
1

Vol.:(0123456789)

Scientific Reports |        (2021) 11:21627  | https://doi.org/10.1038/s41598-021-01088-7

www.nature.com/scientificreports

The relationship of smoking 
to cg05575921 methylation 
in blood and saliva DNA samples 
from several studies
Kelsey Dawes1,2, Allan Andersen1, Rachel Reimer3, James A. Mills1, Eric Hoffman4,5, 
Jeffrey D. Long1,6, Shelly Miller7 & Robert Philibert1,5,7*

Numerous studies have shown that cg05575921 methylation decreases in response to smoking. 
However, secondary to methodological issues, the magnitude and dose dependency of that response 
is as of yet unclear. This lack of certainty is a barrier to the use of DNA methylation clinically to assess 
and monitor smoking status. To better define this relationship, we conducted a joint analysis of 
methylation sensitive PCR digital (MSdPCR) assessments of cg05575921 methylation in whole blood 
and/or saliva DNA to smoking using samples from 421 smokers and 423 biochemically confirmed 
non-smokers from 4 previously published studies. We found that cg05575921 methylation manifested 
a curvilinear dose dependent decrease in response to increasing cigarette consumption. In whole 
blood DNA, the Receiver Operating Characteristic (ROC) Area Under the Curve (AUC) of cg05575921 
methylation for predicting daily smoking status was 0.98. In saliva DNA, the gross AUC was 0.91 with 
correction for cellular heterogeneity improving the AUC to 0.94. Methylation status was significantly 
associated with the Fagerstrom Test for Nicotine Dependence score, but with significant sampling 
heterogeneity. We conclude that MSdPCR assessments of cg05575921 methylation are a potentially 
powerful, clinically implementable tool for the assessment and management of smoking.

Despite sustained efforts, smoking continues to be one of the largest preventable cause of premature death in 
the  world1. A variety of pharmacological and behavioral treatments for smoking  exist2. But in actual clinical 
practice, these measures have unacceptably high failure  rates2. Although there are a number of reasons for these 
high failure rates, one of the potentially more addressable reasons may be weaknesses in current biomarker 
approaches for quantifying smoking and monitoring smoking cessation.

Currently, two biomarkers are used clinically to guide the assessment and treatment of  smoking3. The first is 
carbon monoxide (CO). CO measurements are easy to perform. However, the short half-life of CO prevents it 
from being used to assess daily levels of cigarette consumption and makes it insensitive to low intensity or spo-
radic  smoking3,4. Cotinine assessments are more sensitive and can be used to more effectively gauge the level of 
cigarette  consumption3,5. But the use of nicotine replacement therapy and the use of non-combustible products 
has rendered this valuable test less informative. Conceivably, a test that could be conducted in standard clinical 
settings and that could quantitate cigarette consumption even in the face of other forms of nicotine consump-
tion could find clinical utility.

DNA methylation testing may be that new acceptable form of testing. Since 2008, scores of studies have 
examined the relationship of smoking to DNA methylation  status6. In general, these studies have shown that 
smoking is associated with broad changes across the epigenome with the majority of these changes at least par-
tially reverting in response to smoking  cessation7–9. Using this methylation information, several groups have 
attempted to construct methylation indices for the prediction of  smoking5,10,11. In general, these indices have 
worked well but have two substantial failings. First of all, many of these indices were constructed using samples 
from subjects whose smoking status was not biochemically verified. This is a concern because we have repeatedly 
shown that substantial numbers of subjects participating in research studies (4–10%) who deny any lifetime use of 
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nicotine products have significant serum levels of  cotinine12–14. Second, these indices rely on array hybridization 
techniques, which are costly, relatively imprecise, time consuming and reference dependent that do not produce 
reliable beta values for clinical  interpretation15–17.

Precision Epigenetics methods targeting highly predictive loci may be a better approach. In particular, 
measurements of cg05575921, a CpG residue contained within an intronic transcription enhancer in the aryl 
hydrocarbon receptor repressor (AHRR) gene, may have considerable potential for clinical  use18,19. Genome wide 
studies of smoking consistently show that it is the locus most highly associated with smoking in individuals of 
European, African and Asian ancestries with the difference in blood DNA methylation between smokers and 
non-smokers (i.e. ∆β) typically being between 15 and 25%19–21. Most critically, as opposed to other single and 
multipoint methods for assessing methylation status, ethnic specific variation does not affect the methylation 
set point of  cg0557592122.

In 2018, we introduced a methylation sensitive digital PCR (MSdPCR) assay for assessing methylation status 
at cg05575921. The assay, which is configured to run on the FDA approved Bio-Rad QX200 platform, has inter-
assay variation of 0.7% and can be completed in approximately 4 to 5  h23. Most importantly, unlike quantita-
tive PCR tests whose determinations are dependent upon reference standards, digital PCR tests are reference/
calibration-free methods with clearly established metrics for  precision23–25. This allows the results from different 
runs or labs to be compared without need to control for batch variation. As such, if cg05575921 methylation can 
be used to predict smoking, this MSdPCR test theoretically has many of the characteristics of an ideal assay for 
Precision Epigenetic approaches for assessing smoking.

Over the past 3 years, we have used this assay to assess cg05575921 methylation in the DNA prepared from 
the whole blood (WB) of four populations of subjects who were clinically characterized for smoking status and 
with the non-use status of all control subjects being verified using both serum cotinine and exhaled carbon 
monoxide  assessments26–29. In an attempt to provide a more robust understanding of the relationship of WB 
cg05575921 methylation to smoking status, we now jointly analyze those results. In addition, we introduce the 
methylation assessments of DNA from the paired saliva samples for many of those samples and conduct parallel 
analyses of those results.

Methods
The data for these analyses are derived from subjects included in four previously published studies of smoking or 
alcohol  use26–29. In each of these studies, methylation status at cg05575921 status in WB or saliva DNA was deter-
mined using MSdPCR and the smoking status of each non-smoking control was verified using serum cotinine 
assessments and carbon monoxide assessments as previously  described26,29. All procedures were performed in 
accordance with the Declaration of Helsinki with the individual institutional approvals noted separately for each 
cohort being noted in the supplementary methods section with each subject providing written informed consent.

The Nicotine Cessation (NC) cohort subjects were collected as part of a project whose goal was to help 
define the reversion curve of cg05575921 in response to smoking  cessation26. In brief, subjects from an Iowa 
community substance use treatment who stated an interest in smoking cessation, reported smoking at least 8 
cigarettes per day and had an expired carbon monoxide level of 8 ppm or greater, were eligible for inclusion for 
this longitudinal study of smoking cessation. After consent, adult subjects were interviewed with a modified 
version of the Semi-Structured Assessment for the Genetic of Alcoholism, Ver 2 (SSAGA-II) and the Substance 
Use  Questionnaire30,31. Then, both WB and saliva specimens were collected to provide biomaterials for serum 
and DNA preparation. A total of 114 subjects enrolled in the study and completed the intake visit.

The Alcohol Cessation (ALC2A) subjects were collected for a project whose goal was to develop a blood-based 
test for heavy alcohol  consumption27. In this protocol, two distinct groups of subjects were collected. The first 
group consisted of self-reported smokers who were admitted to one of three Iowa alcohol treatment centers for 
the treatment of severe alcohol use disorder in the context of current intoxication. The second group of subjects 
(i.e. controls) collected under this award were individuals solicited from the University of Iowa community who 
denied any history of substance abuse and reported at least one year of abstinence from alcohol. After informed 
consent was received, both sets of subjects (127 smokers and 144 controls) were then were interviewed with a 
modified version of the SSAGA-II and the Substance Use Questionnaire, with both saliva and blood collected 
for biomaterial  preparation30,31.

The Smoke Free World (SFW) cohort was collected as part of a project to understand whether DNA meth-
ylation could differentiate those who use combustible forms of tobacco from those who use other nicotine 
containing  products29. After providing informed consent, adult subjects were administered a 320 item RED-
Cap® interview that assessed nicotine product use history, then phlebotomized and saliva sampled to provide 
biomaterials for the current  study29,32. Only the data from the smoking subjects and the lifetime non-smoking 
controls were included in this study.

The Smoking Computerized Tomography (SCT) cohort was collected as part of a project whose purpose was 
to understand the relationship of sildenafil on  pulmonary28. In this protocol, subjects who smoked at least 10 
cigarettes per day and had a 5-pack year history of smoking were invited to complete a REDCap® administered 
prescreening interview to assess smoking history and study eligibility. After receiving informed consent, subjects 
were phlebotomized to provide blood for DNA for epigenetic analysis and serum.

Serum cotinine values presented herein for the SFW cohort were determined as previously described using 
enzyme-linked immunoassay reagents from AbNova (Taiwan) and a Molecular Devices Emax spectrophotometer 
(Sunnydale). Fagerstrom Test for Nicotine Dependence (FTND) scores for three of the cohorts (NC, AlcC and 
SCT) was assessed and scored as previously  described33. Exhaled carbon monoxide levels were assessed using a 
Smokelyzer® according to the manufacturer’s protocol (CoVita, USA). All control subjects included in this study 
had serum cotinine values < 2 ng/ml and exhaled carbon monoxide levels of < 8 parts per million.
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DNA from WB and saliva was prepared as previously  described26. DNA methylation at cg05575921 and 
DMR11 for both WB and saliva DNA was determined as previously described. In brief, 1 µg of DNA of either 
whole blood or saliva DNA was bisulfite converted using a EpiTect® Fast DNA kit from Qiagen (Germany) 
according to manufacturer’s directions. An aliquot of each bisulfite-converted sample was pre-amplified, diluted 
1:3000 with molecular grade water, and partitioned into ~ 1.5 nl droplets using an automated droplet generator. 
DNA amplicons contained within these droplets were then PCR amplified using proprietary primer probe sets 
(Smoke Signature® or DMR11) for each locus from Behavioral Diagnostics (Coralville, IA) and universal digital 
PCR reagents from Bio-Rad (Carslbad, CA). The number of droplets containing amplicons with at least one “C” 
allele (methylated CpG residue), one “T” allele (unmethylated CpG residue) or neither allele was then determined 
using Bio-Rad QX-200 droplet reader. Percent methylation was calculated using Quantisoft software by fitting 
the observed ratios to a Poisson distribution. Please also note that because MSdPCR is a reference free method, 
correction for batch variation is not  necessary24,34.

The relative contribution of leukocyte DNA (X) to the total DNA sample was determined using the follow-
ing equation: DMR11obs = [0.01X + 0.99(1− X)] where  DMR11obs is the methylation status at DMR11 in the 
saliva sample, and 0.01 and 0.99 are the fractional methylation values of DMR11 in leukocytes and buccal cells, 
 respectively35.

Data Analyses: In general, statistical analyses were conducted with R statistical software (v 1.3.959), and 
JMP Version 10 (SAS Institute, Cary, NC). Linear regression was used to examine the relationships between 
cg05575921 methylation, demographic variables, FTND, and self-reported cigarette consumption. All reported 
 R2 values are adjusted for the sample size and number of features. The significance of differences in group means 
was assessed using Welch’s Two Sample t-tests36. Smoothing splines (λ = 100,000) were fit in JMP to examine the 
nonlinear relationship of cg05575921 methylation to self-reported cigarette  consumption37.

Models for predicting smoking status were generated separately using whole blood (WB, Model 1) and saliva 
(Model 2) DNA data. The first goal of each model building exercise was to examine the extent to which abstain-
ing from smoking was predicted in a similar manner among the four studies. The second goal was to combine 
the data from all the studies and estimate general models for predicting smoking abstinence. Cox testing was 
performed to compare linear regression models using the coxtest function in the lmtest R  package38.

For all analysis, logistic regression was used with the binary response being abstinence (0 = smoker, 1 = con-
trol)39. A complication was that NC and SCT cohorts had only smokers, and logistic regression models could 
not be estimated. Therefore, we trained regression models separately on ALC2A and SFW and tested them on 
all the data sets individually. Predictive performance was evaluated with the Brier score, as this can be com-
puted regardless if a data set has only smokers, or a mix of smokers and  controls40. The Brier score is defined 
as Brier = 1

N

∑
(

pi − oi
)2 , where pi is the predicted probability for the i th participant and oi is the observed 

value (0 or 1)40,41.
Two training models were considered, one for WB cg05575921(Model 1) and the other for saliva cg05575921 

(Model 2). Model 1 had the single predictor of WB cg05575921 methylation (%). Model 2 had uncorrected saliva 
cg05575921 methylation (%), DMR11 methylation (%), and their interaction (product term).Testing consisted 
of using the estimated coefficients of a training model to compute the Brier score for ALC2A, SFW, NC, SCT 
(note that the training and test sets were sometimes identical). An additional complication was that the SCT 
cohort did not have saliva cg05575921 and thus, was excluded from the Model 2 testing. Confidence intervals 
were computed using the non-parametric  bootstrap42.

Ethics approval and consent to participate. All procedures were performed in accordance with the 
Declaration of Helsinki. Institutional Review Board (IRB) approvals were provided by the University of Iowa 
IRB (IRB 201905678 and IRB201706713) and the Western Institutional Review Board (WIRB 20160135 and 
WIRB20162083). All subjects in each of the cohorts provided written informed consent for the procedures.

Results
Clinical demographics. The key demographic and tobacco use characteristics of the subjects from each 
of the four cohorts are given in Table 1. In total, the four cohorts contain 421 smoking and 423 non-smoking 
subjects (N = 843) with 603 subjects having both whole blood and saliva DNA methylation data.

Consistent with the overall distribution in the population, the majority of the smoking subjects were male 
(55%, 234 of 421). In contrast, the majority of the non-smoking controls were female (65%, 275 of 423).

Smokers in each of the four cohorts tended to be in their early to mid 40’s with an average age of 41.9 ± 12.1 
and 41.5 ± 11.6 for males and females, respectively. The control subjects tended to be younger with both the 
male (34.9 ± 14.5 vs 41.9 ± 12.1, p < 0.0001) and the female (34.1 ± 14.6 vs 41.5 ± 11.6) subjects being significantly 
younger than their corresponding smoking counterparts.

The smoking subjects reported smoking as little as one cigarette and as much as 60 cigarettes per day. But 
overall, they reported consuming approximately ¾ of a pack daily over the past month with males smoking 
significantly more than females (17.3 ± 11.3 vs 14.1 ± 12.1, p < 0.001).

There was no significant difference between the WB cg05575921 levels of male and female smokers 
(50.3% ± 16.8 vs 53.6% ± 19.2, p < 0.685). Although the range of values was much more restricted (see Fig. 1), 
female non-smokers had a slight, but significantly higher levels of cg05575921 methylation than male non-
smokers (87.0% vs 85.8%, p < 0.0001).

Consistent with the localities in which the subjects were ascertained, the majority of subjects in the study 
were White, with 84% for smokers and 88% for controls. However, there was significant representation of other 
ethnicities with 11% of the smoking subjects being African American and 3% for controls. Asians constituted 
1% of smokers and 6% of controls (“other” ethnic categories constituted 4% of smokers and of controls).
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Other biomarker status. We next examined the relationship of WB cg05575921 methylation to serum cotinine 
(COT) and exhaled carbon monoxide (CO) levels. Because the ALC2A, NC and SCT cohorts were ascertained 
as part of smoking cessation protocols with a number of the ALC2A subjects on the nicotine patch, the serum 
cotinine levels of these subjects may not represent steady state levels of cotinine. However, the SFW subjects were 
not ascertained as part of a treatment program. In these SFW subjects, serum cotinine values were highly cor-
related with cg05575921 methylation (Supplemental Fig. 1; r = − 0.82, p < 2.2e−16). Similarly, CO was also highly 
correlated (Supplemental Fig. 2; r = − 0.74, p < 2.2e−16).

Consumption and dependence variables. Next, we examined the ability of WB cg05575921 methylation to pre-
dict average daily cigarette consumption within the past month. Using a smoothing spline, a significant curvi-
linear dose response is seen (Fig. 2; p < 0.0001,  R2 = 0.6446). A sharp drop in methylation with increasing levels 
of daily cigarette consumption, with a more gradual decline in methylation seen after ~ 20 cigarettes per day. We 

Table 1.  Key clinical characteristics of subjects in each cohort.

Cohort Group Gender N Age Cigs/Day Cg05575921

ALC2A
Smoker Male 84 41 ± 11.7 19.4 ± 13.8 48.9% ± 18.0

Smoker Female 43 40.8 ± 11.3 14.2 ± 9 49.6% ± 21.0

SFW
Smoker Male 45 42.8 ± 14.9 16.3 ± 9.6 53.7% ± 17.8

Smoker Female 67 40.1 ± 11.5 14.5 ± 7.9 55.2% ± 20.1

SCT
Smoker Male 35 42.5 ± 10.9 19.9 ± 10.3 47.0% ± 17.6

Smoker Female 32 45.1 ± 8.9 14.7 ± 4.2 57.3% ± 19.0

NC
Smoker Male 70 42.3 ± 11.7 14.1 ± 8.3 51.4% ± 14.2

Smoker Female 45 41.5 ± 13.5 12.7 ± 7.5 52.0% ± 15.8

Total
Male 234 41.9 ± 12.1 17.3 ± 11.3 50.2% ± 16.8

Female 187 41.5 ± 11.6 14.1 ± 7.6 53.6% ± 19.2

ALC2A
Control Male 68 40.2 ± 14.6 – 85.6% ± 3.4

Control Female 86 42.2 ± 14.8 – 86.6% ± 2.3

SFW
Control Male 80 30.3 ± 12.8 – 86.0% ± 3.3

Control Female 189 30.4 ± 11.4 – 87.1% ± 2.5

Total
Male 148 34.9 ± 14.5 – 85.8% ± 3.3

Female 275 34.1 ± 13.6 – 87.0% ± 2.5

Figure 1.  Box plots of the distribution of cg05575921 values in WB samples from case (n = 421) and control 
(n = 423) subjects as a function of gender (M = male, F = female).
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also examined the relationship of pack year history to cg05575921 methylation status. Using a smoothing spline, 
a significant non-linear dose response is seen (Fig. 3; p < 0.0001,  R2 = 0.5365).

In pooled case subjects, FTND was negatively correlated with both WB cg05575921 methylation (p = 2.64e−05, 
 R2 = 0.0612), and average self-reported cigarettes consumed per month (p = 0.006,  R2 = 0.023). Age, sex and eth-
nicity were not significantly associated with FTND. Cox Testing demonstrated a significant effect of group status 
on the ability of cg05575921 to predict FTND (p < 0.0001). In the ALC2A and NC case subjects, FTND did not 
have a significant relationship with WB cg05575921 methylation, cigarettes consumed per month or key demo-
graphics. But in the SCT case subjects, significant relationships between FTND and WB cg05575921 methylation 
(p = 1.28e−04,  R2 = 0.1966), self-reported average cigarettes consumed per month (p = 1.84e−05.  R2 = 0.2392), and 
male gender (p = 0.0425,  R2 = 0.04811) were observed. The SFW case subjects did not have FTND data available.

Prediction capacity. For the final set of analyses of the WB data, logistic regression was used to examine the 
ability of WB cg05575921 methylation to predict current smoking status. Table 2 shows the Brier score results of 
the training and testing sets for Model 1. The upper portion shows the Brier score and 95% CI when training on 
either ALC2A or SFW (left) and testing on the four data sets (top). The bold entries indicate that the testing and 
training data sets were identical. The first row shows that when the model is trained on ALC2A, the Brier score 
is slightly larger when testing on SFW and SCT than when testing on ALC2A itself, but slightly smaller when 
testing on NC. The second row shows that when the model is trained on SFW, the Brier score is larger when test-
ing on SCT than testing on SFW itself, but slightly smaller when testing on ALC2A and NC. The lower portion 
of Table 3 shows the difference between the Brier score trained and tested on the same data set (bold entries in 
the upper table) and tested on a different data set. For ALC2A, all the 95% CIs for the difference contain 0. For 

Figure 2.  The relationship of WB cg05575921 methylation to self-reported daily cigarette consumption. The 
line in red represent a smoothing spline fit with a lambda of 100,000 (p < 0.0001,  R2 = 0.6446).

Figure 3.  The relationship of WB cg05575921 methylation to lifetime cigarette consumption expressed as pack 
years. The line in red represent a smoothing spline fit with a lambda of 100,000 (p < 0.0001,  R2 = 0.5365).
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SFW, the only difference for which the CI does not contain 0 is SFW-SFW vs SFW-ALC2A, indicating a smaller 
Brier score for the latter.

Table 4 provides the parameters for the final Model 1. The area under the curve (AUC) is 0.984 (95% CI 
0.975–0.991). Figure 4 illustrates the relationship between WB cg05575921 methylation level with the prob-
ability that they are a smoker in this cohort of subjects of whom almost exactly 50% reported smoking. Using 
the base cg05575921 model, there is a steady increase in probability of smoking as DNAm decreases from 90 to 
83% (i.e. < 10% probability with 85% DNAm). Next, a sharp ~ 10% increase in probability is observed per 1% 
decrease in DNAm between 81 and 79% methylation (i.e., 56% probability with 79% DNAm). Then, the rate of 
probability levels out to 99% probability when DNAm is less than 68%.

Saliva DNA analyses. As a first step, we analyzed the relationship of cg05575921 DNAm in WB DNA to 
that in saliva DNA in 629 paired samples (266 cases, 363 controls). Figure 5 illustrates the distribution of uncor-
rected cg05575921 methylation as a function of case or control and stratified by gender. As compared to WB 
cg05575921 methylation, the range and distribution of saliva DNA cg05575921 methylation values is visibly 
larger and broader in the control subjects. Figure 6 illustrates the uncorrected correlation of the paired samples. 
In general, the cg05575921 DNAm values between the two tissues were highly correlated in the pooled cohorts 
(p < 2.2e−16, r = 0.9) and the individual cohorts: SFW (p < 2.2e−16, r = 0.85), ALC2A (p < 2.2e−16, r = 0.95), and 
NC (p < 2.2e−16, r = 0.83). Please note that the SCT cohort did not have saliva DNA specimens.

Table 2.  Model 1 (WB DNA) Brier scores and Brier scores differences for the test and training data sets. 
*Bolded numerical entries are the Brier scores for which the training and test data are identical. **95% CI 
intervals for Brier Scores and differences are given in parentheses.

Train

Test

ALC2A SFW NC SCT

Brier score

ALC2A 0.0421 (0.0410, 0.0478) 0.0493 (0.0468, 0.0580) 0.0340 (0.0211, 0.0528) 0.0705 (0.0509, 0.1000)

SFW 0.0423 (0.0410, 0.0470) 0.0480 (0.0468, 0.0536) 0.0372 (0.0239, 0.0533) 0.0740 (0.0536, 0.1021)

Difference

ALC2A – − 0.0072 (− 0.0139, − 0.0023) 0.0081 (− 0.0056, 0.0195) − 0.0284 (− 0.0496, − 0.0127)

SFW 0.0057 (0.0004, 0.0116) – 0.0108 (− 0.0058, 0.0249) − 0.0260 (− 0.0540, − 0.0051)

Table 3.  The ethnicity of smoking and non-smoking subjects.

Smoker Control

Caucasian 351 (83%) 371 (88%)

African American 48 (11%) 11 (3%)

Asian 5 (1%) 24 (4%)

Other 17 (4%) 17 (4%)

Total 421 423

Table 4.  Model 1 (WB DNA) Parameter estimates and calibration statistics with 95% CI bounds for the 
pooled data (top), ALC2A (middle), and SFW (bottom).

Model Effect/Statistic Estimate Lwr Upr

Model 1
Pooled
(N = 779)

Intercept − 33.683 − 40.3087 − 27.0573

WB cg05575921 0.4235 0.3434 0.5036

Brier Score 0.0433 0.033 0.0537

AUC 0.984 0.9753 0.991

Model 1
ALC2A
(N = 260)

Intercept − 34.3824 − 50.3077 − 23.4395

WB cg05575921 0.4370 0.3045 0.6319

Brier Score 0.0405 0.0221 0.0590

AUC 0.9815 0.9610 0.9953

Model 1
SFW
(N = 351)

Intercept − 29.9781 − 41.4922 − 22.5292

WB cg05575921 0.3838 0.2940 0.5165

Brier Score 0.0466 0.0304 0.0629

AUC 0.9699 0.9439 0.9883
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Figure 4.  Predicted probability (95% confidence ribbon) of abstaining from smoking as a function of whole 
blood cg05575921 methylation percentage.

Figure 5.  Box plots of the distribution of cg05575921 values in saliva samples from case (n = 266) and control 
(n = 363) subjects as a function of gender (M = male, F = female).
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Next, we examined the ability of uncorrected cg05575921 methylation to predict average daily cigarette 
consumption within the past month and pack year consumption. Using a smooth cubic spline, a similar 
dose response is observed in uncorrected saliva values to both daily cigarette (Supplement Fig. 3; p < 0.0001, 
 R2 = 0.5340) and pack year consumption (p < 0.0001,  R2 = 0.4352) to that observed in WB methylation.

The imperfect correlation of WB cg05575921 methylation in WB to that of saliva is due in part to the cellular 
heterogeneity found in saliva. To better understand this heterogeneity, we used the DMR11 assay to impute the 
ratio of buccal and leukocytes in each saliva sample (Fig. 7). The average contribution of leukocyte DNA to the 
total human DNA in saliva was 75.9% ± 16.7% (n = 603).

Prediction capacity. In our final set of analyses, we attempted to predict smoking status using methylation data 
only from the saliva samples. Table 5 shows the Brier score results for Model 2. The values are larger than for 
Model 1 indicating generally lower prediction accuracy for saliva assessments. The first row shows that training 
on ALC2A and testing on SFW produces a larger Brier score than testing on ALC2A itself, but a smaller value 
when testing on NC. The lower portion shows that these differences are not statistically significant (0 is not in 
the CI). In contrast, training on SFW and testing on ALC2A or NC was not statistically different than testing 
on SFW itself. The AUC using saliva DNA was 0.939 (95% CI 0.915 to 0.962) was lower than that for WB DNA.

Discussion
In this communication, we present the analyses of data from four prior studies in order provide a more complete 
picture of the ability of a MSdPCR assay to assess cigarette consumption and classify subjects as smokers or 
non-smokers using DNA from whole blood or saliva. These findings show that the assay is a robust method for 
assessing smoking status and intensity. However, before considering these findings, certain limitations should be 
noted. First, although the assay is commercially available, the data analyzed are only from our laboratory group. 
Second, even though there is considerable representation of non-White ethnicities, all of the subjects are from 
the Midwest region of the United States which has excellent air quality. If environmental influences such as air 
pollution substantially affect the methylation set point, the application of this assay to regions of the world with 
significant exposure may be affected. Third, this manuscript does not address the issue of classifying former 
smokers. This limitation is discussed in depth below.

Perhaps the interesting finding of the study is that methylation at this locus can be used “straight up”, without 
factoring in age or sex, to predict smoking status. This appears to be a fortunate finding because many other 
CpG loci experience “epigenetic drift”, a phenomenon that has been harvested to construct indices of epigenetic 
 aging43–45. Establishing this lack of variability of the set point at this locus point is critical to the field because 
smoking is a major driver of accelerated aging with cg05575921 methylation being associated with methylation 

Figure 6.  The relationship of WB cg05575921 methylation to saliva cg05575921 methylation. The salmon 
colored line represents the best fit line for the smoking subjects while the blue line represents the best fit line for 
the non-smoking subjects.
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status at least 38% of 513 markers in one popular EA  index46. Indeed, if EA indices are to be used in guiding 
healthcare decisions, it is essential that they be interpretable in a clinically meaningful and reliable manner. In 
this regard, estimates of smoking status can be derived from some EA  indices47. But to the best of our knowledge, 
the inter-assay variability of these EA assessments has not been published nor are the methods through they 
impute smoking independently verified. In contrast, the inter-assay variability of this reference free MSdPCR 
method used herein is established (0.8%) with the current data giving a clear basis for interpreting results (e.g. 
cigarettes per day)23–25.

Establishing the methylation set point in non-smokers was not a trivial undertaking. Our efforts have had 
to address a number of problems including two key barriers in defining the set point of cg05575921 methyla-
tion in non-smoking individuals. The first barrier was the problem of subjects presenting themselves as non-
smokers when they are in fact smoking. In our prior efforts, we have noted that between 3 and 5% of individuals 
presenting themselves as lifetime non-users of any tobacco or cannabis product have significant serum levels of 
cotinine or  cannabinoids26,30. The rate of misrepresentation is even higher in some of our longitudinal studies 
with the rate of former smokers misrepresenting their past smoking being completely  unknown13. The second 
challenge to establishing a set point is variability in air quality. Studies from Taiwan have shown that air quality 
can have a small, but significant effect on cg05574921  levels48. However, the levels of air pollution in Taiwan 
are relatively low and fortunately, the level of PAH in the Midwestern United States are relatively  low49. But in 
other parts of the world, in particular those which rely on wood or coal fired power production, the exposure 
could be  considerable50. Occupational exposure may magnify this problem. We note prior publications noting 
considerable levels of PAH exposure in steel  workers51. Together with other problems, these issues have made 
establishing the non-smoking threshold of cg05575921 methylation a challenging proposition.

Figure 7.  The WB contribution to the total human DNA component of saliva DNA as determined using the 
DMR11 assay (n = 601).

Table 5.  Model 2 (Saliva DNA) Brier scores and Brier scores differences for the test and training data sets. 
*Bolded numerical entries are the Brier scores for which the training and test data are identical. **95% CI 
intervals for Brier Scores and differences are given in parentheses.

Train

Test

ALC2A SFW NC SCT

Brier score

ALC2A 0.0638 (0.0608, 0.0739) 0.1031 (0.0704, 0.1652) 0.0424 (0.0239, 0.1120) –

SFW 0.0713 (0.0637, 0.0811) 0.0665 (0.0641, 0.0715) 0.0944 (0.0641, 0.1448) –

Difference

ALC2A – − 0.0393 (− 0.0999, − 0.0044) 0.0214 (− 0.0492, 0.0414) –

SFW − 0.0048 (− 0.0157, 0.0039) – − 0.0280 (− 0.0771, 0.0035) –
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To address these challenges and establish the methylation set points of cg05575921 methylation, we have 
surveyed populations with low likelihood of significant underreporting to get a better understanding of the 
assay set point in various groups. The most notable effort prior to this communication has been the Healthy 
Iowan  Study22. In that study, on the presumption that most high school sophomores will not yet have started 
smoking, we enrolled 15 year-old high school students and followed them for two years, drawing their blood 
and measuring their CO levels at three points of time. In the 364 subjects who denied any type of smoking and 
had negative cotinine and cannabinoid levels, the average level of cg05575921 methylation at age 15 using this 
assay was 86.8% ± 3.222. That is very similar to the 86.6% ± 2.9 found in these 423 biochemically screened adults 
and strongly argues against any significant age dependent changes in cg05575921 methylation in adult subjects.

For those conducting clinical studies, the most interesting results in these analyses may those for the saliva 
specimens. In brief, we show that consistent with prior analyses by ourselves and others, approximately 76% of 
the human portion of saliva DNA is derived from white blood cells and that the use of the DMR11 assay improves 
 prediction26,52. When the National Institutes of Health (NIH) funded the commercialization projects support-
ing the development of this assay were initiated, the initial, explicit purpose was to develop a blood-based assay 
compatible with existing sample flow in hospital laboratories. Since that time, the COVID19 pandemic and the 
rise of telemedicine (TM) approaches for provision of patient care have led to the need for assay systems that 
do not require blood draws and are not temperature sensitive. As a result, subsequent NIH commercial awards 
(R43AA027423; Philibert PI) were made to develop an assay such as DMR11 and the previously described 
DMR16 assay, which are capable of correcting for the heterogeneity of  saliva26,35,53 and can use DNA from com-
mercially available sampling kits, such as those provided by DNA Genotek (www. dnage notek. com)54. Using these 
types of kits, providers such as Intelelabs (www. intel elabs. com) are already using TM to offer genetic testing. The 
current data strongly suggests that epigenetic testing for cg05575921 could also be conducted using these kits 
via standard TM approaches. If so, this would add yet another method through which clinicians could assess 
and monitor smoking cessation therapy.

Although it is clear that for classification purposes, cg05575921 information is sufficient, one question that 
these data do not address is whether the addition of genetic information may aid in understanding the relation-
ship of smoking intensity to cg05575921. This is an important question. Nicotine, though addictive, has very few 
other adverse effects at pharmacologically relevant  doses55. Instead, it is the other constituents in tobacco smoke, 
such as polyaromatic hydrocarbons, that cause smoking associated  diseases56. Nevertheless, even though it is 
clear that we can precisely measure cg05575921 methylation levels and the basal set point appears to be reliably 
determined, the relationship between increasing cigarette consumption and decreasing cg05575921 levels is only 
modestly strong  (R2 ~ 0.62). There are several reasons for this less than complete accounting for the variance 
in the relationship. First, subjects do not always accurately recall their cigarette consumption. Second, the bin-
ning of responses into easy to express units (e.g. “half-pack”) may contribute to the error. Finally, subjects vary 
in the number and size of puffs that they extract from each  cigarette57. But another factor that may affect the 
dose response relationship is that genetic variation in the cytochromes regulated in part by AHRR may alter the 
magnitude of  response58. If so, by defining cytochrome variation, it may be possible to devise new methods to 
induce the detoxification of PAH that can be used for preventing cancer in those who cannot avoid PAH exposure.

Finally, as noted in the limitations section, this analysis does not address the use of cg05575921 methylation 
to classify former smokers. Several studies have shown that cg05575921 methylation undergoes a slow reversion 
to the mean as a function of initial smoking  intensity7,8,28,59. In brief, those studies show that the longer and more 
intensively one smokes, the longer it takes to revert back to baseline after quitting. But the number of subjects and 
the time periods examined in our studies and those of others are limited. As a consequence, we do not believe 
that there is a sufficient evidence base to guide prediction of when a former smoker will cross the 80% threshold 
associated with non-smoking status.

Conclusions. In summary, in this joint analysis of samples of subjects from four rigorous studies, we show 
that cg05575921 methylation levels can be used to accurately classify subjects with respect to smoking and infer 
daily cigarette consumption using DNA from either whole blood or saliva. Critically, unlike methylation array 
approaches for assessing smoking, the MSdPCR method used in these assessments can be rapidly performed 
by any of the thousands of laboratories with digital PCR machines with the results being expressed as β or % 
methylation values that are directly interpretable. The resulting methylation levels will be of potentially informa-
tive for clinicians assessing patients for need for low dose CT lung  screening60 or for guiding smoking cessation 
 therapy28. Efforts to make this assay more available to clinicians through independent regional facilities are in 
progress.

Data availability
The data used in the analyses can be obtained upon reasonable request to the principle investigators for each 
study cohort.
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