol A), are often associated with
adverse foetal neurodevelopmental outcomes [74,99]. However, the alcohol and smoking
risk factors are irrelevant with respect to ASD studies, which could be related to differences
in exposure conditions between mother and foetus [100]. In addition, zinc is known to be
an essential element in foetal growth and development during pregnancy, as well as in
the development of children in general [101,102]. Thus, an extended deficiency of zinc in
pregnant women might lead to dysfunction in embryonic growth and development, as well
as in synaptic systems. Several reports have demonstrated that the absence of zinc prevents
the formation of scaffold structures in the ProSAP/Shank family of proteins, which are the
key regulator molecules in synapses [103]. A transgenic study of Shank3+/- and Shank-/-
deficient mice using a prenatal zinc-deficient autism animal model indicated diverse brain
region abnormalities in different models of ASD [104].

Finally, interactions between the genome and epigenome will allow scientists to en-
hance methylation studies through increased genomic coverage, expanding our knowledge
of the role of ASD-specific biomarkers. For instance, changes in specific epigenetic markers
(CpG methylation) in noncoding regions, including promoters, enhancers, silencers, insula-
tors, intergenic regions, and ncRNAs, have been observed during neurogenesis [105–110].
Most importantly, alternative types of methylation (non-CpG methylation (CpH, where
H = A, C, or T) and 5-hydroxymethylcytosine (5-hmC)) have been reported in the patho-
genesis of ASD. The nuclear DNA 5-hydroxymethylcytosine, a base molecule involved in
the processing of oxidative demethylation, is highly expressed in brain tissue relative to
5-methylcytosine (5mC) and may reveal significant brain-region-specific regulatory epige-
netic signals [111]. Therefore, based on various factors, tackling the issue of heterogeneity
in ASD-relative risks by studying more homogeneous subsets of individuals will become
an evolving method for better explaining these mechanisms.

In summary, the studies cited in this paper should guide the study of ASD by classi-
fying genetic expressions, epigenetic biomarkers, and environmental conditions for the
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better prediction of individuals with ASD. Ultimately, they have brought to light several
important factors that urgently need to be investigated in order to improve both research
design and the interpretation of data going forward.

3. Conclusions

Molecular mechanisms can help fill the gap in defining ASD pathogenesis where
epigenetic or genetic information alone is inadequate to describe the aetiology of all cases.
In terms of effect, genetic and epigenetic profiles are expected to be heterogeneous. Combin-
ing genetic, epigenetic, and environmental data is likely to represent a more comprehensive
understanding of molecular settings with respect to the aetiology of ASD. The early de-
tection of the molecular basis (genotype, epigenotype) and biological associations with
intellectual or ASD-related risk factors will allow health providers to better classify affected
individuals, facilitate earlier diagnosis, and improve prognosis. Altogether, improving our
molecular understanding of the disorder will also aid in uncovering more homogeneous
subgroups of individuals, which will allow for better patient stratification for behavioural
and pharmacological therapies.
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