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Background-—Lower levels of circulating progenitor cells (PCs) reflect impaired endogenous regenerative capacity and are
associated with aging, vascular disease, and poor outcomes. Whether biologic sex and sex hormones influence PC numbers
remains a subject of controversy. We sought to determine sex differences in circulating PCs in both healthy persons and patients
with coronary artery disease, and to determine their association with sex hormone levels.

Methods and Results-—In 642 participants (mean age 48 years, 69% women, 23% black) free from cardiovascular disease, we
measured circulating PC counts as CD45med+ mononuclear cells coexpressing CD34 and its subsets expressing CD133, chemokine
(C-X-C motif) receptor 4, and vascular endothelial growth factor receptor 2 epitopes using flow cytometry. Testosterone and
estradiol levels were measured. After adjustment for age, cardiovascular risk factors, and body mass, CD34+ (b=�23%, P<0.001),
CD34+/CD133+ (b=�20%, P=0.001), CD34+/chemokine (C-X-C motif) receptor 4–positive (b=�24%, P<0.001), and CD34+/
chemokine (C-X-C motif) receptor 4–positive/CD133+ (b=�21%, P=0.001) PC counts, but not vascular endothelial growth factor
receptor 2-positive PC counts were lower in women compared with men. Estradiol levels positively correlated with hematopoietic,
but not vascular endothelial growth factor receptor 2- positive PC counts in women (P<0.05). Testosterone levels and PC counts
were not correlated in men. These findings were replicated in an independent cohort with prevalent coronary artery disease.

Conclusions-—Women have lower circulating hematopoietic PC levels compared with men. Estrogen levels are modestly
associated with PC levels in women. Since PCs are reflective of endogenous regenerative capacity, these findings may at least
partly explain the rise in adverse cardiovascular events in women with aging and menopause. ( J Am Heart Assoc. 2017;6:
e006245. DOI: 10.1161/JAHA.117.006245.)
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C ardiovascular disease (CVD) morbidity and mortality are
lower in women of reproductive age compared with men

despite similar age-adjusted risk profiles. However, after
menopause, the incidence of CVD rapidly rises in women to
equate the rates in men.1 Multiple observational cohort
studies have suggested that estradiol lends a protective effect
on the vasculature, reducing endothelial dysfunction and
atherosclerosis. However, clinical trials using hormone
replacement therapy (HRT) in menopausal women have failed
to show any benefit in improving cardiovascular outcomes.2–5

To date, the reasons for these sex differences have been
attributed to estrogens, but other mechanisms may also be
responsible.6

Progenitor cells (PCs) play an important role in vascular
repair and regeneration.7–9 Circulating PCs are primarily
derived from the bone marrow mononuclear cell population
and have differentiation potential for multiple cell lineages
including hematopoietic and endothelial cells. They also
directly participate in vascular repair through angiogenic and
paracrine activity.7,8,10,11 Of particular interest are bone
marrow-derived mononuclear cells that express a cluster of
differentiation 34 (CD34) epitope. These PCs exhibit strong
differentiation potential for hematopoietic and endothelial
lineages, as well as nonhematopoietic, mesenchymal lineages,
which do not express the CD45 epitope.7,10–13 Coexpression
of CD34 with CD133, a 5-transmembrane antigen of primitive
stem cells lost during maturation, identifies a PC-enriched
population (CD34+/CD133+) with greater proliferative activ-
ity.14,15 Vascular endothelial growth factor receptor 2
(VEGF2R) coexpression with CD34 is a rare subpopulation
of PCs (CD34+/VEGF2R+), which has greater potential for
endothelial differentiation.16–18 Lastly, chemokine (C-X-C
motif) receptor 4 (CXCR4) coexpression with CD34

From the Division of Cardiology, Emory University School of Medicine, Atlanta,
GA (M.L.T., S.S.H., P.B.S., A.S.T., A.A.Q.); Departments of Biostatistics and
Bioinformatics (Y.-A.K.) and Pulmonary, Allergy, Critical Care and Sleep
Medicine (G.S.M.), and Department of Hematology and Oncology, Winship
Cancer Institute (I.H., E.M., E.K.W.), Emory University, Atlanta, GA.

Correspondence to: Arshed A. Quyyumi, MD, Division of Cardiology,
Department of Medicine, Emory University School of Medicine, 1462 Clifton
Rd. NE, Suite 507, Atlanta, GA 30322. E-mail: aquyyum@emory.edu

Received March 30, 2017; accepted July 21, 2017.

ª 2017 The Authors. Published on behalf of the American Heart Association,
Inc., by Wiley. This is an open access article under the terms of the Creative
Commons Attribution-NonCommercial License, which permits use, distribu-
tion and reproduction in any medium, provided the original work is properly
cited and is not used for commercial purposes.

DOI: 10.1161/JAHA.117.006245 Journal of the American Heart Association 1

ORIGINAL RESEARCH

info:doi/10.1161/JAHA.117.006245
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/


characterizes PCs (CD34+/CXCR4+) with greater capacity for
tissue repair via homing of PCs to stromal-derived factor-
enriched hypoxic environments.19

Despite robust data indicating that lower circulating PC
counts and impaired PC activity are associated with CVD and
adverse events,20–23 the few studies that have examined sex
differences in PCs have reported conflicting findings.24–28

Experimental studies have demonstrated that estrogens
stimulate endothelial PC activity.29 We sought to characterize
the sex differences in both circulating endothelial and
hematopoietic PCs. We hypothesized that women would have
higher numbers of all PCs compared with men, primarily
attributable to the effect of estradiol, and that menopause
would be associated with a reduction in PCs in women.

Material and Methods

Study Design and Patients
We recruited 467 women and 202 age-matched men without
a known history of CVD from the CHDWB (Emory-Georgia
Tech Center for Health Discovery and Well-Being) cohort study
in Atlanta, GA. Full details of this cohort have been previously
published.29,30 Briefly, participants were a random conve-
nience sample of employees of Emory University and the
Georgia Institute of Technology identified through the human
resources department at each institution. Individuals eligible
for study enrollment must have been employed for at least
2 years and covered by a university-sponsored health insur-
ance plan. Approximately 10 000 employees were eligible
based on these criteria, and every 10th employee was invited
to participate. Approximately 30% of invited employees were
screened, with �10% ultimately enrolled in the cohort.
Individuals with hospitalization in the preceding year, poorly
controlled or acute medical conditions, or active pregnancy
were excluded. All patients were provided with and gave

written informed consent at the time of enrollment, and the
study was approved by the Emory University institutional
review board.30,31

Demographic characteristics, medical and reproductive
history, medication use, and behavioral habits were docu-
mented. Blood samples for cardiovascular risk factors, circu-
lating PCs, and sex hormones were collected. Anthropometric
data such as blood pressure (BP) and weight were measured.

To confirm our findings, we analyzed participants enrolled
in the Emory Cardiovascular Biobank.22,32 Briefly, patients
undergoing cardiac catheterization for the evaluation of
known or suspected coronary artery disease (CAD) were
prospectively enrolled at 3 sites within the Emory Healthcare
network in Atlanta, GA, between 2003 and 2009. Exclusion
criteria for participation in the study included age younger
than 20 years or older than 90 years, congenital heart
disease, severe anemia or recent transfusion of blood
products, active infection (including myocarditis), heart
transplant, or other conditions requiring immunosuppressive
agents (including cancer). Demographics, medical and per-
sonal history, medication use, and behavioral characteristics
were collected from questionnaires and supported by medical
record review and physician evaluation. All participants were
provided with and gave written informed consent at the time
of enrollment, and the study was approved by the Emory
University institutional review board. Patients with full PC
characterization were included in the study.

PC Assays
Cell populations enriched for circulating PCs were enumer-
ated using flow cytometry as CD45med cells coexpressing
CD34+, CD133+, VEGF2R+, or CXCR4+ as previously
described.22,33–38 For each sample, 300 lL of peripheral
blood was incubated with the following fluorochrome-labeled
monoclonal anti–human mouse antibodies in the dark for 15
minutes: FITC-CD34 (BD Biosciences), PerCP-CD45 (BD
Biosciences), PE-VEGF2R (R&D system), APC-CD133 (Mil-
tenyi), and PE-Cy7-conjugated anti-CXCR4 (EBioscience, clone
12G5). Red blood cells were removed by lysis with 1.5 mL of
ammonium chloride lysing buffer after an additional 10 min-
utes of incubation. Lysis was stopped with 1.5 mL of staining
medium (PBS with 3% heat-inactivated serum and 0.1%
sodium azide). Before flow cytometry, 100 lL of AccuCheck
Counting Beads (Invitrogen, category No.: PCB100) were
added to act as an internal standard for direct estimation of
the concentration of target cell subsets. Up to 5 million
events, but at least 2 million events, were acquired from the
flow cytometer and flow data were analyzed with FlowJo
software (Treestar, Inc.). Absolute mononuclear cell count was
calculated as the total of all lymphocytes and monocytes
measured with a Coulter ACT/Diff cell counter (Beckman

Clinical Perspective

What Is New?

• Women have lower numbers of circulating progenitor cells
compared with men, and estrogen levels correlate with
progenitor cell numbers in women; however, testosterone
levels are not associated with progenitor cells in men.

What Are the Clinical Implications?

• There is an age-related decline in circulating progenitor
cells, and low levels have been associated with adverse
outcomes, suggesting that progenitor cell counts represent
endogenous regenerative capacity. Lower circulating levels
of progenitor cells in women, compared with men, implies
potential sex-based differences in regenerative capacity.
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Coulter).33,34 PC populations are reported as cell counts per
milliliter (Figure 1).

To assess repeatability, 20 samples were analyzed on 2
occasions by the same technician with the following coeffi-
cients of variation: CD34+ 2.9%; CD34+/CD133+ 4.8%;
CD34+/CXCR4+ 6.5%; CD34+/VEGF2R+ cells 21.6%; and
CD34+/CD133+/CXCR4+ 7.5%. There were significant corre-
lations between the PC subtypes, with strong correlations
between CD34+, CD34+/CD133+, and CD34+/CXCR4+ (r
range 0.68–0.90, P<0.001), and weak correlations between
CD34+/VEGF2R+ and the aforementioned PCs (r range 0.18–
0.24, P<0.001).

Sex Hormones and Menopause Definition
The men and women had sex hormone levels assessed from
random fasting blood samples. Menopause and use of HRT

were defined by patient response to a reproductive health
questionnaire, age, and estradiol level.

Of the 467 women in the cohort, 15 did not have complete
data to determine menopause status. An additional 12 women
reported HRT use while concomitantly reporting pre-
menopausal status, age younger than 50 years, estradiol
>30 pg/mL, and no history of complete or partial hysterec-
tomy; these patients were excluded.

Statistical Analysis
Patient characteristics were reported as means and SDs for
normal continuous variables, medians and interquartile
ranges for non-normal continuous variables, and counts
and proportions for categorical variables. Variables were
visually assessed for normality by distribution plots and Q-Q
plots, as well as quantitatively using the Komogorov-Smirnov

Figure 1. Flow cytometry analysis of blood progenitor cells. A, Forward scatter and side scatter gates following lyse-no wash of blood and the
addition of fluorescent counting beads (left upper corner in plot). B, Gating of CD34+, low side scatter cells from blood leukocytes shown in (A).
C, Histograms of CD45 expression in the CD34+ low side scatter cells (red histogram) shown in (B) or the CD34– cells (grey histogram). D, The
pattern of coexpression of CD34 and CD45dim on blood progenitors shown in (C). E, The coexpression of CD133 and chemokine (C-X-C motif)
receptor 4 (CXCR4) on CD34+CD45dim blood progenitors shown in (C). F, The coexpression of CD133 and vascular endothelial growth factor
receptor 2 (VEGF2R) on CD34+CD45dim blood progenitors shown in (C). FSC-A indicates forward scatter area.
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D statistic. The overall cohort was divided by sex, and
further by menopause status and HRT use, and differences
between groups were assessed using t tests for normal
continuous variables, Mann-Whitney U tests for non-normal
continuous variables, and chi-square or Fisher exact tests for
categorical variables, where appropriate. Before multivariable
analyses, estradiol and PC counts for CD34+, CD34+/
CD133+, CD34+/CXCR4+, and CD34+/CXCR4+/CD133+

were log-transformed (base 10) for normality. CD34+/
VEGF2R+ cell counts were analyzed as a dichotomous
variable using the median value (40 cells/mL) as a cutoff.
We investigated the association between PCs and sex
hormones using Pearson correlation coefficients. To test the
association between sex and PCs, we used multivariable
generalized linear models and binary logistic regression

models to adjust for the following covariates: age, sex, race,
body mass index, smoking history, hypertension, diabetes
mellitus, and hyperlipidemia. A 2-tailed P≤0.05 was consid-
ered statistically significant. All analyses were performed
using SAS version 9.4 (SAS Institute Inc).

Results

Characteristics of the Healthy Cohort
Demographic and clinical characteristics of the total cohort
and of the cohort dichotomized by sex (men versus women)
are shown in Table 1. Women were more likely to be black
and less likely to smoke cigarettes or have dyslipidemia. They
additionally had lower BP, triglyceride and fasting glucose

Table 1. Clinical Characteristics of Participants, Stratified by Sex

All (N=642) Men (n=202) Women (n=440) P Value

Age, y 47.9�10.4 48.3�10.7 47.7�10.3 0.520

Black race, No. (%) 149 (23.2) 20 (9.9) 129 (29.3) <0.001*

Ever smoker, No. (%) 35 (5.5) 17 (8.5) 18 (4.1) 0.026*

Diabetes mellitus, No. (%) 68 (10.6) 18 (9.0) 50 (11.4) 0.358

Hypertension, No. (%) 214 (33.4) 64 (31.8) 150 (34.1) 0.575

Dyslipidemia, No. (%) 90 (14.0) 52 (25.9) 38 (8.6) <0.001*

Systolic BP, mm Hg 120.4�16.1 122.7�14.6 119.4�16.7 0.012*

Diastolic BP, mm Hg 75.9�11.0 79.2�11.1 74.5�10.6 <0.001*

Body mass index, kg/m2 26.5 [23.6–30.7] 26.8 [25.0–30.0] 26.2 [22.7–31.2] 0.240

Total cholesterol, mg/dL 194.2�36.1 189.1�35.1 196.5�36.4 0.016*

LDL cholesterol, mg/dL 110.6�31.7 113.5�30.0 109.2�32.3 0.108

HDL cholesterol, mg/dL 63.4�18.3 51.7�12.6 68.8�18.0 <0.001*

Triglycerides, mg/dL 86 [65–119] 100 [76–145] 80 [63–107] <0.001*

Fasting glucose, mg/dL 87 [81–92] 88 [84–95] 86 [80–92] <0.001*

Estradiol, pg/mL ��� ��� 43 [25–92] ���*
Total testosterone, ng/dL ��� 456 [342–582] ��� ���
Free testosterone, pg/mL ��� 62 [48–78] ��� ���
Bioavailable testosterone, ng/dL ��� 131 [104–171] ��� ���
CD34+, cells/mL 2095 [1312–3172] 2628 [1732–3993] 1925 [1200–2768] <0.001*

CD34+/CD133+, cells/mL 900 [557–1404] 1128 [699–1691] 812 [522–1295] <0.001*

CD34+/CXCR4+, cells/mL 855 [515–1385] 1132 [704–1699] 753 [476–1266] <0.001*

CD34+/VEGF2R+, cells/mL 36 [9–98] 28 [6–95] 41 [11–99] 0.203

CD34+/CXCR4+/CD133+, cells/mL 348 [205–525] 405 [275–653] 308 [190–479] <0.001*

CD34+/VEGF2R+/CD133+, cells/mL 12 [0–38] 10 [0–36] 12 [0–40] 0.230

CD34+/CXCR4+/VEGF2R+, cells/mL 35 [10–94] 30 [7–92] 37 [11–94] 0.178

Values are expressed as number (percentage of prevalence) for categorical variables, mean�SD for normal continuous variables, and median [interquartile range] for non-normal
continuous variables. BP indicates blood pressure; CXCR4, chemokine (C-X-C motif) receptor 4; HDL, high-density lipoprotein; LDL, low-density lipoprotein; VEGF2R, vascular endothelial
growth factor receptor 2.
*Significant differences between men and women.
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levels, and higher total and high-density lipoprotein choles-
terol compared with men (Table 1).

The cohort was further divided into subgroups for
premenopausal and menopausal women, with or without the
use of HRT, and age-matched men (Table 2). Similar differ-
ences between each menopause subgroup of women and
their age-matched male cohorts were present—men were
generally less likely to be black and more likely to have
dyslipidemia. They were also more likely to have higher BPs,
primarily diastolic BP, higher total and low-density lipoprotein
cholesterol, lower high-density lipoprotein cholesterol, and
higher triglycerides (Table 2).

Regardless of HRT use, menopausal women were older
than premenopausal women and had greater levels of age-
related risk factors, including BP, cholesterol, and glucose.
Menopausal women taking HRT had lower estradiol levels
than premenopausal women, and menopausal women not
taking HRT had lower estradiol levels than either pre-
menopausal women or menopausal women taking HRT
(Table 2).

Relationship Between PCs and Sex
In unadjusted analyses, PC counts enriched for hematopoietic
progenitors (CD34+, CD34+/CD133+, CD34+/CXCR4+, and
CD34+/CXCR4+/CD133+) were lower in women compared
with men; however, cell counts for PCs enriched for
endothelial progenitors (VEGF2R+-expressing cell subsets)
were not different between men and women (Table 1,
Figure 2). This remained true for subgroups of women based
on menopause status and age-matched men (Table 2).

On multivariable analysis adjusting for age, race, smoking
history, body mass index, hypertension, diabetes mellitus,

dyslipidemia, and mononuclear cell count, female sex
remained an independent determinant of PC counts and
was associated with 23% fewer CD34+ cells (P<0.001), 20%
fewer CD34+/CD133+ cells (P=0.001), 24% fewer CD34+/
CXCR4+ cells (P<0.001), and 21% fewer CD34+/CXCR4+/
CD133+ cells (P=0.001) compared with men. There was no
association between sex and CD34+/VEGF2R+ cells (P=0.09).

The age-related decline in circulating PCs is shown in
Figure 3. The interaction between age and sex was tested,
given previously described associations between PC counts
and age33; however, age did not affect the association
between sex and PC counts (Figure 3). Furthermore, tests for
interaction between menopause status and PC counts were
negative and did not affect the association between sex and
PC counts.

Relationship Between PCs and Sex Hormones
Among women, estradiol weakly correlated with hematopoi-
etic PC counts—CD34+ (r=0.13, P=0.007), CD34+/CD133+

(r=0.11, P=0.027), CD34+/CXCR4+ (r=0.14, P=0.003), and
CD34+/CXCR4+/CD133+ (r=0.14, P=0.005)—but not the
VEGF2R+-expressing PCs (r=�0.01, P=0.98; not shown)
(Table 3). Among men, there were no significant correlations
between testosterone levels and either hematopoietic or
endothelial PCs (Table 3). On multivariable analysis, estradiol
was not an independent determinant of either hematopoietic
or endothelial PC counts in women.

Relationship Between Menopause Status in
Women and PCs
There were no differences in PC counts between pre-
menopausal and menopausal women with or without HRT
use (Table 4). Further comparisons between premenopausal
and menopausal women with age-matched men showed that
men had higher hematopoietic PC counts regardless of female
menopause status or HRT use (Table 2).

Replication of Findings in a Cohort With CAD
Characteristics of the 1728 patients from the Emory Cardio-
vascular Biobank are shown in Table 5. Women were less
likely to be black and more likely to smoke cigarettes. In
addition, women had lower body mass index and higher
prevalence of CAD (Table 5). In unadjusted analyses, PC
counts enriched for hematopoietic progenitors (CD34+,
CD34+/CD133+, and CD34+/CXCR4+) were lower in women
compared with men. In this cohort with CAD, cell counts for
PCs enriched for endothelial progenitors (CD34+/VEGF2R+)
were also significantly lower in women compared with men
(Table 5).

Figure 2. Sex differences in hematopoietic progenitor cells in
healthy individuals. For all hematopoietic progenitor cell popula-
tions, men had higher numbers of cells after adjusting for age,
race, and body mass index.
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After multivariable adjustment for demographics, behav-
ioral characteristics, medical history, and mononuclear cell
counts, female sex remained an independent determinant of
PC counts and was associated with 15% lower CD34+ cells

(P=0.002), 12% lower CD34+/CD133+ cells (P=0.032), and
19% lower CD34+/CXCR4+ cells (P<0.001). Female sex was
also associated with decreased odds of CD34+/VEGF2R+

>40 cells/mL (odds ratio, 0.611; P<0.001).

Figure 3. The effect of aging on differences between hematopoietic progenitor cells in healthy
individuals. Men continue to have greater numbers of CD34+(A), CD34+/CD133+ (B), CD34+/chemokine (C-
X-C motif) receptor 4 (CXCR4+) (C), and CD34+/CD133+/CXCR4+ (D) cells throughout their life course
compared with women; however, these differences attenuate later in life.

Table 3. Pearson Correlation Coefficients for Hematopoietic Progenitor Cells and Sex Hormones, Stratified by Sex

Variables

Women (n=440) Men (n=202)

CD34+
CD34+/
CD133+

CD34+/
CXCR4+

CD34+/CXCR4+/
CD133+ CD34+

CD34+/
CD133+

CD34+/
CXCR4+

CD34+/CXCR4+/
CD133+

Estradiol, pg/mL 0.13* 0.11* 0.14* 0.14*

Total testosterone, ng/dL �0.06 �0.07 �0.04 �0.07

Free testosterone, pg/mL 0.04 0.05 0.02 0.01

Bioavailable testosterone,
ng/dL

0.05 0.05 0.03 0.01

Pearson correlation coefficients between progenitor cells and sex hormones. All variables are log-transformed (base 10) for the purposes of correlation analysis.
*P<0.05.
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Discussion

In the largest study to date of healthy individuals free of
known CVD investigating the influence of sex on circulating
PCs, we demonstrate that compared with men, women have
lower circulating PC subsets enriched for hematopoietic
progenitors. Female sex was associated with 20% to 24%
fewer PCs after adjusting for common cardiovascular risk
factors. Although estradiol was associated with hematopoietic
PC counts, there were no differences in PCs between
premenopausal and menopausal women, and age-matched
men for each cohort had significantly higher PC counts than
either subset of women. Lastly, these findings were replicated
in a separate cohort of older individuals with prevalent CVD,
and women had 12% to 19% fewer hematopoietic PCs
compared with men. Thus, in two cohorts exceeding 2300
patients with and without CVD, circulating PCs enriched for
hematopoietic progenitors were lower in women than in men.

The impact of sex on CVD, and particularly the lower
prevalence of CVD in younger women, has focused largely on
the role estrogens. More recent, the impact of estrogens on
endothelial PC number and function has emerged as a possible
mechanism for this finding.39,40 Experimental models showed a
clear association between levels of estrogen and the number
and function of endothelial PCs.41,42 Estrogens appear to
upregulate expression of estrogen receptors, specifically
estrogen receptor a, resulting in greater PC homing.43,44

Clinical studies have shown that prolonged estrogen exposure
leads to increased estrogen receptor expression in both
cultured and circulating human endothelial PCs.45

Several human studies have explored the relationship
between PCs and estrogens. Fadini et al27 demonstrated that
PC levels change throughout the menstrual cycle in parallel
with estrogen levels. Lemieux et al46 reported that estrogen
influences endothelial PC number and maturation throughout
the menstrual cycle. Robb et al47 also demonstrated that the

absolute number of endothelial PCs vary over the menstrual
cycle in premenopausal women, but found no differences in
PC functional assays with respect to estrogens. Finally, da
Silva et al28 showed that low-dose estrogen therapy in
menopausal women increased mobilization of endothelial
PCs from the bone marrow. These findings are consistent with
our observed modest correlation between estrogen levels and
circulating PC counts.

While the effect of estrogen on endothelial PCs has been
well documented, reports on sex differences in PC levels have
been studied in small populations with less consistent
findings. For example, Stauffer et al25 found no differences
in endothelial PCs, defined as CD34+/CD133+/VEGF2R+, in
29 menopausal women compared with men. Similarly, no sex-
related differences in healthy young men and women were
reported by Ruszkowska-Ciastek et al.48 Four studies have
found higher numbers of endothelial PCs in women compared
with men. Pelliccia et al49 found that only menopausal women
without CAD had higher PCs than their age-matched male
cohort. Lemieux et al46 demonstrated that women have
greater mean numbers of endothelial PCs, defined as
CD133+/CD34+ and CD133+/VEGF2R+ cells, compared with
men, a finding similar to that reported by Hoetzer et al24 in
healthy menopausal women. Finally, in 210 premenopausal
and menopausal women compared with age-matched male
cohorts, Fadini et al27 found that premenopasual women had
higher CD34+/KDR+, but not CD133+/KDR+ or CD34+/
CD133+/KDR+, PC counts compared with age-matched men
and menopausal women.

These studies were small, used different assays to study
PCs, and largely concentrated on endothelial PC populations.
Our study is larger, shows clear and reproducible differences
(particularly in hematopoietic PCs, a population that reflects
regenerative capacity), and is predictive of long-term out-
comes.22 We also found that these differences persisted
throughout the lifespan, even as the PC counts declined with

Table 4. Circulating Progenitor Cells in Healthy Premenopausal and Menopausal Women, With and Without HRT Use

Premenopausal
Women (n=264)

Menopausal
Women (n=91)

Menopausal Women
on HRT (n=71) P Value

CD34+, cells/mL 1973 (1261–2926) 1945 (1173–2710) 1638 (1067–2566) 0.066

CD34+/CD133+, cells/mL 854 (572–1368) 787 (488–1157) 688 (448–966) 0.111

CD34+/CXCR4+, cells/mL 772 (490–1280) 788 (488–1248) 668 (351–1254) 0.120

CD34+/VEGF2R+, cells/mL 46 (10–109) 35 (11–98) 35 (13–87) 0.266

CD34+/CXCR4+/CD133+, cells/mL 316 (197–524) 338 (186–471) 262 (183–400) 0.095

CD34+/VEGF2R+/CD133+, cells/mL 15 (0–40) 10 (0–42) 11 (0–31) 0.366

CD34+/CXCR4+/VEGF2R+, cells/mL 42 (11–97) 31 (10–97) 32 (14–85) 0.395

CXCR4 indicates chemokine (C-X-C motif) receptor 4; HRT, hormone replacement therapy; VEGF2R, vascular endothelial growth factor receptor 2.
Values are median (interquartile range).

DOI: 10.1161/JAHA.117.006245 Journal of the American Heart Association 8

Regenerative Capacity, Female Sex, and Menopause Topel et al
O
R
IG

IN
A
L
R
E
S
E
A
R
C
H



aging in both sexes.33 Thus, the hypothesis that women have
lower CVD burden because of higher PC levels requires
reevaluation. An alternative explanation involves the role that
estrogen plays in preventing PC senescence through a variety
of mechanisms, including its activating effect on telomerase
expression and activity.50 We have recently reported that
leukocyte telomere length is associated with decreased PC
counts and that both decreased PC counts and shorter
leukocyte telomere length are independently associated with
worse cardiovascular outcomes.51 As women transition
through menopause and estrogen exposure decreases, the
deleterious effects of PC senescence, reduced telomere
length, and lower absolute PC levels compared with men may
explain the accelerated rate of cardiovascular outcomes in
women for this advanced age group.

Study Strengths and Limitations
Strengths of our study include evaluation of PCs in two
separate cohorts with and without prevalent CAD, leading to
its large size. We also have uniform enumeration of PCs by the
same laboratory with comprehensive investigation of both
hematopoietic and endothelial-enriched CD34+ subpopula-
tions. Lastly, we were able to incorporate male and female sex
hormones to assess their associations with PCs in our cohort

without prevalent CAD. Limitations include its cross-sectional
design, which prevents determination of casual links between
sex, sex hormones, and PCs. Differences in risk factor profiles
between men and women cannot be excluded as contributing
to the observed differences in PCs, despite statistical
adjustment through multivariable modeling. The questionnaire
used to determine reproductive and menopause history did
not ask for specific HRT formulations or duration of use,
further limiting causal inference. In addition, both testos-
terone and estrogen have diurnal variation, and estrogen
varies throughout the menstrual cycle52; hormone samples
were not drawn explicitly to address these variations.

Conclusions
We and others have shown that PC counts decrease with
aging, exposure to CVD risk factors, or prevalent CVD, and
low levels of PCs are associated with increased risk of CVD
events.22 Because women have lower PC counts compared
with men, they are likely to reach a critically low level with
aging that is associated with increased risk of adverse CVD
outcomes. This may explain why the risk of CVD rapidly rises
in women with aging and menopausal status, and further
studies examining the impact of estrogen on regenerative
capacity at the time of menopause are warranted.

Table 5. Characteristics of Patients With CVD, Stratified by Sex

Variables Men (n=1061) Women (n=667) P Value

Age, y 66�13 64�13 0.666

Black race, No. (%) 200 (30) 213 (20) <0.001*

Body mass index, kg/m2 30�7 29�6 <0.001*

Clinical characteristics, No. (%)

Smoking history 398 (60) 751 (71) <0.001*

Hypertension 600 (91) 949 (90) 0.799

Diabetes mellitus 279 (43) 438 (42) 0.911

Hyperlipidemia 470 (71) 789 (75) 0.078

Coronary artery disease 573 (86) 960 (91) 0.003*

Peripheral vascular disease 118 (18) 208 (20) 0.301

Heart failure 182 (28) 297 (29) 0.721

Circulating progenitor cells, cells/mL

CD34+ 1818 [1140–2796] 1586 [1003–2368] <0.001*

CD34+/CD133+ 820 [495–1335] 745 [448–1150] 0.002*

CD34+/CXCR4+ 907 [529–1492] 738 [448–1288] 0.001*

CD34+/VEGFR2+ 44 [13–147] 30 [9–110] <0.001*

CVD indicates cardiovascular disease; CXCR4, chemokine (C-X-C motif) receptor 4; VEGF2R, vascular endothelial growth factor receptor 2.
Values are number (percentage of prevalence) for categorical variables, mean�SD for normal continuous variables, and median [interquartile range] for non-normal continuous variables.
*Significant differences between men and women.
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