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Abstract

Our recent studies identifying factors significantly associated with the positive child health

index (PCHI) in a mixed cohort of preterm-born singletons, twins, and triplets posed some

analytic and modeling challenges. The PCHI transforms the total number of health disorders

experienced (of the eleven ascertained) to a scale from 0 to 100%. While some of the chil-

dren had none of the eleven health disorders (i.e., PCHI = 1), others experienced a subset

or all (i.e., 0�PCHI< 1). This indicates the existence of two distinct data processes—one for

the healthy children, and another for those with at least one health disorder, necessitating a

two-part model to accommodate both. Further, the scores for twins and triplets are poten-

tially correlated since these children share similar genetics and early environments. The

existing approach for analyzing PCHI data dichotomizes the data (i.e., number of health dis-

orders) and uses a mixed-effects logistic or multiple logistic regression to model the binary

feature of the PCHI (1 vs. < 1). To provide an alternate analytic framework, in this study we

jointly model the two data processes under a mixed-effects two-part model framework that

accounts for the sample correlations between and within the two data processes. The pro-

posed method increases power to detect factors associated with disorders. Extensive

numerical studies demonstrate that the proposed joint-test procedure consistently outper-

forms the existing method when the type I error is controlled at the same level. Our numeri-

cal studies also show that the proposed method is robust to model misspecifications and it is

applicable to a set of correlated semi-continuous data.
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1 Introduction

Approximately 10% of babies are born prematurely (< 37 weeks gestational age) worldwide

every year [1]. Preterm birth is the leading cause of neonatal mortality and an important risk

factor for developmental impairments including cognitive, behavioral, and social-emotional

disorders [2–7]. Individuals born preterm also experience a higher risk of health disorders

(e.g., asthma) and have a shorter life expectancy [8]. Our team has investigated 11 health disor-

ders that are associated with preterm birth including bilateral blindness, hearing impairment,

moderate/severe cognitive impairment, epilepsy, gross motor function impairment, attention-

deficit/hyperactivity disorder, anxiety, depression, asthma, autism, and obesity (i.e., body mass

index above the 95 percentile) [9]. Further, preterm birth in the U.S. is associated with billions

of dollars of annual societal economic burden [10]. On the other hand, some preterm children

do not display major adverse health or developmental outcomes [9, 11]. Investigating the out-

comes of preterm-born children remains critical for evaluating and improving clinical care,

planning long-term support and for advancing our understanding of the life-course conse-

quences of immaturity at birth [7]. Identifying important factors that are associated with the

risk and burden of such health disorders is important to both clinicians and researchers [12].

Indeed, determining important biomarkers associated with adverse health outcomes has long

been recognized as a critical component in investigating disease etiologies, developing new

therapeutic interventions, and accurately predicting disease progression [13, 14]. However, the

identification of such biomarkers remains a challenge.

The current research is motivated by recent epidemiological studies investigating the posi-

tive child health outcomes among 10-year-old children who were born extremely preterm [9,

12]. One of our primary scientific interests in these studies was to identify important factors

associated with the positive child health index (PCHI) outcome, which summates information

about the presence or absence of 11 adverse health disorders at age 10 and transforms the

cumulative number to a scale from 0 (the child experienced all the disorders) to 100% (no dis-

orders), accounting for the number of non-missing responses [12]. That is, the fewer disorders

the child experienced, the higher the child’s PCHI score. Two aspects of the PCHI lead to ana-

lytic and modeling challenges when investigating associations between maternal antecedents,

child’s characteristics and PCHIs. The first involves the semi-continuous nature of the scale,

which clearly reveals two distinct underlying data processes. While some children experienced

none of these disorders (i.e., PCHI = 1), many others experienced a subset or all (i.e.,

PCHI < 1). That is, the PCHI, or alternatively the number of health disorder measurements,

follows a mixture distribution, taking a boundary value under one condition, or a value arising

from a continuous (ordinal) distribution under another. The second challenging feature of

these data was that, in addition to singletons, it included twin and triplet clusters, within which

PCHI measurements, or equivalently the number of health disorder experienced by each of

the twins and triplets were correlated, as members of the same nuclear family share similar

genetic structures and are exposed to comparable early environments. Even more challenging

is the fact that these family-related cluster effects which within the two underlying data pro-

cesses impact the propensity of incurring adverse health outcome and their subsequent bur-

den, respectively, are themselves usually correlated with each other.

Previous research employed a strategy to identify important risk factors associated with the

PCHI by dichotomizing the scale based on the number of disorders experienced (no any health

disorder versus at least one health disorder, i.e., PCHI= 1 versus PCHI< 1) and using this

binary outcome in a mixed-effects logistic regression with a random intercept to correlate chil-

dren from a multiple birth [12]. Although this modeling scheme accommodates all the samples

and is mathematically convenient, it can limit statistical power, since it is only capable of
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capturing the impact of risk factors on a binary health disorder status. However, in practice,

these risk factors might also impact the disease burden, i.e., these risk factors may not only

influence the propensity of developing health disorders but also impact the burden of disease

(i.e., the number of health disorder experienced). More importantly, these risk factors usually

impact both positively or negatively on the two data processes, i.e. in the same direction. Thus,

jointly modeling the effects of these factors on the health outcomes can boost detection power.

For independent samples, to jointly model this type of semi-continuous data, a two-part

model can be adopted [15–20], where a logistic regression model is used to model the binary

event of incurring no health disorders versus incurring at least one disorder, while a multiple

linear (log-normal) regression is employed to model the association between the factors and

the burden of health disorders (i.e., the nonzero data where the number of disorder experi-

enced is converted to the proportion of the total 11 disorder, the larger the more severe). Spe-

cial treatment is still required to account for the correlations among twin or triplet samples. To

this end, we adopt the mixed-effects two-part modeling framework developed for longitudinal

semi-continuous data [21]. Jointly, we model the correlated semi-continuous data by taking

into account the sample correlations between and within the two underlying data processes.

Under this framework, we derive a joint-test procedure for assessing each risk factor’s effect

on the correlated semi-continuous outcome measurements.

The remainder of the paper is arranged as follows. In Section 2, we provide a detailed

description of the proposed mixed-effects two-part modeling framework for the correlated

semi-continuous data. We then apply the proposed joint-test procedure to identify important

factors associated with the health disorders for extremely preterm children in Section 3 to

demonstrate its benefits over the existing method. We conduct extensive numerical studies

under different data complexity scenarios in Section 4 to explore the applicability and perfor-

mance as compared with the existing method and to demonstrate the generalizability and

robustness of the proposed joint-test procedure for the correlated semi-continuous data. The

paper concludes with some discussions in Section 5.

2 Joint-test procedure under mixed-effects two-part model for

correlated semi-continuous data

Before providing more detailed explication of our proposed joint-test procedure, we first

introduce some notations. Let X represent a matrix of all the observed clinical, demographic

and biomarker variables, and Y represent an outcome vector of interest (e.g., the health disor-

der score), which can be zero or a continuous positive value. In the context of PCHI, equiva-

lently, Y = 1 − PCHI where zero corresponds to experiencing no any adverse health issues

while a positive value represents experiencing the proportion of 11 adverse health disorders

(the larger the value, the more adverse outcomes experienced). We introduce another binary

variable vector, Z, which is a dichotomization of the adverse health status, such that Z = I

(Y> 0) where I is an indicator function. Our primary scientific interest is to model Pr(Y> 0 |

X) and E[Y|Y> 0, X)] such that we can identify risk factors that are significantly associated

with the propensity of being in disease status (i.e., Z = 1) and the burden of disease (i.e., Y> 0)

when in disease state.

To model the association between the observed risk factors X and the adverse health status

Z for the correlated data, we adopt a mixed-effects multiple logistic regression model, while

the impacts of risk factors on the burden of the adverse health outcome are modelled with a

log-normal distribution as follows, although other mixed-effects (e.g., linear or Poission)
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models can be employed. Our models can be written as follows:

logitðpijÞ ¼ a0 þ
Xp

k¼1

akxk;ij þ ui ð1Þ

logðyijÞjyij > 0 ¼ b0 þ
Xp

k¼1

bkxk;ij þ vi þ �ij ð2Þ

where xk,ij is the kth observed risk factor of the jth subject in family i (i = 1, � � �, m; j = 1, � � �, ni),
πij� Pr(zij = 1|{xij, ui}) and �ij* N (0, σ2) represents a random error term. The family-specific

effects on the propensity to have at least one of the health disorders, and the proportion of hav-

ing all health disorders (conditional on having at least one of them) are represented by ui and

vi, respectively; to characterize the correlation between them, we assume they follow a bivariate

normal distribution with mean zero as following:

ui

vi

 !

� N
0

0

 !

;
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u rsusv
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:

We can write down the total likelihood function as follows:

L ¼
Ym
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Z
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f ðzij; yijjα; β; ui; vi; s
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f1 � Prðzij ¼ 1jα; uiÞg
ð1� zijÞfPrðzij ¼ 1jα; uiÞg

zij

½f ðyijjβ; vi; s2Þ�
zij f ðui; vijs2

u; s
2
v; rÞdvidui

ð3Þ

where α = (α0, α1, � � �, αp), β = (β0, β1, � � �, βp), representing the risk factor effects on the pro-

pensity of developing at least one health disorder and the effects on the disease burden (e.g.,

characterized by the proportion of 11 health disorders involved) conditional on the subject

developing the health disorder, respectively, and f (�) denotes a density function. Estimates for

the parameters (α; β; s2; s2
u; s

2
v ; r) can be obtained by maximizing the above likelihood func-

tion. However, this optimization could be challenging since the likelihood function involves

two intractable integrals, which usually cannot be dealt with separately, except in the case of

independent data [22]. Several strategies can be adopted, for example, the Fisher score

approach via Laplace approximation [21], or the quasi-Newton optimization via adaptive

Gaussian quadrature [23, 24]. In this paper, we adopt a hybrid expectation maximization (EM)

and quasi-Newton algorithm [25].

To test the kth hypothesis: H0
k : ak ¼ bk ¼ 0 vs H1

k : otherwise ðk ¼ 1; � � � ; pÞ, we construct

the following test statistic:

z ¼ ðâk; b̂kÞS
� 1

âk

b̂k

0

@

1

A ð4Þ

where âk and b̂k are the maximum likelihood estimates (MLEs) for parameters αk and βk,
respectively, from Model (3). They follow a bivariate normal distribution with mean zero

PLOS ONE A mixed-effects two-part model for identifying important features of twin-data

PLOS ONE | https://doi.org/10.1371/journal.pone.0269630 June 13, 2022 4 / 12

https://doi.org/10.1371/journal.pone.0269630


under the null as follows:

âk

b̂k

0

@

1

A � N
0

0

 !

;S

 !

ð5Þ

where S ¼
s2
ak

%saksbk

%saksbk s2
bk

 !

is the covariance matrix between âk and b̂k, with s2
ak

and s2
bk

being the variance of the MLEs, respectively, and % being the correlation between these MLEs.

S can be estimated by maximizing the likelihood function (3) as well. Test statistic z follows a

χ2(2) distribution under the null.

In summary, the existing analysis method for this type of correlated semi-continuous PCHI

data, i.e. Model (1), only models the relationship between the risk factors and the chance to be

in positive health disorder status by dichotomizing PCHI scores (i.e., PCHI = 1 vs PCHI< 1).

However, the risk factors usually not only influence the chance of being in health disorder sta-

tus but also impact the disease burden. The proposed analysis method, i.e. Model (3), considers

the risk factors effect on both the probability and burden of being in health disorder by incor-

porating Models (1) and (2). Furthermore, although this is a cross-sectional study (i.e. PCHI

scores measured at age of 10-year), the proposed analysis method adopted mixed-effect models

for longitudinal data to take into account the correlations between and within the twin’s and

triplet’s PCHI (health disorder) measurements in the two data processes.

3 A practical application

To investigate the performance of the proposed method in practice, we apply it to the analysis

of data from the Extremely Low Gestational Age Newborn (ELGAN) study, which has moti-

vated this research. The ELGAN study is a prospective longitudinal observational cohort

study. Study participants were enrolled at 14 hospitals in 5 states in the United States (Con-

necticut, Massachusetts, Illinois, Michigan, and North Carolina) between April 2002 and

August 2004. The only inclusion criteria were birth at one of the enrollment hospitals and

birth before 28 completed weeks of gestation [26, 27]. The only exclusion criterion was anen-

cephaly. Longitudinal follow-up of the 1198 surviving participants in the ELGAN cohort has

included research clinic visits at 1, 2, 10, and 15 years of age. Children were diagnosed with

cerebral palsy based on a standardized assessment at 2 years of age, adjusted for degree of pre-

maturity [28]. All other assessments that were used to derive the positive child health index

occurred when study participants were 10 years of age. Parent report was used to identify bilat-

eral blindness and hearing impairment. Children’s weight and height were measured by

research coordinators at 10 years of age and body mass index (BMI) percentiles were calcu-

lated based on measured weight and height and age- and sex-specific US growth standards;

obesity was defined as a BMI percentile� 95% [29]. Asthma diagnosis at age 10 years was

based on parent or guardian report of a health care provider’s diagnosis of asthma [30]. Here,

we focus on estimating the impacts of sex, race, birth weight, maternal pre-pregnancy BMI,

maternal smoking status during pregnancy, maternal age, maternal education level, histologic

chorioamnionitis (a prenatal infection of the fetal membranes), pre-pregnancy maternal

asthma status, and insurance status (public health insurance at birth) on the health disorders

measured at age of 10 year-old for extremely preterm-born children, and identify the impor-

tant factors associated with the health disorders. The data consist of 776 complete samples in

total, of which 550 are singletons, 188 are twins (94 pairs), 33 are triplets (11 triplets), and 5 are

quintuplets. The distributions of all observed clinical and demographic variables are
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summarized in Table 1. We note that nearly one third of the subjects (n = 251) reported no

any health disorders at age 10.

We compare the performance of our proposed analysis method, i.e. the joint mixed-effects

model (3) which jointly tests the effect of each feature using the test statistic (4) as described

above, with the existing analysis method for PCHI data, i.e. mixed-effects logistic regression

approach (1). In our analysis, pre-pregnancy asthma and histologic chorioamnionitis were

included in the two-part model since they are potential confounding variables for the health

disorders [12]. The parameter estimates and associated 95% confidence interval (CI) are pre-

sented in Table 2. As shown, at the 0.05 level of significance, the conventional approach detects

sex, race, maternal pre-pregnancy BMI and public health insurance (rather than private insur-

ance) as important risk factors, while the joint-test procedure identifies sex, birth weight,

maternal pre-pregnancy BMI and public health insurance. However, after adjusting for multi-

ple comparisons using the Hommel [31] or Bonferroni correction, only maternal pre-preg-

nancy BMI remains significant in the conventional method with an adjusted p-value of 0.008

(the adjusted p-values for sex, race and public health insurance become 0.177, 0.189, 0.115,

respectively). Conversely, sex, maternal pre-pregnancy BMI and public health insurance

remain significant in the joint-test procedure after this adjustment, with p-values of 0.010,

0.005, and 0.005, respectively. Although both methods detect pre-pregnancy BMI as a signifi-

cant risk factor, we note that the adjusted p-value from the joint-test procedure is much

smaller than that from the conventional method (0.005 vs 0.008). The consistency of corre-

sponding pairs of parameter estimates from the mixed-effects two-part model is reassuring.

That is, the estimates for sex (0.386;0.143), maternal pre-pregnancy BMI (0.346;0.053), and

public health insurance (0.594;0.188), indicate that each influences the propensities of incur-

ring health disorders and the health disorder burden (conditional on at least one health

Table 1. Distribution of child and maternal characteristics.

Child Characteristics N or Mean Percentage or SD

Number of disorder None 251 32.3

At least one 525 67.7

Sex Female 369 47.6

Male 407 52.4

Race White 498 64.2

Other 278 35.8

Birth weight 835.8 197.6

Maternal Characteristics N or Mean Percentage or SD

Smoking status during pregnancy Yes 107 13.8

No 669 86.2

Pre-pregnancy asthma Yes 92 11.9

No 684 88.1

Public insurance at birth Yes 269 34.7

No 507 65.3

Maternal education � 12 years 103 13.3

> 12 years 673 86.7

Histologic chorioamnionitis Yes 268 34.5

No 508 65.5

Pre-pregnancy BMI 25.5 6.9

Maternal age 29.3 6.7

https://doi.org/10.1371/journal.pone.0269630.t001
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disorder) in the same direction. Even though the parameter estimate (i.e., α) difference

between existing method and the proposed method is small, joint-modeling includes the infor-

mation from the second model (i.e. β). For example, using existing method, birth weight effect

estimate is −0.143, which is not statistically significant. However, using the proposed joint-

modeling method, the birth weight effect on the propensity of developing health disorder is

estimated as −0.157, yet the birth weight is detected as a significant factor (p-value = 0.023)

since the joint-modeling method considers the birth weight effect on the disease burden with a

parameter estimate of −0.052. This provides intuition to understand why the joint modeling

can potentially boost detection power compared with the conventional method. Also, in our

analysis, treating pre-pregnancy BMI as a continuous or categorical variable won’t change the

overall conclusion.

4 Simulation study

The semi-continuous nature of the PCHI data is actually a relatively common feature of scien-

tific and clinical data. For example, medical expenditures and length of hospital stay are two

other examples that give rise to such data; in a given year some people accrue no medical

expenses (or require no time in hospital) at all. Otherwise, these outcomes are represented by

positive numbers (i.e., dollars or days). Examples of such data abound in economic studies—

for example, the size of an insurance claim will be a positive number when an incident occurs,

and zero otherwise. Other examples include postoperative pain (POP) measured sometime

post surgery; many surgery patients experience POP with varying intensity (i.e., the POP

scores take positive values), while POP will completely resolve by the measurement occasion

for many others (i.e., the POP scores are zero). An example with particular relevance to studies

of extremely preterm babies is the duration of mechanical ventilation, which is 0 for a substan-

tial proportion of infants and continuous positive values for others.

We conducted extensive simulation studies to explore the applicability of the joint-test pro-

cedure under scenarios of varying data complexity. In our first scenario, we simulated the cor-

related data using a mixed-effects logistic regression model to generate the binary adverse

health status z, and a log-normal linear mixed-effects model to generate the positive data

Table 2. PCHI data analysis results.

Existing Method Model (2) Proposed Method

Variable Estimate (α) 95% CI Estimate (β) 95% CI Estimate (α;β) p-value

Sex 0.380 (0.047,0.713) 0.141 (0.049, 0.234)� 0.386; 0.143 0.001�

Race 0.451 (0.051,0.850) 0.036 (-0.068,0.140) 0.498; 0.040 0.067

Birth weight -0.143 (-0.309,0.023) -0.050 (-0.096,-0.005) -0.157;-0.052 0.023

Pre-pregnancy BMI 0.330 (0.137,0.523)� 0.050 (0.005,0.094) 0.346; 0.053 0.001�

Smoking status during pregnancy 0.403 (-0.149,0.955) 0.076 (-0.057,0.209) 0.438; 0.080 0.188

Maternal age -0.177 (-0.375,0.021) 0.021 (-0.034,0.077) -0.183; 0.021 0.181

Maternal education -0.178 (-0.785,0.430) -0.119 (-0.258,0.019) -0.173;-0.120 0.209

Histologic chorioamnionitis 0.109 (-0.244,0.462) 0.047 (-0.051,0.144) 0.133; 0.049 0.495

Pre-pregnancy asthma 0.373 (-0.200,0.946) 0.101 (-0.035,0.236) 0.403; 0.102 0.159

Public health insurance at birth 0.564 (0.104,1.025) 0.182 (0.068,0.296)� 0.594; 0.188 0.001�

�statistically significant at significance level 0.05 after adjusting for multiple comparison

https://doi.org/10.1371/journal.pone.0269630.t002
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process, i.e., the burden of the adverse health outcome y, as presented below:

logitðpijÞ ¼ 0:8þ 0:2x1;ij þ 0:4w1;ij þ 0:45x2;ij þ 0:6w2;ij þ ui

logðyijÞ ¼ � 0:5þ 0:25x1;ij þ 0:5w1;ij þ 0:4x3;ij þ 0:6w3;ij þ vi þ �ij if zij ¼ 1

where πij� Pr(zij = 1|{x1,ij, x2,ij, w1,ij, w2,ij, ui}) and �ij* N(0, 1) is a random error term. In

addition to the causal risk factors (i.e. x1, x2, x3 and w1, w2, w3, which correspond to continuous

and binary variables, respectively), we also generate two nuisance factors, one continuous x4

and the other binary w4. The continuous variables follow a multivariate normal distribution

and the binary variables correlate with the continuous variables x4, � � �, x8 as follows:

x1
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wp ¼
1 if xpþ4 > 0

0 if xpþ4 � 0
ðp ¼ 1; � � � ; 4Þ

(

The random-effects terms ui and vi follow a bivariate normal distribution as follows:

ui

vi

 !

� N
0

0

 !

;
1 r

r 1
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Using sample sizes of 500 (400 singletons and 50 twin pairs) and 1000 (800 singletons and 100

twin pairs), we report the percentage of 1000 Monte Carlo replications run that identify each

of the eight risk factors (X1, � � �, X4, W1, � � �, W4) as statistically significant under different cor-

relation settings for (ρ = 0 and ρ = 0.4) in Tables 3 and 4, respectively, controlling the type I

error rate at the 0.05 level.

The results in Tables 3 and 4 demonstrate that the joint-test procedure (i.e., the column

labeled “Proposed Method”) outperforms the traditional mixed-effects logistic regression

method (“Existing Method”) in detecting the important factors. For example, when n = 500

and ρ = 0, the power to detect the risk factors X1 and W1 (which influence both the binary

events and the continuous positive outcomes) are markedly boosted from 0.298 and 0.332 to

0.859 and 0.880, respectively. Similar observations pertain to the other settings for varying n
and ρ. Furthermore, when the traditional method fails to detect risk factors that only influence

the continuous outcome, the joint-test procedure still can detect these factors with very high

power. For instance, under the setting of n = 500 and ρ = 0.4, the traditional method fails to

detect X3 and W3 (the negligible powers 0.059 and 0.059 are essentially equal to the nominal

type I error rate), but the joint-test procedure has nearly full power to detect these two risk fac-

tors. In addition, the empirical type I error is appropriately controlled.

To further investigate the robustness of our two-part modeling approach to identify impor-

tant biomarkers for correlated data, we conducted additional simulations using the following

data generating models:

logitðpijÞ ¼ 0:8þ 0:25x1;ij þ 0:2w1;ij þ 0:4x2;ij þ 0:6w2;ij þ ui

yij � Poissonð16þ 0:65x1;ij þ 0:85w1;ij þ 0:5x3;ij þ w3;ij þ viÞ if zij ¼ 1
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where the causal risk factors, nuisance variables, and cluster effects settings are the same as in

the above cluster log-normal scenario. Here, we still employ a multiple linear log-normal

mixed-effects model for the positive portion of the data, but these data are now generated

using a Poisson mixed-effects model. We ran 1000 Monte Carlo replications with a sample size

n = 1000 and two different levels of correlation between the cluster effects (ρ = 0 and ρ = 0.4).

The percentage of replications deeming the eight risk factors as statistically significant (while

controlling the type I error rate at the 0.05) level are presented in Table 5. Again, the results in

Table 3. Power and type I error comparison for cluster log-normal data (ρ = 0).

n = 50 n = 1000

Variable Existing Method Model (2) Proposed Method Existing Method Model (2) Proposed Method

X1 0.298 0.400 0.859 0.509 0.597 0.993

W1 0.332 0.316 0.880 0.562 0.523 1.000

X2 0.880 0.053 0.729 0.995 0.046 0.988

W2 0.602 0.035 0.408 0.906 0.038 0.811

X3 0.051 0.754 0.993 0.055 0.926 1.000

W3 0.055 0.454 0.956 0.049 0.730 1.000

X4 0.056 0.059 0.048 0.044 0.052 0.037

W4 0.040 0.045 0.042 0.056 0.041 0.050

https://doi.org/10.1371/journal.pone.0269630.t003

Table 4. Power and type I error comparison for cluster log-normal data (ρ = 0.4).

n = 50 n = 1000

Variable Existing Method Model (2) Proposed Method Existing Method Model (2) Proposed Method

X1 0.302 0.394 0.841 0.505 0.592 0.991

W1 0.319 0.302 0.867 0.569 0.515 0.993

X2 0.893 0.055 0.739 0.994 0.057 0.989

W2 0.609 0.044 0.414 0.903 0.037 0.813

X3 0.059 0.783 0.996 0.049 0.933 1.000

W3 0.059 0.452 0.940 0.053 0.740 1.000

X4 0.053 0.052 0.034 0.063 0.041 0.043

W4 0.055 0.039 0.045 0.046 0.036 0.046

https://doi.org/10.1371/journal.pone.0269630.t004

Table 5. Power and type I error comparison for cluster poisson data.

ρ = 0 ρ = 0.4

Variable Existing Method Model (2) Proposed Method Existing Method Model (2) Proposed Method

X1 0.743 0.945 0.982 0.736 0.927 0.976

W1 0.192 0.688 0.654 0.183 0.703 0.656

X2 0.982 0.054 0.953 0.977 0.052 0.950

W2 0.884 0.047 0.810 0.893 0.050 0.805

X3 0.056 0.785 0.688 0.054 0.775 0.695

W3 0.048 0.861 0.756 0.057 0.845 0.752

X4 0.058 0.052 0.037 0.056 0.047 0.050

W4 0.043 0.057 0.045 0.053 0.047 0.045

https://doi.org/10.1371/journal.pone.0269630.t005
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Table 5 demonstrate that the joint-test procedure under two-part modeling (“Proposed

Method”) is much more powerful than the traditional one-part mixed-effects logistic regres-

sion model (“Existing Method”) to detect risk factors while controlling the type I error rate at a

reasonable level regardless of the correlation settings. Of note, even when the intensity model

(i.e., the log-normal mixed-effects model) is misspecified for the positive ordinal data in the

two-part modeling framework, the joint-test procedure still outperforms the traditional

approach, further demonstrating its utility in clinical practice.

5 Discussion

In this study, we derived a joint-test procedure under a mixed-effects two-part modeling

framework to identify important risk factors associated with the correlated semi-continuous

outcomes. The application of the proposed method to the real PCHI data analysis has clearly

demonstrated the advantages of the proposed method compared to the existing method for

this type of semi-continuous data, i.e., it is more powerful to detect risk factors associated with

the correlated semi-continuous outcomes. Further, this method is robust to model misspecifi-

cation. In general, our proposed joint-test procedure is consistently more powerful than the

traditional method while controlling the type I error rate at the same targeted level. The advan-

tages of the proposed two-part model rooted from the fact that it jointly models the two data

processes unlike the existing method (e.g., the censored or truncated regression) assumes one

underlying data process for all subjects with a ceiling effect and thus is less flexible. These

results manifestly demonstrate the advantages of the mixed-effects two-part model for the

analysis of correlated semi-continuous data.

In pediatric practice, in addition to identifying important risk factors associated with cross-

sectional adverse health outcomes for preterm-born children, it is of clinical importance to

investigate their associations with longitudinal health outcomes as well. It is of further practical

importance to identify genetic variants that are associated with the health outcomes of these

children. How to extend the proposed joint-test procedure to these even more complicated

longitudinal correlated semi-continuous (and, in the latter case, high dimensional) settings

warrants further investigations, but is beyond the scope of this paper.
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