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We consider stochastic population processes (Markov jump processes) that develop as a consequence of the occurrence of random
events at random time intervals. The population is divided into subpopulations or compartments. The events occur at rates that
depend linearly on the number of individuals in the different described compartments. The dynamics is presented in terms of
Kolmogorov Forward Equation in the space of events and projected onto the space of populations when needed. The general
properties of the problem are discussed. Solutions are obtained using a revised version of the Method of Characteristics. After
a few examples of exact solutions we systematically develop short-time approximations to the problem. While the lowest order
approximation matches the Poisson and multinomial heuristics previously proposed, higher-order approximations are completely
new. Further, we analyse a model for insect development as a sequence of 𝐸 developmental stages regulated by rates that are linear
in the implied subpopulations. Transition to the next stage competes with death at all times. The process ends at a predetermined
stage, for example, pupation or adult emergence. In its simpler version all the stages are distributed with the same characteristic
time.

1. Introduction

Stochastic population dynamics deals with the (stochastic)
time evolution of groups of similar individuals (called pop-
ulations or subpopulations) immersed in a habitat. The goal
is to describe the evolution of population numbers and the
number of events associated with changes in the populations.

Most of the attention has been paied in the past to the
populations, considering events only by their extrinsic value
as jumps in populations. However, this perspective must be
revised. In any study of vector-transmitted diseases, such
as in [1, 2], the most relevant statistics corresponds to the
interactions between hosts and vectors. Such interactions
are associated with events in the life cycle of the vector. In
the case of arthropods transmitting diseases to mammals,
blood feeding to complete oogenesis is the opportunity to
transmit pathogens. In other problems, the development
of insects is experimentally described by the sequences of
transformations in their life cycle (such as moulting) [3–
5]: each transformation must be considered an event. To

our knowledge, explicit use of the event structure to study
population changes in Markov Jump processes has been
introduced in [6], along with a short-time approximation
based on self-consistent Poisson processes.

The present research originates in our efforts to model
vector-transmitted diseases, such as Dengue, starting from a
description of the life cycle of Aedes aegypti, the vector [7–9].
In modeling insect development in an aquatic phase (such
as the case of Aedes aegypti and Drosophila melanogaster) a
crucial point is to represent accurately the statistics of the
duration of the aquatic phase (also known as the time of
emergence statistics) as it determines the response of the pop-
ulation to climatic events such as rains [10]. A deterministic
model for development was proposed in [11] as a sequential
process with associated linear rates. The final sections of this
paper describe a stochastic development model.

While [6] deals with the stochastic approximation of
general problems (achieving amethodwith error 𝑜(𝑡3/2)), this
paper specifically addresses the problem of formulating and
solving population dynamics problems in event space with

Hindawi Publishing Corporation
e Scientific World Journal
Volume 2014, Article ID 873624, 15 pages
http://dx.doi.org/10.1155/2014/873624

http://dx.doi.org/10.1155/2014/873624


2 The Scientific World Journal

linear rates, that is, rates that depend linearly on the pop-
ulations (in the chemical literature they are known as first-
order reactions [12]). We provide both exact solutions and
general approximation techniques with error 𝑜(𝑡

𝑛
). Results

from [6] for the linear case are a modified version of one of
the approximation schemes in this paper (Poisson approx-
imation, Section 5). The linear problem is mathematically
simpler than the general case and a few general results can
be established before resorting to approximations.

Linear processes are an important part of most biological
dynamical descriptions. Using an analogy from classical
population dynamics, linear (Malthusian) population growth
[13] describes the evolution of a population at low densities
(e.g., where the local environment is essentially unaffected by
the population growth and the individuals do not interfere
with each other).More generally, processes that consider only
individuals in a somewhat isolated basis can be satisfactorily
described with linear rates. However, whether to use linear
descriptions or not is ultimately determined by the nature of
the process (or subprocess). For example, finite environments
will sooner or later force individuals to interact in growing
populations and nonlinear rates become necessary such as in
Verhulst’s description of population growth [14].

Perhaps the oldest application of linear processes to
population dynamics regards birth and death processes.
Historically, according to Kendall [15], the first to propose
birth and death equations in population dynamics was Furry
[16], for a system of physical origin. Currently, such an
approach is being used in several sciences: linear stochastic
processes have been proposed for the development of tumors
[17, 18]; drug delivery and cell replication are also described in
these terms [19]. Concerning the tumors, themodel proposed
in [17, 18] is based on linear individual processes, a detailed
treatment of which would require a paper of its own. The
accumulation of individual processes is finally approximated
with a “tunnelling process” corresponding to a maturation
cascade that can be easily described with the tools of this
paper (see (71)). Concerning the question of drug delivery,
we will come back in detail to [19] in Section 7.

A substantial use of population dynamics driven by jump
processes has been done also in chemistry, particularly after
the rediscovery by Gillespie [20] of Kendall’s simulation
method [21, 22]. Poisson [23, 24], binomial [25, 26], and
multinomial [27] heuristics for the short-time integrals have
been proposed. There is, however, an important difference
between chemistry and biology concerning the issues of this
paper. On the one hand, linear rates are seldom the case in
chemical reactions except perhaps in the case of irreversible
decompositions or isomeric recombination. Attention to lin-
ear rates in chemistry is relatively recent [12] when compared
to over 200 years of Malthusian population growth. On
the other hand, detailed event statistics does not appear
to be fundamental either: highly diluted chemical reactions
on a test tube may easily generate 10

14 events of each
type. Consequently, attention to event based descriptions
appears to be absent from the chemistry literature. This
might, however, change in the future, since the technical
possibilities given by for example, “in-cell chemistry” and
“nanochemistry” allow dealingwith a lower number of events

where tiny differences in event count could be relevant for the
general outcome.

In themathematical literature attention to jumpprocesses
starts with Kolmogorov’s foundational work [28] and its
further elaboration by Feller [29]. A substantial effort to
relate the stochastic description to deterministic equations
was performed by Kurtz [30–34]. However, attention has
always focused on the dynamics in population space, rather
than event space.

This work focuses on the event statistics associated with
linear processes. Even for cases where the detailed event
statistics is not of central interest, such an approach offers an
alternative to the more traditional formulation in population
space.

Further, we discuss in detail the stochastic version of
a linear developmental model. Specifically, we deal with a
subprocess in the life cycle of insects that admits both a linear
description and an exact solution, namely, the development
of immature stages, which is a highly individual subprocess.
From egg form to adult form, the development of insects
goes through several transformations at different levels. For
example, at the most visible level, insects undergoing com-
plete metamorphosis evolve in the sequence egg, larva, pupa,
and adult. Further, different substages can be recognised by
inspection in the development of larvae (instars) and even
more stages when observed by other methods [35]. The
immature individual may die along the process or otherwise
complete it and exit as adult.

In Section 2 we formulate the dynamical population
problem in event space. In Section 2.1 we present the Kol-
mogorov Forward Equations (for Markov jump processes)
for the most general linear systems of population dynamics
in the form appropriated to probabilities and generating
functions. The general solution of these equations will be
written using the Theorem of the Characteristics, reformu-
lated with respect to the standard geometrical presentation
[36] into a dynamical presentation. We will analyse the
general structure of the equations and in particular their
first integrals of motion and the projection onto population
space (Sections 2 and 3). Section 4 contains two classical
examples. In Section 5, Poisson and multinomial approx-
imations (both with error 𝑜(𝑡)) are derived and a higher-
order approximation with error 𝑜(𝑡

𝑛
) (with 𝑛 as an arbi-

trary positive integer) is elaborated. The larval development
model is developed in Sections 6 and 7, treating the two
general cases. We also revisit in Section 7 the question of
drug delivery introduced in [19], in terms of the present
approach. Concluding remarks are left for the final Sec-
tion.

2. Mathematical Formulation

The main tools of stochastic population dynamics are a list
of (nonnegative, integer) populations 𝑋

𝑗
, where 𝑗 = 1 ⋅ ⋅ ⋅ 𝑁

a list of events 𝛼 = 1 ⋅ ⋅ ⋅ 𝐸 an (integer) incidence matrix 𝛿
𝛼

𝑗

describing how event 𝛼 modifies population 𝑗, and a list of
transition rates 𝑊

𝛼
(𝑋

1
, . . . , 𝑋

𝑛
, 𝑡) describing the probability

rate per unit time of occurrence of each event.
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An important feature of the present approach is that the
dynamical description will be handled in event-space. In this
sense, the “state” of the system is given by the array n(𝑠, 𝑡) =

(𝑛
1
, . . . , 𝑛

𝐸
)
𝑡
indicating how may events of each class have

occurred from time 𝑠 up to time 𝑡. Hence, event-space is, in
this setup, a nonnegative integer lattice of dimension 𝐸. The
connection with the actual population values at time 𝑡 is (𝑠
denotes the initial condition)

𝑋
𝑗
(𝑡) = 𝑋

𝑗
(𝑠) + ∑

𝛼

𝛿
𝛼

𝑗
𝑛
𝛼
(𝑠, 𝑡) . (1)

Definition 1 (linear independency). One says that the popula-
tions are linearly dependent if there is a vector u ̸= 0 such that
for all 𝑡 ≥ 𝑠 one has ∑

𝑗
𝑢
𝑗
𝑋

𝑗
(𝑡) = 0. Otherwise, one says that

the populations are linearly independent and abbreviate it as
LI.

In similar form, we say that the populations have linearly
dependent increments if there is u ̸= 0 so that for all 𝑡 > 𝑡 ≥ 𝑠

it holds that ∑
𝑗
𝑢
𝑗
(𝑋

𝑗
(𝑡

) − 𝑋

𝑗
(𝑡)) = 0.

The populations are said to have linearly independent
increments (abbreviated LII) if they do not have linearly
dependent increments.

Along this work we will assume the following.

Assumption 2. The populations have linearly independent
increments; that is, all involved populations are necessary to
provide a complete description of the problem; none of them
can be expressed as a linear combination of the remaining
ones for all times.

Lemma 3. (a) If the populations have linearly independent
increments, then the populations are linearly independent.

(b) The matrix 𝛿 has no nonzero vectors u such that
∑

𝑗
𝛿
𝛼

𝑗
𝑢
𝑗
= 0 for all 𝛼 if and only if the populations have linearly

independent increments.

Proof. (a) The assertion is equivalent to the following: if the
populations are linearly dependent, then they have linearly
dependent increments, which is immediate after the defini-
tion of linearly dependent increments.

(b) Assume that for all 𝛼 there exists u ̸= 0 such that
∑

𝑗
𝑢
𝑗
𝛿
𝛼

𝑗
= 0; then

∑

𝑗

𝑢
𝑗
(𝑋

𝑗
(𝑡


) − 𝑋

𝑗
(𝑡)) = ∑

𝑗

𝑢
𝑗
(∑

𝛼

𝛿
𝛼

𝑗
𝑛
𝛼
(𝑡


, 𝑡)) = 0, (2)

and the populations have linearly dependent increments.
Conversely, assume that the populations have linearly

dependent increments and select time intervals such that
𝑛
𝛽
(𝑡


𝛽
, 𝑡

𝛽
) = 1 and 𝑛

𝛼
(𝑡


𝛽
, 𝑡

𝛽
) = 0 for 𝛼 ̸= 𝛽; then, we have that

∑

𝑗

𝑢
𝑗
𝛿
𝛼

𝑗
= 0, ∀𝛼. (3)

Statement (b) is the negative statement of these facts.

Strictly speaking the last step in the above proof takes
for granted that there exist time intervals where only one

event occurs. This is assured by the next assumption (third
item). Also the initial conditions and the problem description
should be such that all defined events are relevant for the
dynamics (e.g., the event “contagion” is irrelevant for an
epidemic problem with zero infectives as initial condition).

2.1. Dynamical Equation—Basic Assumptions. Population
numbers evolve in “jumps” given by the occurrence of each
event (birth, death, etc.). In the sequel, we will use Latin
indices 𝑖, 𝑗, 𝑘, and 𝑚 for populations and Greek indices 𝛼,
𝛽, and 𝛾 for events.

The ultimate goal of stochastic population dynamics
is to calculate the probabilities 𝑃(𝑛

1
, . . . , 𝑛

𝐸
, 𝑠, 𝑡) of having

𝑛
1
, . . . , 𝑛

𝐸
events in each class up to time 𝑡, given an initial

condition {𝑋
𝑗
(𝑠)}.

The stochastic dynamics we are interested in correspond
to a Density Dependent Markov Jump Process [37, 38]. For a
sufficiently small time interval ℎ, we consider the following.

Assumption 4. For each event,

(i) event occurrences in disjoint time intervals are inde-
pendent;

(ii) the Chapman-Kolmogorov equation [28, 29] holds;

(iii) 𝑃(𝑛
𝛼
+ 1, 𝑡 + ℎ, 𝑡) = 𝑊

𝛼
(𝑋, 𝑡)ℎ + 𝑜(ℎ);

(iv) 𝑃(𝑛
𝛼
, 𝑡 + ℎ, 𝑡) = 1 − 𝑊

𝛼
(𝑋, 𝑡)ℎ + 𝑜(ℎ);

(v) 𝑃(𝑛
𝛼
(ℎ) + 𝑘, 𝑡 + ℎ, 𝑡) = 𝑜(ℎ), 𝑘 ≥ 2.

Here ℎ is the elapsed time since the time 𝑡 and 𝑛
𝛼
are the

events of type 𝛼 accumulated up to 𝑡.

It goes without saying that probabilities 𝑃(⋅ ⋅ ⋅ ) are
assumed to be differentiable functions of time. 𝑊

𝛼
(𝑋, 𝑡)

denotes the probability rate for event 𝛼, which is assumed
in the following lemmas to be a smooth function of the
populations, not necessarily linear (yet). Two well-known
general results describe the dynamical evolution under these
assumptions.

Lemma 5 (see Theorem 1 in [29]). Under Assumptions 2
and 4, the waiting time to the next event is exponentially
distributed.

Theorem6 (see [28] andTheorem 1 in [29]). Under Assump-
tions 2 and 4, the dynamics of the process in the space of events
obeys the Kolmogorov Forward Equation, namely;

�̇� ({𝑛
1
, . . . , 𝑛

𝐸
} , 𝑠, 𝑡)

= ∑

𝛼

𝑃 ({. . . , 𝑛
𝛼
− 1, . . .} , 𝑠, 𝑡)𝑊

𝛼
(𝑋 ({. . . , 𝑛

𝛼
− 1, . . . , 𝑡}))

− 𝑃 ({𝑛
1
, . . . , 𝑛

𝐸
} , 𝑠, 𝑡) (∑

𝛼

𝑊
𝛼
(𝑋 ({𝑛

1
, . . . , 𝑛

𝐸
, 𝑡}))) .

(4)

Proofs of these results are given in Appendix A.
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2.2. Linear Rates. We will assume that the transition rates
depend—in a linear fashion—on the populations only. To
distinguish from general rates (denoted above by the letter
𝑊), we will use the letter 𝑅 to denote linear transition rates.
Hence,

𝑅
𝛼
= ∑

𝑘

𝑟
𝑘

𝛼
𝑋

𝑘
(𝑡) . (5)

Since rates are nonnegative, we have that the proportionality
coefficient between event 𝛼 and subpopulation 𝑘 satisfies
𝑟
𝑘

𝛼
≥ 0. These proportionality coefficients convey the

environmental information and as such they may be time-
dependent since the environment varieswith time.Whenever
possible, we do not write this time dependency explicitly to
lighten the notation.

Lemma 7. For the case of linear rates, population space {𝑋
𝑘
≥

0} is positively invariant under the time evolution given by (1)
and the previous assumptions if and only if 𝛿𝛼

𝑖
≥ −1 and 𝛿

𝛼

𝑖
=

−1 only if 𝑅
𝛼
= 𝑟

𝑖

𝛼
𝑋

𝑖
(𝑡) (no sum).

Proof. Theprobability of occurrence of event𝛼 in a small time
interval ℎ is

ℎ𝑅
𝛼
+ 𝑜 (ℎ) = ℎ∑

𝑘

𝑟
𝑘

𝛼
𝑋

𝑘
(𝑡) + 𝑜 (ℎ) . (6)

After an occurrence, population 𝑋
𝑘
is modified to 𝑋

𝑘
+ 𝛿

𝛼

𝑘
.

Population space is positively invariant under time evolution
if and only if the probability of occurrence of event 𝛼 is zero
for those population values𝑋

𝑘
such that𝑋

𝑘
+ 𝛿

𝛼

𝑘
< 0 (we are

just saying that events pushing the populations to negative
values do not exist). Since this should hold for arbitrary ℎ, we
have that 𝑅

𝛼
= 0.

Assume that 𝛿𝛼
𝑘

≤ −1. Then, 𝑅
𝛼

= 0 for 0 ≤ 𝑋
𝑘

< −𝛿
𝛼

𝑘
.

Letting 𝑋
𝑘

= 0 we realise that ∑
𝑗 ̸= 𝑘

𝑟
𝑗

𝛼
𝑋

𝑗
(𝑡) = 0 regardless

of the values of 𝑋
𝑗
, and hence it holds that 𝑟𝑗

𝛼
= 0 for 𝑗 ̸= 𝑘

and therefore 𝑅
𝛼

= 𝑟
𝑘

𝛼
𝑋

𝑘
(no sum). This proves the second

statement. If 𝛿𝛼
𝑘

< −1 we have that 𝑅
𝛼

= 0 also for 𝑋
𝑘

= 1.
Hence 𝑟

𝑘

𝛼
= 0 as well; 𝑅

𝛼
≡ 0 and the event 𝛼 can be ignored

since it does not influence the dynamics.

3. Kolmogorov Forward Equation

Let us recast the dynamical equation given by Theorem 6 in
terms of the generating function [39] in event-space, defined
as

Ψ (𝑧
1
, . . . , 𝑧

𝐸
, 𝑠, 𝑡) = ∑

{𝑛
𝛼
}

(∏

𝛼

𝑧
𝑛
𝛼

𝛼
)𝑃 (𝑛

1
, . . . , 𝑛

𝐸
, 𝑠, 𝑡) . (7)

For the case of linear rates, we define

𝑅
0

𝛼
= ∑

𝑘

𝑟
𝑘

𝛼
𝑋

𝑘 (𝑠) ,

𝐹
𝛽

𝛼
= ∑

𝑘

𝑟
𝑘

𝛼
𝛿
𝛽

𝑘
.

(8)

As a consequence,

𝑅
𝛼
= 𝑅

0

𝛼
+ ∑

𝛽

𝐹
𝛽

𝛼
𝑛
𝛽
. (9)

Using Theorem 6 to rewrite 𝜕Ψ/𝜕𝑡 and using further 𝑛
𝛽
Ψ =

𝑧
𝛽
(𝜕Ψ/𝜕𝑧

𝛽
) (a matter of replacing in the definition of Ψ), we

obtain

𝜕Ψ

𝜕𝑡

𝑠

= ∑

𝛼

(𝑧
𝛼
− 1)(𝑅

0

𝛼
Ψ + ∑

𝛽

𝐹
𝛽

𝛼
𝑧
𝛽
𝜕Ψ/𝜕𝑧

𝛽
) . (10)

Since the generating function reflects a probability distri-
bution, we have the probability condition Ψ(1, . . . 1, 𝑠, 𝑡) =

1. Further, the solutions of (10) can be uniquely trans-
lated into those given by Theorem 6 for corresponding
initial conditions: 𝑃(𝑚

1
, . . . , 𝑚

𝐸
, 𝑠, 𝑠) = 1 corresponding

to Ψ(𝑧
1
, . . . , 𝑧

𝐸
, 𝑠, 𝑠) = 𝑧

𝑚
1

1
𝑧
𝑚
2

2
⋅ ⋅ ⋅ 𝑧

𝑚
𝐸

𝐸
, where the integers

𝑚
1
, . . . , 𝑚

𝐸
denote howmany events of each class had already

occurred at 𝑡 = 𝑠. The natural initial condition becomes
Ψ(𝑧

1
, . . . , 𝑧

𝐸
, 𝑠, 𝑠) = 1, corresponding to 𝑃(0, . . . , 0, 𝑠, 𝑠) = 1.

3.1. The Method of Characteristics Revisited

Lemma 8. Equation (10) with 𝑅
0

𝛼
= 0 and with the initial

condition Ψ(𝑧
1
, . . . , 𝑧

𝐸
, 𝑠, 𝑠) = Φ

0
(𝑧

1
, . . . , 𝑧

𝐸
) admits the

solution

Ψ (𝑧
1
, . . . , 𝑧

𝐸
, 𝑠, 𝑡) = Φ

0
(𝜙 (𝑧, 𝑡, 𝑡 − 𝑠)) , (11)

where 𝜙(𝑧, 𝑡, 𝜏) is the flow of the following ODE with initial
condition 𝑥(0) = 𝑧, 𝑠(0) = 𝑡:

𝑑𝑥
𝛽

𝑑𝜏
= ∑

𝛼

𝐹
𝛽

𝛼
(𝑥

𝛼
− 1) 𝑥

𝛽
≡ 𝑏

𝛽
(𝑥, 𝑠) ,

𝑑𝑠

𝑑𝜏
= −1.

(12)

Proof. It is convenient to rename 𝑠 as 𝑠 = 𝑥
𝐸+1

, introduce
𝑏
𝐸+1

= −1, and recall that 𝑏𝛽 depends only on the extended
variable array 𝑥. However, when necessary, we will write
explicitly 𝑥(0) as (𝑧, 𝑡). We have that

𝜕Ψ

𝜕𝑡

𝑠

=

𝐸+1

∑

𝛽

𝜕Φ
0

𝜕𝑥
𝛽

𝜙(𝑥,𝑡−𝑠)

𝑑𝜙
𝛽
(𝑧, 𝑡, 𝑡 − 𝑠)

𝑑𝑡

=

𝐸+1

∑

𝛽

𝜕Φ
0

𝜕𝑥
𝛽

𝜙(𝑥,𝑡−𝑠)

× (𝑏
𝛽
(𝜙 (𝑧, 𝑡, 𝑡 − 𝑠)) +

𝜕𝜙
𝛽
(𝑧, 𝑢, 𝑡 − 𝑠)

𝜕𝑢

𝑢=𝑡

) .

(13)

Further, consider the monodromy matrix [40]

𝑀
𝛽

𝛾
=

𝜕𝜙
𝛽
(𝑥, 𝜏)

𝜕𝑥
𝛾

. (14)
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𝑀 transforms the initial velocity into the final velocity; hence

∑

𝛾

𝑀
𝛽

𝛾
𝑏
𝛾
(𝑧, 𝑡) = 𝑏

𝛽
(𝜙 (𝑧, 𝑡, 𝜏)) . (15)

Thus, we get

𝜕Ψ

𝜕𝑡

𝑠

=

𝐸+1

∑

𝛽

𝜕Φ
0

𝜕𝑥
𝛽

𝜙(𝑥,𝑡−𝑠)

(

𝐸+1

∑

𝛾

𝑀
𝛽

𝛾
𝑏
𝛾
(𝑧, 𝑡) +

𝜕𝜙
𝛽
(𝑧, 𝑢, 𝑡 − 𝑠)

𝜕𝑢

𝑢=𝑡

)

=

𝐸+1

∑

𝛽

𝜕Φ
0

𝜕𝑥
𝛽

𝜙(𝑥,𝑡−𝑠)

× (

𝐸

∑

𝛾

𝑀
𝛽

𝛾
𝑏
𝛾
(𝑧, 𝑡) − 𝑀

𝛽

𝐸+1
+

𝜕𝜙
𝛽
(𝑧, 𝑢, 𝑡 − 𝑠)

𝜕𝑢

𝑢=𝑡

)

=

𝐸

∑

𝛾

𝜕Ψ

𝜕𝑧
𝛾

𝑏
𝛾
(𝑧, 𝑡) .

(16)

From the definition of monodromy matrix above it follows
that

−𝑀
𝛽

𝐸+1
+

𝜕𝜙
𝛽
(𝑧, 𝑢, 𝑡 − 𝑠)

𝜕𝑢

𝑢=𝑡

= 0, (17)

and by (11) and the chain rule,

∑

𝛽

𝜕Φ
0

𝜕𝑥
𝛽

𝑥=𝜙(𝑥,𝑡−𝑠)

𝑀
𝛽

𝛾
= ∑

𝛽

𝜕Φ
0

𝜕𝑥
𝛽

𝑥=𝜙(𝑥,𝑡−𝑠)

𝜕𝜙
𝛽
(𝑧, 𝑡, 𝑡 − 𝑠)

𝜕𝑧
𝛾

=
𝜕Ψ

𝜕𝑧
𝛾

.

(18)

Lemma 9. Equation (10) with 𝑅
0

𝛼
̸= 0 and with the initial

condition Ψ(𝑧
1
, . . . , 𝑧

𝐸
, 𝑠, 𝑠) = Φ

0
(𝑧

1
, . . . , 𝑧

𝐸
) admits the

solution

Ψ (𝑧
1
, . . . , 𝑧

𝐸
, 𝑠, 𝑡) = Φ

0
(𝜙 (𝑧, 𝑡, 𝑡 − 𝑠))Φ

1
(𝑧

1
, . . . , 𝑧

𝐸
, 𝑠, 𝑡) ,

(19)

where Φ
0
(𝜙(𝑧, 𝑡, 𝑡 − 𝑠)) is a solution of the homogeneous

problem with 𝑅
0

𝛼
= 0 and

Φ
1
(𝑧

1
, . . . , 𝑧

𝐸
, 𝑠, 𝑡)

= exp∫

𝑡

𝑠

(∑

𝛼

𝑅
0

𝛼
(𝜏) (𝜙

𝛼
(𝑧, 𝑡, 𝑡 − 𝜏) − 1) 𝑑𝜏) .

(20)

Proof. The proof is nothing more than an application of the
method of the variation of the constants. The details are as
follows.

Introducing the proposed solution Ψ into (10) and using
Lemma 8 to eliminateΦ

0
we obtain thatΦ

1
satisfies (10) with

initial condition Φ
1
(𝑧, 𝑠, 𝑠) = 1. Computing directly from

(20) we have that

𝜕Φ
1

𝜕𝑡

𝑠

= ∑

𝛼

𝑅
0

𝛼
(𝜙

𝛼
(𝑧, 𝑡, 0) − 1)Φ

1
+ ∑

𝛽

𝜕Φ
1

𝜕𝜙𝛽

𝜕𝜙
𝛽
(𝑧, 𝑡, 𝑡 − 𝜏)

𝜕𝑡

= ∑

𝛼

𝑅
0

𝛼
(𝑧

𝛼
− 1)Φ

1

+ ∑

𝛽

𝜕Φ
1

𝜕𝜙𝛽
(𝑏

𝛽
(𝜙 (𝑧, 𝑡, 𝑡 − 𝜏)) +

𝜕𝜙
𝛽
(𝑧, 𝑢, 𝑡 − 𝜏)

𝜕𝑢

𝑢=𝑡

)

= ∑

𝛼

𝑅
0

𝛼
(𝑧

𝛼
− 1)Φ

1
+ ∑

𝛽

𝜕Φ
1

𝜕𝜙𝛽
∑

𝛾

𝑀
𝛽

𝛾
𝑏
𝛾
(𝑧, 𝑡)

= ∑

𝛼

𝑅
0

𝛼
(𝑧

𝛼
− 1)Φ

1
+ ∑

𝛽

𝜕Φ
1

𝜕𝜙𝛽
∑

𝛾

𝜕𝜙
𝛽

𝜕𝑧
𝛾

𝑏
𝛾
(𝑧, 𝑡)

= ∑

𝛼

𝑅
0

𝛼
(𝑧

𝛼
− 1)Φ

1
+ ∑

𝛾

𝜕Φ
1

𝜕𝑧
𝛾

𝑏
𝛾
(𝑧, 𝑡) ,

(21)

after retracing our steps from the previous Lemma.

The result presented in Lemma 9 was constructed using
the method of variation of constants, which provides an
alternative (constructive) proof.

3.2. Basic Properties of the Solution

Definition 10. A nonzero vector v such that ∑
𝛼
𝛿
𝛼

𝑗
V
𝛼

= 0,
for 𝑗 = 1, . . . , 𝑁, is called a structural zero of 𝐹. Other zero
eigenvalues of 𝐹 are called nonstructural.

Lemma 11. (a)There are structural zeroes if and only if𝐸 > 𝑁.
(b) The only structurally stable zero eigenvalues of the matrix
𝐹 are the structural zeroes.

Proof. (a) The “if ” part is immediate since dim(ker(𝛿)) ≥

𝐸−𝑁.The “only if ” part follows from the assumption of inde-
pendent population increments (and therefore independent
populations). For (b) put 𝐹 = r𝛿. If 𝐹𝑤 = 0 for 𝑤 nonzero
and 𝛿𝑤 = 𝑝 ̸= 0, then r𝑝 = 0. This relation is not structurally
stable since by adding 𝑐 ̸= 0 arbitrarily small to all diagonal
elements of r we can assure r𝑝 ̸= 0 for this modified r and
for any 𝑝 ̸= 0.

Lemma 12. First integrals of motion for the characteristic
equations. Let v be a structural zero of 𝐹, then

∏

𝛼

(𝑥
𝛼
(𝑡))

V
𝛼

= 𝐶 (22)

is a constant of motion for the characteristic equations (12).
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Proof. Rewrite the first equation (12) as (indices renamed)

𝑑

𝑑𝑡
ln𝑥

𝛼
= ∑

𝛽

𝐹
𝛼

𝛽
(𝑥

𝛽
− 1) . (23)

Then,

∑

𝛼

V
𝛼

𝑑

𝑑𝑡
ln𝑥

𝛼
= ∑

𝛽

∑

𝛼

(V
𝛼
𝐹
𝛼

𝛽
) (𝑥

𝛽
− 1) = 0. (24)

Since ∑
𝛼
(V

𝛼
𝐹
𝛼

𝛽
) = 0, the expression in the lemma is the

exponential of the integral obtained from

∑

𝛼

V
𝛼

𝑑

𝑑𝑡
ln𝑥

𝛼
= 0. (25)

Given relationship (1) between initial conditions, events,
and populations, from the probability generating function in
event space,

Ψ (𝑧
1
, . . . , 𝑧

𝐸
, 𝑠, 𝑡) = ∑

{𝑛
𝛼
}

(∏

𝛼

𝑧
𝑛
𝛼

𝛼
)𝑃 (𝑛

1
⋅ ⋅ ⋅ 𝑛

𝐸
, 𝑠, 𝑡) , (26)

a corresponding generating function in population space can
be computed, namely,

Ψ (𝑦
1
, . . . , 𝑦

𝑁
, 𝑠, 𝑡) = ∑

{𝑋
𝑘
}

(∏

𝑘

𝑦
𝑋
𝑘

𝑘
)𝑃 (𝑋

1
, . . . , 𝑋

𝑁
, 𝑠, 𝑡) ,

(27)

letting {𝑛
𝛼
}, {𝑋

𝑘
} be shorthand for (𝑛

1
⋅ ⋅ ⋅ 𝑛

𝐸
), (𝑋

1
, . . . , 𝑋

𝑁
).

Lemma 13 (projection lemma). Equation 𝑧
𝛼

= ∏
𝑁

𝑘=1
𝑦
𝛿
𝛼

𝑘

𝑘

realises the transformation from event space to population
space. Moreover,

Ψ (𝑦
1
, . . . , 𝑦

𝑁
, 𝑠, 𝑡) = (∏

𝑘

𝑦
𝑋
0

𝑘

𝑘
)Ψ(𝑧

1
, . . . , 𝑧

𝐸
, 𝑠, 𝑡)

= (∏

𝑘

𝑦
𝑋
0

𝑘

𝑘
)Ψ(

𝑁

∏

𝑘=1

𝑦
𝛿
1

𝑘

𝑘
, . . . ,

𝑁

∏

𝑘=1

𝑦
𝛿
𝐸

𝑘

𝑘
, 𝑠, 𝑡) .

(28)

Proof. Taking logarithms on 𝑧 and 𝑦 it is clear that whenever
there exist structural zeroes the transformation is noninvert-
ible. In this sense we call it a projection. Concerning the
statement, we have

(∏

𝑘

𝑦
𝑋
0

𝑘

𝑘
)Ψ (𝑧

1
, . . . , 𝑧

𝐸
, 𝑠, 𝑡)

= (∏

𝑘

𝑦
𝑋
0

𝑘

𝑘
) ∑

{𝑛
𝛼
}

(∏

𝛼

(

𝑁

∏

𝑘=1

𝑦
𝛿
𝛼

𝑘

𝑘
)

𝑛
𝛼

)𝑃 ({𝑛
𝛼
} , 𝑠, 𝑡)

= ∑

{𝑛
𝛼
}

(

𝑁

∏

𝑘=1

𝑦
𝑋
0

𝑘
+∑
𝛼
𝛿
𝛼

𝑘
𝑛
𝛼

𝑘
)𝑃 ({𝑛

𝛼
} , 𝑠, 𝑡) .

(29)

The statement is proved using (1) and rearranging the sums
as

𝑃 (𝑋
1
, . . . , 𝑋

𝑁
, 𝑠, 𝑡) = ∑

{𝑛
𝛼
}



𝑃 ({𝑛
𝛼
} , 𝑠, 𝑡) , (30)

where the prime denotes sum over {𝑛
𝛼
} such that 𝑋

0

𝑗
+

∑
𝛼
𝛿
𝛼

𝑗
𝑛
𝛼
= 𝑋

𝑗
.

Corollary 14. The integrals of motion of Lemma 12 project
under the projection Lemma to 𝐶 = 1.

Proof. The above substitution operated on ∏𝑧
V
𝛼

𝛼
= 𝐶 gives

𝐶 =

𝑁

∏

𝑘=1

𝑦
(∑
𝛼
V
𝛼
𝛿
𝛼

𝑘
)

𝑘
≡

𝑁

∏

𝑘=1

𝑦
0

𝑘
= 1. (31)

3.3. Reduced Equation

Assumption 15. There exist integers𝑚
𝛽
,𝛽 = 1, . . . , 𝐸 such that

(cf. (9))

𝑅
0

𝛼
= ∑

𝛽

𝐹
𝛽

𝛼
𝑚

𝛽
. (32)

This assumption amounts to considering that there exists a
way to mimic the initial condition on the rates with the same
matrix 𝐹 involved in the time evolution.

Theorem 16. Under Assumptions 2, 4, and 15, equation
(10) with natural initial condition Ψ(𝑧

1
, . . . , 𝑧

𝐸
, 𝑠, 𝑠, ) =

Φ
0
(𝑧

1
, . . . , 𝑧

𝐸
) = 1 has the solution

Ψ (𝑧
1
, . . . , 𝑧

𝐸
, 𝑠, 𝑡) = ∏

𝛽

𝑓
𝑚
𝛽

𝛽
, (33)

where 𝑧
𝛽
𝑓
𝛽
(𝑧, 𝑠, 𝑡) = 𝜙

𝛽
(𝑧, 𝑡, 𝑡 − 𝑠) in terms of the solutions

of (12) of Lemma 8. Hence, 𝑓(𝑧, 𝑠, 𝑡) satisfies (after eliminating
the auxiliary time 𝜏)

𝑑 log (𝑓
𝛽 (𝑧, 𝑠, 𝑡))

𝑑𝑠

= −∑

𝛼

𝐹
𝛽

𝛼
(𝑠) (𝑧

𝛼
𝑓
𝛼
(𝑧, 𝑠, 𝑡) − 1) , 𝑓

𝛽
(𝑧, 𝑡, 𝑡) = 1.

(34)

Proof. The differences between 𝑓( ) and 𝜙( ) are (a) factoring
out the initial condition 𝜙

𝛽
(𝑧, 𝑡, 0) = 𝑧

𝛽
and (b) rearranging

the time arguments since the argument in𝜙( ) is natural to the
ad hoc autonomous ODE, (12), while the argument in 𝑓( ) is
natural to the (nonautonomous) PDE, (10).

The proof is just a matter of rewriting the previous
equations under the present assumptions. Because of the
natural initial condition, the desired solution to (10) is
given by (20) in Lemma 9 which can be rewritten using
Assumption 15, as (we use 𝑧 as shorthand for 𝑧

1
, . . . , 𝑧

𝐸
)

Ψ (𝑧, 𝑠, 𝑡) = Φ
1 (𝑧, 𝑠, 𝑡)

= ∏

𝛽

(exp∫

𝑡

𝑠

∑

𝛼

𝐹
𝛽

𝛼
(𝜏) (𝜙

𝛼
(𝑧, 𝑡, 𝑡 − 𝜏) − 1) 𝑑𝜏)

𝑚
𝛽

.

(35)
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Recalling that we defined 𝑧
𝛼
𝑓
𝛼
(𝑧, 𝑠, 𝑡) = 𝜙(𝑧, 𝑡, 𝑡 − 𝑠), the

parenthesis can be recognised as the formal solution of (34)
integrated from 𝑡 to 𝑠.

Corollary 17. For v a structural zero of Lemma 12, the
generating function is unmodified upon the substitution𝑚

𝛼
→

𝑚
𝛼
+ 𝑘V

𝛼
(𝑘 ∈ R).

Remark 18. Having structural zeroes, it is amatter of choice to
address the problem (a) using the variables 𝑓

𝛼
and imposing

the additional constraints given by structural zeroes or (b)
shifting to population coordinates where these constraints are
automatically incorporated. Because of Assumption 2 and
Lemma 12, the transformation mapping one description to
the other corresponds to

𝑓
𝛼
= ∏

𝑗

𝑤
𝛿
𝛼

𝑗

𝑗
. (36)

However, option (b) proves to bemore efficientwhen it comes
to deal with approximate solutions (see Section 5).

4. Examples of Exact Solutions

4.1. Example I: Pure Death Process. In the case 𝑁 = 𝐸 = 1,
𝛿 = −1, we have 𝑟 > 0, 𝐹 = −𝑟(𝑠), and 𝑚 = −𝑀 <

0 (𝑀 is the initial population value). Equation (34) reads
𝑑𝑓/𝑑𝑠 = 𝑓𝑟(𝑧𝑓 − 1), to be integrated in [𝑡, 𝑠], with 𝑓(𝑧, 𝑡, 𝑡) =

1. Hence, for constant death rate 𝑟 we obtain 𝑓(𝑧, 𝑠, 𝑡) =

[𝑧 + (1 − 𝑧)𝑒
−𝑟(𝑡−𝑠)

]
−1

and

Ψ (𝑧, 𝑠, 𝑡) = [𝑒
−𝑟(𝑡−𝑠)

+ 𝑧 (1 − 𝑒
−𝑟(𝑡−𝑠)

)]
𝑀

. (37)

4.2. Example II: Linear Birth andDeath Process. Wehave𝑁 =

1, 𝐸 = 2, and 𝛿
1

1
= −𝛿

2

1
= 1, while 𝑟

1
denotes the birth rate

and 𝑟
2
denotes the death rate. 𝑋

0
= 𝑚

1
− 𝑚

2
is the initial

population. There exists one structural zero, with vector v =

(1, 1)
𝑇, while the corresponding constant of motion results in

the relations 𝑧
1
𝑧
2
= 𝐶 and𝑓

1
𝑓
2
= 1.The differential equation

(34) for 𝑓
1
(to be integrated in [𝑡, 𝑠]) becomes

𝑑𝑓
1

𝑑𝑠
= (𝑟

1
𝑧
1
𝑓
2

1
− (𝑟

1
+ 𝑟

2
) 𝑓

1
+

𝐶𝑟
2

𝑧
1

) , 𝑓
1 (𝑧, 𝑡, 𝑡) = 1,

(38)

with solution (for𝐶 = 1whichwill be the case after projection
and assuming time-independent birth rates)

𝑓
1
(𝑧, 𝑠, 𝑡) =

1

𝑧
1

(𝑟
2
− 𝑟

1
𝑧
1
)𝑊 − 𝑟

2
(1 − 𝑧

1
)

(𝑟
2
− 𝑟

1
𝑧
1
)𝑊 − 𝑟

1
(1 − 𝑧

1
)
, (39)

where 𝑊 = exp(𝑟
2

− 𝑟
1
)(𝑡 − 𝑠). Finally, Ψ(𝑧, 𝑠, 𝑡) =

(𝑓
1
(𝑧, 𝑠, 𝑡))

𝑚
1
−𝑚
2 which after projecting in population space

using Lemma 13 and Corollary 14 gives (cf. [41])

Ψ (𝑦, 𝑠, 𝑡) = [
(𝑟

2
− 𝑟

1
𝑦)𝑊 − 𝑟

2
(1 − 𝑦)

(𝑟
2
− 𝑟

1
𝑦)𝑊 − 𝑟

1
(1 − 𝑦)

]

𝑚
1
−𝑚
2

. (40)

Remark 19. A pure death linear process corresponds to a
binomial distribution, a pure birth process corresponds to a
negative binomial, and a birth-death process corresponds to
a combination of both as independent processes.

5. Consistent Approximations

When (34) of Theorem 16 cannot be solved exactly, we have
to rely on approximate solutions. It is desirable to work
with consistent approximations, namely, those where basic
properties of the problem are fulfilled exactly, rather than “up
to an error of size 𝜖”. For example, since our solutions should
be probabilities, we want the coefficients of Ψ(𝑧

1
, . . . , 𝑧

𝐸
, 𝑡)

to be always nonnegative and sum up to one. Ideally, we
want approximations to be constrained to satisfy Lemma 12
and to preserve positive invariance in population space (no
jumps into negative populations). Whenever consistency is
not automatic, it is mandatory to analyse the approximate
solution before jumping into conclusions.

5.1. Poisson Approximation. Let us replace 𝑓
𝛽

≡ 1 in the
RHS of (34) (this amounts to propose that 𝑓

𝛽
is constant and

equal to its initial condition). The solution of the modified
equation will be a good approximation to the exact solution
for sufficiently short times such that 𝑓 is not significantly
different from one.

For constant rates 𝑟
𝛼
the rhs of (34) does not depend on

time. The approximate solution reads 𝑓
𝛼
(𝑧, 𝑠, 𝑡) = exp((𝑡 −

𝑠)∑
𝛽
𝐹
𝛼

𝛽
(𝑧

𝛽
− 1)) and

Ψ (𝑧
1
, . . . , 𝑧

𝐸
, 𝑠, 𝑡) =

𝐸

∏

𝛼

𝑒
𝑚
𝛼
(𝑡−𝑠)∑

𝛽
𝐹
𝛼

𝛽
(𝑧
𝛽
−1)

= 𝑒
(𝑡−𝑠)∑

𝛽
𝑅
0

𝛽
(𝑧
𝛽
−1)

.

(41)

In other words, the generating function is approximated
as a product of individual Poisson generating functions.

This approximation has an error of 𝑜(𝑡). Simple as it looks,
this approach gives a good probability generating function
that respects structural zeroes, but it does not guarantee
positive invariance: a Poisson jump could throw the system
into negative populations. However, the probability of such
a jump is also 𝑜(𝑡). Fortunately, there is a natural way to
impose positive invariance and also a natural way to improve
the error up to 𝑜(𝑡)

3/2 in the broader framework of general
transition rates [6]. In this way, the approximation can be
safely used, with error control, to address problems that resist
exact computation one way or the other.

5.2. Consistent Multinomial Approximations. A systematic
approach to obtain a chain of approximations of increasing
accuracy to (34) can be devised via Picard iterations. Firstly, it
is convenient to recast the problem in population coordinates
(cf. Remark 18), so that the structural zeroes are automatically
taken into account, regardless of other properties of the
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adopted approximation. From 𝑓
𝛼

= ∏
𝑗
𝑤

𝛿
𝛼

𝑗

𝑗
we obtain

̇𝑓
𝛼
/𝑓

𝛼
= ∑

𝑘
𝛿
𝛼

𝑘
�̇�
𝑘
/𝑤

𝑘
and (34) can be recast as

∑

𝑘

𝛿
𝛼

𝑘
(

�̇�
𝑘

𝑤
𝑘

+ ∑

𝛽

𝑟
𝑘

𝛽
(𝑧

𝛽
(∏

𝑗

𝑤
𝛿
𝛽

𝑗

𝑗
) − 1)) = 0,

𝑤
𝑘 (𝑧, 𝑡, 𝑡) = 1.

(42)

Because of the linear independence of population increments
(and hence of populations), Lemma 3(b), the counterpart of
(34) in population coordinates reads

�̇�
𝑘
= −𝑤

𝑘
∑

𝛽

𝑟
𝑘

𝛽
(𝑧

𝛽
(∏

𝑗

𝑤
𝛿
𝛽

𝑗

𝑗
) − 1) , 𝑤

𝑘
(𝑧, 𝑡, 𝑡) = 1.

(43)

Remark 20. In the case of linearly dependent population
increments, (34) still holds, while it is possible to elaborate
a more general form in terms of the 𝑤

𝑗
instead of (43). This

is, however, outside the scope of this paper.

Since ∑
𝛼
𝛿
𝛼

𝑗
𝑚

𝛼
= 𝑋

𝑗
(𝑠), we obtain Ψ(𝑧

1
, . . . , 𝑧

𝐸
, 𝑠, 𝑡) =

∏
𝑗
𝑤

𝑋
𝑗
(𝑠)

𝑗
, which is, so far, an exact result. Let us produce

some approximated values for the 𝑤
𝑘
’s, and correspondingly

for Ψ(𝑧
1
, . . . , 𝑧

𝐸
, 𝑠, 𝑡).

To avoid further notational complications, wewill assume
in the sequel that 𝑟

𝑘

𝛽
is time independent. Hence, 𝑤

𝑘
will

depend only on the time difference 𝑡 − 𝑠. Equation (43) can
be recast as

�̇�
𝑘
= 𝑤

𝑘
∑

𝛽

𝑟
𝑘

𝛽
(𝑧

𝛽
(∏

𝑗

𝑤
𝛿
𝛽

𝑗

𝑗
) − 1) , 𝑤

𝑘 (𝑧, 0) = 1,

(44)

now to be integrated along the interval [0, 𝑡 − 𝑠]. We will even
set 𝑠 = 0 in what follows.

Remark 21. For the case of time-independent proportionality
factors 𝑟𝑘

𝛽
, a correspondingmodification can be introduced in

(34), namely, overall change of sign, integration in [0, 𝑡 − 𝑠],
and setting 𝑠 = 0 to reduce the notational burden.

Equations (44) satisfy the Picard-Lindelöf theorem since
the RHS is a Lipschitz function. Then the Picard iteration
scheme converges to the (unique) solution. Taking advantage

of the initial condition, the 𝑛th order truncated version of the
Picard iterations reads

𝑤
(0)

𝑘
(ℎ) = 1,

𝑤
(1)

𝑘
(ℎ) = 1 + ∫

ℎ

0

𝑤
(0)

𝑘
(𝑡)∑

𝛽

𝑟
𝑘

𝛽
(𝑧

𝛽
∏

𝑗

(𝑤
(0)

𝑗
(𝑡))

𝛿
𝛽

𝑗

− 1)𝑑𝑡

= 1 + ℎ∑

𝛽

𝑟
𝑘

𝛽
(𝑧

𝛽
− 1) ,

𝑤
(𝑛)

𝑘
(ℎ) = 1 + ∫

ℎ

0

𝑑𝑡[

[

𝑤
(𝑛−1)

𝑘
(𝑡)

×∑

𝛽

𝑟
𝑘

𝛽
(𝑧

𝛽
∏

𝑗

(𝑤
(𝑛−1)

𝑗
(𝑡))

𝛿
𝛽

𝑗

− 1)]

]𝑛−1

,

(45)

where [⋅ ⋅ ⋅ ]
𝑚
denote the Maclaurin polynomial of order𝑚 in

𝑡.

Lemma 22. For 𝑡 ∈ [0, ℎ], ℎ > 0 being sufficiently small,
and for each order of approximation 𝑛 ≥ 0, 𝑤(𝑛)

𝑘
(𝑡) in (44)

is a polynomial generating function for one individual of the
population; that is, it has the following properties:

(a) 𝑤
(𝑛)

𝑘
(𝑡) is a polynomial of degree 𝑛 in 𝑧

1
, . . . , 𝑧

𝐸
, where

the coefficient of 𝑧𝑛1
1
, . . . , 𝑧

𝑛
𝐸

𝐸
is 𝑂(𝑡

𝑝
), with 𝑝 = 𝑛

1
+

⋅ ⋅ ⋅ + 𝑛
𝐸
;

(b) 𝑤
(𝑛)

𝑘
(1, . . . , 1, 𝑡) = 1;

(c) Δ
(𝑛)

𝑘
(ℎ) = 𝑤

(𝑛)

𝑘
(ℎ) − 𝑤

(𝑛−1)

𝑘
(ℎ) = 𝑂(ℎ

𝑛
);

(d) the coefficients of 𝑤(𝑛)

𝑘
(𝑡) regarded as a polynomial in

{𝑧
𝛼
} are nonnegative functions of time.

Proof. (a) The statement holds for 𝑛 = 0 and 𝑛 = 1.
Assuming that it holds up to order 𝑛 − 1, we have that
[𝑤

(𝑛−1)

𝑘
(𝑡)∏

𝑗
(𝑤

(𝑛−1)

𝑗
(𝑡))

𝛿
𝛽

𝑗 ]
𝑛−1

is also a polynomial of degree
𝑛 − 1 in 𝑧

1
, . . . , 𝑧

𝐸
with time-dependent coefficients of type

𝑂(𝑡
𝑝
) since each power 𝑝 of 𝑡 carries along a power 𝑝 in {𝑧

𝛼
}

(as well as lower 𝑧-powers). A Picard iteration step gives

𝑤
(𝑛)

𝑘
(𝑡) = 1 + ∑

𝛽

𝑟
𝑘

𝛽
𝑧
𝛽
∫

ℎ

0

[

[

𝑤
(𝑛−1)

𝑘
(𝑡)∏

𝑗

(𝑤
(𝑛−1)

𝑗
(𝑡))

𝛿
𝛽

𝑗]

]𝑛−1

𝑑𝑡

− (∑

𝛽

𝑟
𝑘

𝛽
)∫

ℎ

0

𝑤
(𝑛−1)

𝑘
(𝑡) 𝑑𝑡.

(46)

The first sum contributes with one time integration and one
𝑧-power, which exactly preserves the polynomial structure
and the order of the coefficients.The result is a polynomial of
degree 𝑛 in 𝑧

1
, . . . , 𝑧

𝐸
, where the coefficients are polynomials

of highest degree at most 𝑛 in ℎ, each one of lowest order
𝑂(ℎ

𝑝
) (as in the statement). The second integral does not
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alter these properties since it generates again a polynomial of
degree 𝑛−1 in 𝑧

1
, . . . , 𝑧

𝐸
, with time-dependent coefficients of

order𝑂(ℎ
𝑝+1

) or higher, up to ℎ
𝑛 (they are just the coefficients

of 𝑤(𝑛−1)

𝑘
(𝑡) integrated once in time).

(b) Letting 𝑧
1
= 𝑧

2
= ⋅ ⋅ ⋅ = 𝑧

𝐸
= 1, Picard iteration gives

trivially 𝑤
(𝑛)

𝑘
(𝑡) = 1 to all orders, again by induction.

(c) The statement holds for 𝑛 = 1. Assuming it holds up
to 𝑛 − 1, we compute

𝑤
(𝑛)

𝑘
(ℎ) − 𝑤

(𝑛−1)

𝑘
(ℎ)

= ∑

𝛽

𝑟
𝑘

𝛽
𝑧
𝛽

× ∫

ℎ

0

([(𝑤
(𝑛−2)

𝑘
(𝑡) + Δ

(𝑛−1)

𝑘
(𝑡))

× ∏

𝑗

(𝑤
(𝑛−2)

𝑗
(𝑡) + Δ

(𝑛−1)

𝑗
(𝑡))

𝛿
𝛽

𝑗

]

𝑛−1

−[

[

𝑤
(𝑛−2)

𝑘
(𝑡)∏

𝑗

(𝑤
(𝑛−2)

𝑗
(𝑡))

𝛿
𝛽

𝑗]

]𝑛−2

)𝑑𝑡

− (∑

𝛽

𝑟
𝑘

𝛽
)∫

ℎ

0

(𝑤
(𝑛−1)

𝑘
(𝑡) − 𝑤

(𝑛−2)

𝑘
(𝑡)) 𝑑𝑡.

(47)

Both expressions in the first integral have the sameMaclaurin
polynomial up to order (𝑛 − 2). Hence, the difference in the
first integral contains only terms of order𝑂(𝑡

𝑛−1
). This is also

the case for the second integral. After integration, we obtain
Δ
(𝑛)

𝑘
(ℎ) = 𝑂(ℎ

𝑛
).

(d) The statement holds for 𝑛 = 0 and 𝑛 = 1 and in
general for the zero-order coefficient, because it is unity for
𝑡 = 0, as a consequence of the initial condition. For the
higher-order coefficients, we use induction again. If all 𝑧-
coefficients in 𝑤

(𝑛−1)

𝑘
(𝑡) are nonnegative, then the same holds

automatically for 𝑤
(𝑛)

𝑘
(ℎ) up to order 𝑛 − 1, since the 𝑂(ℎ

𝑛
)

contribution adding to each inherited coefficient from the
previous step does not alter its sign, for ℎ sufficiently small. It
remains to show that the coefficients corresponding to 𝑝 = 𝑛

are nonnegative. These contributions arise from the (𝑛 − 1)th
order of

𝑟
𝑘

𝛽
𝑧
𝛽
[

[

𝑤
(𝑛−1)

𝑘
(𝑡)∏

𝑗

(𝑤
(𝑛−1)

𝑗
(𝑡))

𝛿
𝛽

𝑗]

]𝑛−1

(48)

after time integration. If all 𝛿𝛽
𝑗
are positive, then the expres-

sion above is a product of 𝑧-polynomials with nonnegative

coefficients and the statement follows. Suppose that some
𝛿
𝛽

𝑗
= −1. Then by Lemma 7, 𝑟𝑘

𝛽
= 0 for 𝑘 ̸= 𝑗. Hence,

𝑟
𝑘

𝛽
𝑧
𝛽
𝑤

(𝑛−1)

𝑘
(𝑡)∏

𝑗

(𝑤
(𝑛−1)

𝑗
(𝑡))

𝛿
𝛽

𝑗

=

{{

{{

{

0, 𝑗 ̸= 𝑘,

𝑟
𝑘

𝛽
𝑧
𝛽
∏

𝑗 ̸= 𝑘

(𝑤
(𝑛−1)

𝑗
(𝑡))

𝛿
𝛽

𝑗

, 𝑗 = 𝑘.

(49)

However, 𝛿𝛽
𝑗

̸= − 1 for 𝑗 ̸= 𝑘; that is, they are nonnegative, and
hence the expression has only nonnegative coefficients.

5.2.1. Basic Properties of the First- and Second-Order
Approximations. Let us analyse the generating function
Ψ(𝑧

1
, . . . , 𝑧

𝐸
, 𝑡) = ∏

𝑗
𝑤

𝑋
𝑗
(0)

𝑗
. The simplest nontrivial

applications of the approximation scheme are the first- and
second-order approximations. Expanding explicitly up to
second-order, we get

𝑤
𝑘
(ℎ) = 1 + ℎ∑

𝛽

𝑟
𝑘

𝛽
(𝑧

𝛽
− 1) +

ℎ
2

2
(∑

𝛽

𝑟
𝑘

𝛽
(𝑧

𝛽
− 1))

× (∑

𝛾

𝑟
𝑘

𝛾
(𝑧

𝛾
− 1))

+
ℎ
2

2
∑

𝛽

𝑟
𝑘

𝛽
𝑧
𝛽
∑

𝛾

𝐹
𝛽

𝛾
(𝑧

𝛾
− 1) .

(50)

We begin by noticing that the first-order approximation is
obtained by neglecting all terms in ℎ

2 in the above equation.
Whenever 𝑤

𝑗
is linear in 𝑧, which is always the case for the

first-order approximation, the resulting generating function
Ψ corresponds to the product of (independent) multinomial
distributions for the events affecting each subpopulation.

Let us now consider Ψ(𝑧
1
, . . . , 𝑧

𝐸
, 𝑡) computed with the

second-order approximated 𝑤
𝑗
’s to perform one simulation

step of size ℎ.
Counting powers of 𝑧

𝛾
on each 𝑤

𝑘
we have (a) the

probability of no events occurring in time-step ℎ

𝑃
𝑘
(ℎ, 0) = 1 − ℎ(∑

𝛽

𝑟
𝑘

𝛽
) +

ℎ
2

2
(∑

𝛽

𝑟
𝑘

𝛽
)

2

, (51)

(b) the probability of only one (𝛽) event occurring in time-
step ℎ

𝑃
𝑘
(ℎ, 𝐼, 𝛽) = 𝑟

𝑘

𝛽
{ℎ − ℎ

2
∑

𝛼

𝑟
𝑘

𝛼
−

ℎ
2

2
∑

𝛼

𝐹
𝛽

𝛼
} , (52)

and (c) the probability of another event (𝛼) occurring after
the first one:

𝑃
𝑘
(ℎ, 𝐼𝐼, 𝛽, 𝛼) =

ℎ
2

2
𝑟
𝑘

𝛽
(𝑟

𝑘

𝛼
+ 𝐹

𝛽

𝛼
) . (53)
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5.2.2. Simulation Algorithm. A simulation step can be oper-
ated in the following way. Let

∑

𝛼

(𝑃
𝑘
(ℎ, 𝐼𝐼, 𝛽, 𝛼)) + 𝑃

𝑘
(ℎ, 𝐼, 𝛽) = 𝑟

𝑘

𝛽
{ℎ −

ℎ
2

2
∑

𝛼

𝑟
𝑘

𝛼
}

= 𝑃
𝑘
(ℎ, 𝐼, 𝛽)

(54)

be the probability of one (𝛽) event occurring alone or
followed by a second event. It follows that

𝑃
𝑘
(ℎ, 𝐼𝐼, 𝛽, 𝛼) = 𝑃

𝑘
(ℎ, 𝐼, 𝛽)

ℎ

2

(𝑟
𝛼

𝑘
+ 𝐹

𝛽

𝛼
)

(1 − (ℎ/2)∑
𝛼
𝑟𝑘
𝛼
)
+ 𝑜 (ℎ

2
) .

(55)

The second factor above is the conditional probability
𝑃
𝑘
(ℎ, 𝛼/𝛽) for the second event being 𝛼 given that there was

a first (𝛽) event.
The algorithm proceeds in two steps. First a multino-

mial deviate is computed with probabilities {𝑃
𝑘
(ℎ, 𝐼, 𝛽)} (the

probability of no event occurring is still 𝑃
𝑘
(ℎ, 0)). This gives

the number 𝑛
𝛽
of occurrences of each event. In the second

step, for each 𝑛
𝛽
we compute the deviates for the occurrence

of a second event or no more events, with the multinomial
given by the array of probabilities {𝑃

𝑘
(ℎ, 𝛼/𝛽)} defined above

(the probability of no second event occurring is here 1 −

(ℎ/2)(∑
𝛼
(𝑟

𝛼

𝑘
+ 𝐹

𝛽

𝛼
)/(1 − (ℎ/2)∑

𝛼
𝑟
𝑘

𝛼
))).

6. Implementation: Developmental Cascades
without Mortality

In this and the following Sections we apply the tools devel-
oped up to now to the description of a subprocess in insect
development, namely, the development of immature larvae,
which is, in principle, a highly individual subprocess. We
assume that the evolution of an insect from egg to pupa
occurs via a sequence of 𝐸 > 0 maturation stages. Biologists
recognise some substages by inspection in the development
of larvae (instars) and even more stages when observed by
other methods [35]. The immature individual may die along
the process or otherwise complete it and exit as pupa or
adult. The actual value of apparent maturation stages 𝐸 will
depend on environmental and experimental conditions and
will ultimately be specified when analying experimental data
in Section 7.1.

Empirical evidence based on existing and new experi-
mental results as well as biological insight produced by the
present description will be the subject of an independent
work [42].We discuss however a couple of examples from the
literature in Section 7.1.

The events for this process are maturation events pro-
moting individuals from one subpopulation into to the next
and death events for all subpopulations. In other words,
each subpopulation represents a given (intermediate) level of
development and maturation events correspond to progress
in the development. Development at level 𝑗 promotes one
individual to level 𝑗 + 1 and the event rate is linear in the
𝑗-subpopulation. Hence, in 𝑅

𝛼
= ∑

𝑗
𝑟
𝑘

𝛼
𝑋

𝑗
, the matrix 𝑟

is square and diagonal, for 0 ≤ 𝛼 ≤ 𝐸 − 1 (we have
exactly 𝐸 + 1 subpopulations, counted from 0 to 𝐸). All of
the environmental influence is, at this point, incorporated
through 𝑟.

Moreover, level 𝐸 is the matured pupa and we may set
𝑟
𝐸

= 0 since at pupation stage the present mechanism ends
and new processes take place. Subpopulation 𝐸 is the exit
point of the dynamics and we assume it to be determined by
the stochastic evolution of the immature stages 0 ≤ 𝛼 ≤ 𝐸−1.

In the same spirit, the action of each event on the
populations modifies just the actual population and the next
one in the chain. Hence,

𝛿
𝛼

𝑗
= {

−1, 𝛼 = 𝑗,

+1, 𝛼 = 𝑗 − 1.
(56)

Following Section 3, [𝑅0

𝛼
]
𝑇

= (𝑟
0
𝑀, 0, . . . , 0) and

𝐹
𝛽

𝛼
=

{{

{{

{

−𝑟
𝛼
, 𝛽 = 𝛼,

+𝑟
𝛼
, 𝛽 = 𝛼 − 1,

0, otherwise.
(57)

Finally, letting m𝑇
= −𝑀(1, 1, . . . , 1) we can write 𝑅

0

𝛼
=

∑
𝛽
𝐹
𝛽

𝛼
𝑚

𝛽
. In this framework the index pair (𝑗, 𝛼) is highly

interconnected and we can achieve a complete description
using just one index. We use 0 ≤ 𝑗 ≤ 𝐸 − 1 throughout this
section.

The procedure of Section 3 gives Ψ({𝑧}, 𝑡) = ∏
𝑗
(𝑓

𝑗
)
𝑚
𝑗 =

∏
𝑗
(𝑓

−𝑀

𝑗
), while the dynamical system for 𝑓

𝑗
reads, recalling

the recasting in Remark 21;
̇𝑓
𝑗
= 𝑓

𝑗
(−𝑟

𝑗
(𝑧

𝑗
𝑓
𝑗
− 1) + 𝑟

𝑗+1
(𝑧

𝑗+1
𝑓
𝑗+1

− 1)) ,

𝑗 = 0, . . . , 𝐸 − 2,

(58)

and ̇𝑓
𝐸−1

= 𝑓
𝐸−1

(−𝑟
𝐸−1

(𝑧
𝐸−1

𝑓
𝐸−1

− 1)). The overall initial
condition is 𝑓

𝑗
(0) = 1. Let 𝜃

𝑗
= log(𝑓

𝑗
) and

𝜓
𝑗
=

𝐸−1

∑

𝛽=𝑗

𝜃
𝛽
; 𝑊

𝑗
= exp (−𝜓

𝑗
) . (59)

Note that 𝑊
𝑗
𝑓
𝑗

= 𝑊
𝑗

⋅ exp(𝜃
𝑗
) = 𝑊

𝑗+1
. Rewriting the

equations,
̇𝜃
𝑗
= −𝑟

𝑗
(𝑧

𝑗
exp (𝜃

𝑗
) − 1) + 𝑟

𝑗+1
(𝑧

𝑗+1
exp (𝜃

𝑗+1
) − 1) ,

𝑗 < 𝐸 − 1,

�̇�
𝑗
= −𝑟

𝑗
(𝑧

𝑗
exp (𝜃

𝑗
) − 1) = ̇𝜃

𝑗
+ �̇�

𝑗+1
; 𝑗 < 𝐸 − 1,

̇𝜃
𝐸−1

= �̇�
𝐸−1

= −𝑟
𝐸−1

(𝑧
𝐸−1

exp (𝜃
𝐸−1

) − 1) ,

(60)

with initial condition 𝜃
𝑗
(0) = 0 for all 𝑗.With this notation the

generating function reads Ψ({𝑧}, 𝑡) = 𝑊
𝑀

0
, and we formulate

hence an ODE for the 𝑊
𝑗
’s:

�̇�
𝑗
+ 𝑟

𝑗
𝑊

𝑗
= 𝑟

𝑗
𝑧
𝑗
𝑊

𝑗+1
, 𝑊

𝑗 (0) = 1; 𝑗 = 0, . . . , 𝐸 − 2,

�̇�
𝐸−1

= 𝑟
𝐸−1

(𝑧
𝐸−1

− 𝑊
𝐸−1

) , 𝑊
𝐸−1

(0) = 1.

(61)
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By defining the auxiliary quantity 𝑊
𝐸
(𝑡) = 1, the solution

for the 𝑊
𝑗
-differential equations can be written in recursive

form:

𝑊
𝑗
(𝑡) = 𝑒

−𝑟
𝑗
𝑡
+ 𝑧

𝑗
𝑟
𝑗
∫

𝑡

0

𝑒
𝑟
𝑗
(𝑠−𝑡)

𝑊
𝑗+1

(𝑠) 𝑑𝑠, 𝑗 = 0, . . . , 𝐸 − 1.

(62)

In Appendix B we give the details of the explicit solution
of this problem in terms of Laplace transforms. Finally, we
obtain

𝑊
0
(𝑡) = (

𝐸−1

∏

𝑚=0

𝑧
𝑚
)(1 −

𝐸−1

∑

𝑘=0

exp (−𝑟
𝑘
𝑡)

𝐸−1

∏

𝑗=0,𝑗 ̸= 𝑘

𝑟
𝑗

𝑟
𝑗
− 𝑟

𝑘

)

+

𝐸

∑

𝑘=1

∏
𝐸−𝑘

𝑗=0
𝑧
𝑗

𝑧
𝐸−𝑘

𝑟
𝐸−𝑘

𝐸−𝑘

∑

𝑚=0

𝑟
𝑚
exp (−𝑟

𝑚
𝑡)

𝐸−𝑘

∏

𝑙=0,𝑙 ̸=𝑚

𝑟
𝑙

𝑟
𝑙
− 𝑟

𝑚

.

(63)

The solution looksmore compact when all 𝑟
𝑘
are assumed

to take the common value 𝑟:

𝑊
0
(𝑡) =

∏
𝐸−1

𝑚=0
𝑧
𝑚

(𝐸 − 1)!
∫

𝑟𝑡

0

exp (−𝑠) 𝑠
𝐸−1

𝑑𝑠

+

𝐸

∑

𝑘=1

∏
𝐸−𝑘

𝑚=0
𝑧
𝑚

𝑧
𝐸−𝑘

(𝑟𝑡)
𝐸−𝑘 exp (−𝑟𝑡)

(𝐸 − 𝑘)!
.

(64)

7. Developmental Cascades with Mortality

We add to the previous description 𝐸 subpopulation specific
death events, 𝑄

𝛼
= 𝑞

𝛼
𝑋

𝛼
, where 𝛼 = 0, . . . , 𝐸 − 1. We

do not consider death of the pupa as an event for the same
reasons as before: the pupa subpopulation 𝑋

𝐸
leaves the

present framework of study. We have actually event pairs
for each subpopulation and hence the analysis can still be
done with just one index 𝛼 = 0, . . . , 𝐸 − 1, since each
event is population specific. The calculations get however
more involved. It is practical to organise the events as fol-
lows: 𝑄

0
, 𝑅

0
, 𝑄

1
, 𝑅

1
, . . . , 𝑄

𝐸−1
, and 𝑅

𝐸−1
. Then, ((𝑄, 𝑅)

0
)
𝑇

=

(𝑞
0
𝑀, 𝑟

0
𝑀, 0, . . . , 0). We have

𝛿
2𝛼

𝛼
= −1, (death) , 𝛼 < 𝐸,

𝛿
2𝛼+1

𝛼
= −1

𝛿
2𝛼+1

𝛼+1
= +1

}

}

}

, (development) , 𝛼 < 𝐸.

𝐹
𝛽

2𝛼
=

{{

{{

{

−𝑞
𝛼
, 𝛽 = 2𝛼,

−𝑞
𝛼
, 𝛽 = 2𝛼 + 1,

𝑞
𝛼
, 𝛽 = 2𝛼 − 1,

𝐹
𝛽

2𝛼+1
=

{{

{{

{

−𝑟
𝛼
, 𝛽 = 2𝛼 + 1,

−𝑟
𝛼
, 𝛽 = 2𝛼,

𝑟
𝛼
, 𝛽 = 2𝛼 − 1,

𝛼 < 𝐸.

(65)

Recall that the indices in𝐹 run from 0 to 2𝐸−1. It is also prac-
tical to order the variables 𝑓

𝛼
and the 𝑧

𝛼
in pairs (𝑔, 𝑓) and

(𝑧, 𝑦) as (𝑔
0
, 𝑓

0
, . . . , 𝑔

𝐸−1
, 𝑓

𝐸−1
) and (𝑧

0
, 𝑦

0
, . . . , 𝑧

𝐸−1
, 𝑦

𝐸−1
).

Also for notational convenience we will assume that there
exist 𝑞

𝐸
= 𝑟

𝐸
= 0 when necessary. Defining

𝐻
𝛼
(𝑔

𝛼
, 𝑓

𝛼
) = 𝑞

𝛼
(𝑧

𝛼
𝑔
𝛼
− 1) + 𝑟

𝛼
(𝑦

𝛼
𝑓
𝛼
− 1) , (66)

we have (recall again Remark 21 and note that 𝐻
𝐸
≡ 0),

̇𝑔
𝛼
= −𝐻

𝛼
(𝑔

𝛼
, 𝑓

𝛼
) 𝑔

𝛼
,

̇𝑓
𝛼
= (−𝐻

𝛼
(𝑔

𝛼
, 𝑓

𝛼
) + 𝐻

𝛼+1
(𝑔

𝛼+1
, 𝑓

𝛼+1
)) 𝑓

𝛼
,

𝛼 = 0, . . . , 𝐸 − 2,

̇𝑔
𝐸−1

𝑔
𝐸−1

=

̇𝑓
𝐸−1

𝑓
𝐸−1

= −𝐻
𝐸−1

(𝑔
𝐸−1

, 𝑓
𝐸−1

) .

(67)

The overall initial condition is still 𝑔
𝛼
(0) = 1 = 𝑓

𝛼
(0).

Since there are more events than subpopulations, accord-
ing to Definition 1 and Corollary 14, 𝐹 has structural zeroes
corresponding to constants of motion in the associated
dynamical system. The zero eigenvectors of 𝐹 are 𝑉

𝑇

𝛼
=

(0, . . . , −1, 1, 1, 0, . . .), nonzero in positions 2𝛼, 2𝛼 + 1, and
2𝛼 + 2, for 𝛼 = 0, . . . , 𝐸 − 1 (for the last one, recall that there
is no position “2𝐸”). Definitions similar to those used in the
previous section will be useful as well; namely, 𝜃

𝛼
= log𝑔

𝛼

and 𝜙
𝛼

= log𝑓
𝛼
, changing 𝐻

𝛼
and the initial conditions

correspondingly. Hence,

̇𝜙
𝛼
= ̇𝜃

𝛼
− ̇𝜃

𝛼+1
⇒ 𝜙

𝛼
= 𝜃

𝛼
− 𝜃

𝛼+1
, 𝛼 = 0, . . . , 𝐸 − 2,

̇𝜃
𝛼
= −𝐻

𝛼
(𝜃

𝛼
, 𝜃

𝛼
− 𝜃

𝛼+1
) , 𝛼 = 0, . . . , 𝐸 − 2,

̇𝜙
𝐸−1

= ̇𝜃
𝐸−1

= −𝐻
𝐸−1

(𝜃
𝐸−1

, 𝜃
𝐸−1

) .

(68)

The structural zeroes and constants of motion allow solving
all equations related to the 𝜙-variables and only a chain of
𝜃-equations is left, very much in the spirit of the previous
section. m𝑇

= −𝑀(1, 0, . . . , 0, 0) satisfies 𝑅
0

= 𝐹𝑚. Finally,
Ψ({𝑧, 𝑦}, 𝑡) = 𝑔

−𝑀

0
. We now compute 𝑔

0
(𝑡).

Let𝑊
𝛼
= 𝑒

−𝜃
𝛼 = 𝑔

−1

𝛼
, 0 ≤ 𝛼 ≤ 𝐸−1. Defining the auxiliary

variable𝑊
𝐸
(𝑡) = 1, the dynamical equations for 𝜃 in terms of

𝑊 read

�̇�
𝛼
+ (𝑞

𝛼
+ 𝑟

𝛼
)𝑊

𝛼
= 𝑞

𝛼
𝑧
𝛼
+ 𝑟

𝛼
𝑦
𝛼
𝑊

𝛼+1
, 𝑊

𝛼 (0) = 1,

(69)

with solution

𝑊
𝛼
(𝑡) = 𝑒

−(𝑞
𝛼
+𝑟
𝛼
)𝑡

+ ∫

𝑡

0

𝑒
−(𝑞
𝛼
+𝑟
𝛼
)(𝑡−𝑠)

(𝑞
𝛼
𝑧
𝛼
+ 𝑟

𝛼
𝑦
𝛼
𝑊

𝛼+1
(𝑠)) 𝑑𝑠.

(70)
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In Appendix B we give the details of the explicit solution
of this problem in terms of Laplace transforms. Finally, we
obtain

𝑊
0 (𝑡) =

𝐸−1

∏

𝑚=0

𝑟
𝑚
𝑦
𝑚

𝑞
𝑚

+ 𝑟
𝑚

−

𝐸−1

∑

𝑚=0

𝑟
𝑚
𝑦
𝑚
𝑒
−(𝑞
𝑚
+𝑟
𝑚
)𝑡

𝑞
𝑚

+ 𝑟
𝑚

×

𝐸−1

∏

𝑘=0,𝑘 ̸=𝑚

𝑟
𝑘
𝑦
𝑘

𝑞
𝑘
− 𝑞

𝑚
+ 𝑟

𝑘
− 𝑟

𝑚

+

𝐸

∑

𝑘=1

1

[𝑟𝑦]
𝐸−𝑘

× [

[

𝐸−𝑘

∏

𝑚=0

𝑟
𝑚
𝑦
𝑚

𝑞
𝑚

+ 𝑟
𝑚

[𝑞𝑧]
𝐸−𝑘

+

𝐸−𝑘

∑

𝑚=0

(1 −
[𝑞𝑧]

𝐸−𝑘

𝑞
𝑚

+ 𝑟
𝑚

)

× 𝑟
𝑚
𝑦
𝑚
𝑒
−(𝑞
𝑚
+𝑟
𝑚
)𝑡

×

𝐸−𝑘

∏

𝑗=0,𝑗 ̸=𝑚

𝑟
𝑗
𝑦
𝑗

𝑞
𝑗
− 𝑞

𝑚
+ 𝑟

𝑗
− 𝑟

𝑚

]

]

.

(71)

Again we have that Ψ({𝑧, 𝑦}, 𝑡) = 𝑊
𝑀

0
. Specialising for the

case where all 𝑟 and all 𝑞 coefficients are equal, the solution
reads

𝑊
0
(𝑡) =

∏
𝐸−1

𝑚=0
𝑟𝑦

𝑚

(𝐸 − 1)!
∫

𝑡

0

𝑒
−(𝑞+𝑟)𝑥

𝑥
𝐸−1

𝑑𝑥

+

𝐸−1

∑

𝑘=0

∏
𝑘

𝑚=0
𝑟𝑦

𝑚

𝑟𝑦
𝑘
𝑘!

[𝑡
𝑘
𝑒
−(𝑞+𝑟)𝑡

+ 𝑞𝑧
𝑘
∫

𝑡

0

𝑒
−(𝑞+𝑟)𝑥

𝑥
𝑘
𝑑𝑥] .

(72)

7.1. Examples from the Literature. In [19], Section 3, the drug
delivery process by oral ingestion of a medicine consisting of
microspheres containing the active principle is discussed.The
process is modeled considering that microspheres enter the
stomach (𝐸 = 0) and either dissolve (passing subsequently
to the circulatory system) or proceed to the next stage of
the GI tract, namely, the duodenum. Both processes are
assumed to obey linear transition rates. In the same way,
the undissolved duodenal microspheres pass to the next
intestinal stage—the jejunum—and later to the ilium. The
remaining undissolved microspheres entering the colon are
eliminated without further dissolution.This is a neat example
of a cascade, where dissolution corresponds to mortality in
(71), while maturation corresponds to progress through the
different stages. Remaining particles exit the system upon
arrival to the fifth and last stage (𝐸 = 4). Using the data listed
in page 239 of [19] for the dissolution and passage coefficients,
the results of that paper can be directly read from (71). The
probabilities of staying or dissolving at a given stage, function
of time, appear as coefficients of 𝑊

0
for different powers of

𝑧
𝑘
and 𝑦

𝑘
. As an example, we compute the probabilities 𝑝

𝑖
(𝑡)

of permanence at a given stage (as a function of time), using
the 𝜆- and 𝜇-notation from page 239 in [19] (corresponding
in (71) to 𝑟 and 𝑞, resp.). Define first 𝑃(𝑠) = ∏

𝑠

𝑚=0
𝜆
𝑚
, 𝑠 =

0, 1, 2; 𝑄(𝑠,𝑚) = ∏
𝑠

𝑘=0,𝑘 ̸=𝑚
(𝜆

𝑘
− 𝜆

𝑚
+ 𝜇

𝑘
− 𝜇

𝑚
), 𝑠 = 1, 2, 3,

for each integer 𝑚 ∈ [0, 𝑠] and finally 𝑅(𝑠) = 𝜆
𝑠
+ 𝜇

𝑠
,

𝑠 = 0, . . . , 3. With these ingredients the probabilities are
𝑝
0
(𝑡) = exp(−𝑡𝑅

0
), while for 𝑖 = 1, 2, 3 we have 𝑝

𝑖
(𝑡) =

𝑃(𝑖 − 1)∑
𝑖

𝑚=0
(exp(−𝑡𝑅

𝑚
)/𝑄(𝑖, 𝑚)).

8. Concluding Remarks

The description of stochastic population dynamics at event
level has several advantages with respect to the description
at population level. While the projection onto population
space is straightforward, the description of the number of
events carries biological information that can be lost in the
projection. From a practical, mathematical, point of view, the
description in terms of events is more regular and makes
room for a general discussion, since the number of events
always increases by one.

When individual populations’ processes are considered,
the event rates become linear and, in addition, if the result of
the event is to decrease one (sub)population, then they can
only be proportional to the decreased population.

The probability generating function for the number of
events, {𝑛

𝛽
}, conditioned to an initial state described by

population values {𝑋
𝑖
(0)}, has been obtained as a function

of the solutions of a set of ODE known as the equations of
the characteristics but presented in a form oriented towards
numerical calculus rather than the usual presentation ori-
ented towards geometrical methods.

We have introduced short-time approximations that, to
the lowest order, are in coincidence with previously consid-
ered heuristic proposals. Our presentation is systematic and
can be carried out up to any desired order. In particular,
we have shown how the second-order approximation can be
implemented.

The general solution represents independent individuals
identically distributedwithin their (sub)population compart-
ment.

Additionally, we believe that obtaining general solutions
of the linear problem is a sound starting point when the
more complicated approximations for nonlinear rates are
considered.

Further, we have solved a stochastic individual develop-
mental model, that is, a model that at the population level
is described by rates that are linear in the (sub)populations.
The model not only describes just the populations but also
describes the events that change the populations.

Appendices

A. Proofs of Traditional Results

The original version of these proofs (in slightly different
flavours) can be found on page 428-9 (equations (48) and
(50)) in [28] and equations (29) and (30) on page 498 in [29].
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A.1. Proof of Lemma 5

Proof. We assume the population and number of occurred
events up to time 𝑡 to be known. Let 𝜏 = 𝑡

1
− 𝑡 ≥ 0 be

sufficiently small. It is clear that, if no events occur during
the time interval 𝜏, then 𝑋(𝑠) = 𝑋(𝑡), 𝑡 ≤ 𝑠 ≤ 𝑡 + 𝜏.

For 0 ≤ ℎ ≤ 𝜏 the Chapman-Kolmogorov equation
implies that

𝑃 (𝑛 = 0, 𝑡 + ℎ) = 𝑃 (𝑛 = 0, 𝑡) (1 − ∑

𝛼

𝑊
𝛼
(𝑋, 𝑡) ℎ) + 𝑜 (ℎ) .

(A.1)

Note that since 𝑋 is constant along the time interval in
consideration, the rates 𝑊(𝑋, 𝑡) are well-defined. Hence,
𝑃 (𝑛 = 0, 𝑡 + ℎ) − 𝑃 (𝑛 = 0, 𝑡)

ℎ
= −𝑃 (𝑛 = 0, 𝑡)

× (∑

𝛼

𝑊
𝛼 (𝑋, 𝑡)) +

𝑜 (ℎ)

ℎ
,

(A.2)

and finally

lim
ℎ→0

𝑃 (𝑛 = 0, 𝑡 + ℎ) − 𝑃 (𝑛 = 0, 𝑡)

ℎ

= �̇� (𝑛 = 0, 𝑡) = −𝑃 (𝑛 = 0, 𝑡) (∑

𝛼

𝑊
𝛼
(𝑋, 𝑡)) .

(A.3)

Given the natural initial condition 𝑃(𝑛 = 0, 𝑡) = 1, the
solution to this equation is

𝑃 (𝑛 = 0, 𝑡 + 𝜏) = 𝑒
−𝜏∑
𝛼
𝑊
𝛼
(𝑋,𝑡)

. (A.4)

A.2. Proof of Theorem 6

Proof. Again, the Chapman-Kolmogorov equation gives

𝑃 ({𝑛
1
, . . . , 𝑛

𝐸
} , 𝑡 + ℎ)

= ∑

𝛼

𝑃 ({. . . , 𝑛
𝛼
− 1, . . .} , 𝑡)𝑊

𝛼
(𝑋 ({. . . , 𝑛

𝛼
− 1, . . . , 𝑡})) ℎ

+ 𝑃 ({𝑛
1
, . . . , 𝑛

𝐸
} , 𝑡) (1 − ∑

𝛼

𝑊
𝛼
(𝑋 ({𝑛

1
, . . . , 𝑛

𝐸
, 𝑡})) ℎ)

+ 𝑜 (ℎ) .

(A.5)

Repeating the previous procedure, taking the limit ℎ → 0,
we finally obtain Kolmogorov Forward Equation:

�̇� ({𝑛
1
, . . . , 𝑛

𝐸
} , 𝑡)

= ∑

𝛼

𝑃 ({. . . , 𝑛
𝛼
− 1, . . .} , 𝑡)𝑊

𝛼
(𝑋 ({. . . , 𝑛

𝛼
− 1, . . . , 𝑡}))

− 𝑃 ({𝑛
1
, . . . , 𝑛

𝐸
} , 𝑡) (∑

𝛼

𝑊
𝛼
(𝑋 ({𝑛

1
, . . . , 𝑛

𝐸
, 𝑡}))) .

(A.6)

B. Solution via Laplace Transform

After multiplying (62) by the Heaviside function 𝐻(𝑡), we
realise that the recursion involves a convolution. Hence, it is
practical to use Laplace transforms. Indeed, defining 𝐺

𝑘
(𝑠) =

L(𝐻(𝑡)𝑊
𝑘
(𝑡)), the equation can be rewritten as

𝐺
𝑘
(𝑠)=

1

𝑠 + 𝑟
𝑘

(1 + 𝑧
𝑘
𝑟
𝑘
𝐺
𝑘+1

(𝑠)) , 𝐺
𝐸
(𝑠)=

1

𝑠
; 0 ≤ 𝑘 < 𝐸,

(B.1)

since convolution product becomes standard product after
transforming. After some manipulation, the recursion is
solved by induction:

𝐺
0
(𝑠) =

1

𝑠

𝐸−1

∏

𝑚=0

(
𝑧
𝑚
𝑟
𝑚

𝑠 + 𝑟
𝑚

) +

𝐸

∑

𝑘=1

(
1

𝑧
𝐸−𝑘

𝑟
𝐸−𝑘

𝐸−𝑘

∏

𝑚=0

(
𝑧
𝑚
𝑟
𝑚

𝑠 + 𝑟
𝑚

)) .

(B.2)

Inverse Laplace transform leads us back to (63). Note as well
that when all 𝑟

𝑘
are taken to be equal, the corresponding𝐺

0
(𝑠)

still gives the Laplace transform of the desired solution, while
the inverse transform involves integrals related to theGamma
function (see (64)).

The case with mortality is similar, although slightly more
complicated. Equation (70) reads, after Laplace transform as
above (0 ≤ 𝑘 < 𝐸),

𝐺
𝑘
(𝑠) =

1

𝑠 + 𝑞
𝑘
+ 𝑟

𝑘

(1 +
𝑞
𝑘
𝑧
𝑘

𝑠
+ 𝑟

𝑘
𝑦
𝑘
𝐺
𝑘+1

(𝑠)) ,

𝐺
𝐸
(𝑠) =

1

𝑠
,

(B.3)

with solution

𝐺
0
(𝑠) =

1

𝑠

𝐸−1

∏

𝑚=0

𝑟
𝑚
𝑦
𝑚

𝑠 + 𝑞
𝑚

+ 𝑟
𝑚

+

𝐸

∑

𝑘=1

[
𝑠 + 𝑞𝑧

𝑠𝑟𝑦
]

𝐸−𝑘

𝐸−𝑘

∏

𝑚=0

𝑟
𝑚
𝑦
𝑚

𝑠 + 𝑞
𝑚

+ 𝑟
𝑚

.

(B.4)

Again, inverse Laplace transform leads to (71).
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