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Object: A real-time functional magnetic resonance imaging (fMRI) feedback during

ventral intermediate nucleus (VIM) deep brain stimulation (DBS) under general anesthesia

(or “asleep” DBS) does not exist. We hypothesized that it was feasible to acquire a reliable

and responsive fMRI during asleep VIM DBS surgery.

Methods: We prospectively enrolled 10 consecutive patients who underwent asleep

DBS for the treatment of medication-refractory essential tremor. Under general

anesthesia, we acquired resting-state functional MRI immediately before and after the

cannula insertion. Reliability was determined by a temporal signal-to-noise-ratio >100.

Responsiveness was determined based on the fMRI signal change upon insertion of the

cannula to the VIM.

Results: It was feasible to acquire reliable fMRI during asleep DBS surgery. The

fMRI signal was responsive to the brain cannula insertion, revealing a reduction in the

tremor network’s functional connectivity, which did not reach statistical significance in

the group analysis.

Conclusions: It is feasible to acquire a reliable and responsive fMRI signal during

asleep DBS. The acquisition steps and the preprocessing pipeline developed in these

experiments will be useful for future investigations to develop fMRI-based feedback for

asleep DBS surgery.

Keywords: deep brain stimulation, asleep DBS, functional magnetic resonance imaging, intraoperative, feedback

INTRODUCTION

Magnetic resonance imaging (MRI) during surgery augments the real-time visualization of
the brain anatomy. Therefore, intraoperative MRI was deployed to improve the accuracy of
neurosurgical procedures since the 1990’s (1). The seamless integration of MRI into the surgical
workflow has enabled performing deep brain stimulation (DBS) under general anesthesia (or asleep
DBS) (2). The electrode placement was shown to be highly accurate, and patient outcomes in
experienced centers were comparable with the conventional “awake” DBS (3, 4). In parallel to
the technological advancements, asleep DBS also motivated neuroimaging research to enhance
the visualization of therapeutic targets (5). While structural imaging proved adequate for some
therapeutic targets, tractography has emerged as the primary technique for improved localization
of the ventral intermediate nucleus (VIM) for DBS surgery (6, 7).
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Besides anatomical accuracy, MRI-based physiological
feedback can provide another layer of verification during asleep
DBS surgery (8). Intraoperative functional MRI (fMRI) is the
preferred technique for providing physiological feedback during
asleep DBS (9). While the determination of safety conditions
required for scanning DBS patients using high-field strength
MR is an important first step (10), it remains unclear whether
a high-quality fMRI signal can be acquired during asleep DBS.
Specific concerns include the artifacts from surgery (i.e., blood
products from the surgical incision and burr hole), the associated
hardware (i.e., head immobilization pins and stereotactic frame),
and the preprocessing pipelines to correct any distortions are
yet to be developed. It is also unknown whether the electrode
passage during DBS, without stimulation, induces changes in
the fMRI signal. This determination is relevant because brain
transgression with DBS electrodes, without stimulation, can
induce transient but clinically detectable changes in patient
symptoms (i.e., reduction in tremor) (11). Therefore, this step
represents a clinically meaningful surgical manipulation.

To test the feasibility of fMRI acquisition and standardize
the imaging preprocessing pipeline, we acquired fMRI in
essential tremor (ET) patients undergoing asleep VIM DBS.
We hypothesized that it was feasible to acquire a reliable and
responsive fMRI during asleep VIM DBS surgery. Feasibility
was defined as a temporal signal-to-noise ratio (TSNR) >100.
Furthermore, we tested whether the fMRI signal was responsive
to intraoperative surgical manipulation. We acquired resting-
state fMRI before and after the insertion of a ceramic cannula
into the brain for this experiment. The insertion of the brain
cannula to the surgical target precedes the DBS electrode
insertion during asleep DBS to check for anatomical accuracy.
This investigation will provide feasibility data for research efforts
to develop fMRI-based intraoperative feedback as a response or
predictive biomarker to guide surgical decision making during
asleep DBS surgery.

METHODS

We prospectively enrolled 10 patients (nine with essential
tremor (ET) and one with Parkinson disease with antecedent
ET). All patients provided written, informed consent to
participate in this institutional review board-approved study
(Study ID#2016H0454). The data for this study can be made
available through reasonable requests made to the senior author.

Surgical Procedure
Patients underwent asleep unilateral ventral intermediate
thalamic nucleus DBS on a 3-T scanner using the Clearpoint
system (4). The surgical target was identified with tractography
in patient-specific diffusion imaging acquired preoperatively
using a previously described methodology (7). Briefly, we defined
the lateral and posterior borders of the VIM by tracking the
pyramidal tract and medial lemniscus, respectively. After this
step, we created a cubic VIM ROI such that its center was 3mm
medial and anterior to the pyramidal tract and the lemniscus
borders. Fiber tracking from this VIM ROI was then performed
without using other waypoints. A surgical target was marked at

the VIM ROI’s inferior border to maximize the passage of the
DBS trajectory through the VIM.

Intraoperative fMRI Acquisition
For intraoperative imaging, we developed an ad-hoc setup for
real-time fMRI acquisition with two six-channel phase array
FlexCoilsTM (receive only) positioned on both sides of the head,
parallel to one another. Two echo-planar (EPI) resting-state fMRI
(flip angle = 90◦, the field of view = 22 × 22 cm, acquisition
matrix= 64× 64, repetition time= 2,000ms, 200 runs, voxel size
= 3.75 × 3.75 × 3.75 mm3) were acquired before and after the
insertion of the brain cannula. The setup is outlined in Figure 1A.

Feasibility of fMRI Acquisition
We calculated the time course stability of fMRI using TSNR,
which is computed by dividing the mean of a time series by its
standard deviation in a defined brain region. The optimal ranges
for TSNR with 3-T scanners were estimated to be between 78 and
90 for gray matter and 110 and 160 for white matter, respectively
(12, 13). A temporal signal-to-noise ratio>100 was considered to
be indicative of feasibility.

Connectivity Analysis
Connectivity analysis was performed using the AFNI software
package (14) with optimizations to improve pre- to post-
cannula insertion image registration and bandpass filtering of
multiple frequencies. Standard processing steps were followed
(15), and principal component analysis (AFNI 3dPVmap) was
used to decompose noise frequencies for regression analysis. We
identified seven regions of interest (ROIs) in the tremor network
per hemisphere (Eickhoff-Zilles macrolabels) (16–19) and two
“control” regions, bilateral middle temporal gyri.

DBS Contact Localization
The DBS contact locations were derived using the open-source
software LEAD-DBS v2.1.7 (http://www.lead-dbs.org). The post-
operative CT images were co-registered to the preoperative MRI
images and non-linearly coregistered to theMNI ICBM 2009c T1
template. The contacts were localized in the template space using
the CT metallic artifact (20).

Tremor Assessment
The tremor was assessed using a clinical rating scale for tremors,
which included assessment included with motor tasks (i.e.,
action, posture, and intention) and writing assessment (spiral,
straight line, and handwriting) (21). The severity was scored
between 0 and 4 (0 = no tremor; 4 = severe tremor), and
the total scores for the three handwriting specimens were
calculated (range 0–20). The percentage tremor improvement
was calculated by subtracting the tremor scores at 1 year (±3
months) follow-up from the baseline tremor score.

STATISTICAL ANALYSIS

Continuous variables were summarized with mean and standard
deviation and categorical variables as proportions.
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FIGURE 1 | (A) Intraoperative set up using receive-only six-channel phase array coil (two red arrows) (left). (B) EPI images with the susceptibility artifact due to the

metallic pins used to immobilize the head (arrow) (right).

For each subject, we computed the pairwise linear (Pearson)
correlation coefficients between ROI, transformed to z-score,
and input into the matrix-based-analysis (MBA) software for a

Bayesian multilevel (BML) modeling approach to the statistical
inference of matrix-based data (22). Briefly, the statistical
analysis was performed at the population level MBA with
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TABLE 1 | Demographics, anesthesia regimen, tremor improvement and DBS settings.

ID

(Age/gender)

Anesthesia regimen and

duration

Ventilator settings (rate,

FiO2, end-tidal CO2)

Tremor

improvement

(%)

DBS settings (cathode, anode,

frequency, pulse width, and

amplitude)

1

(72/F)

Fentanyl IV, propofol, rocuronium

6.5 h

12 breaths/min, 21%,

34%

100 0-, 2+, 135Hz, 100 µs, 4 mA

2

(71/F)

Fentanyl IV, propofol, rocuronium

6h

10 breaths/min, 22%,

32%

91 1-, Case+, 195Hz, 80 µs, 3.6 mA

3

(52/M)

Fentanyl IV, propofol, rocuronium

6h

10 breaths/min, 22%,

30%

16 1-, 2+, 160Hz, 70 µs, 2.5 mA

4

(65/M)

Fentanyl IV, propofol, rocuronium

5h

12 breaths/min, 30%,

21%

66 0-, 3+, 160Hz, 90 µs, 3.6 mA

5

(76/M)

Fentanyl IV, propofol, rocuronium

5h

12 breaths/min, 24%,

31%

76 0-, 1+, 155Hz, 110 µs, 3.6 mA

6

(77/F)

Propofol, vecuronium

6h

12 breaths/min, 21%,

34%

66 0-, 2+, 125Hz, 90 µs, 3.6 mA

7

(73/F)

Fentanyl IV, propofol, rocuronium

6h

12 breaths/min, 21%,

34%

84 0-, Case+, 130Hz, 120 µs, 2.8 mA

8

(79/M)

Fentanyl IV, Propofol, rocuronium

6h

14 breaths/min, 18%,

27%

83 1-, Case+, 130Hz, 60 µs, 2.3 mA

9

(71/M)

Fentanyl IV, propofol, rocuronium

5h

13 breaths/min, 21%,

36%

83 0-, 3+, 180Hz, 90 µs, 7.9 mA

10

(73/F)

Fentanyl IV, propofol, rocuronium

6h

10 breaths/min, 32%,

22%

85 1-, 3+, 180Hz, 90 µs, 4.5 mA

all the ROIs incorporated in one Bayesian multilevel model.
We modeled the interaction between imaging time points
(before/after cannula insertion) as a categorical variable. A p-
value < 0.05 was considered significant. In contrast to the
traditional voxel-wise data analysis, we used this approach
because it summarizes the effects of interest within the Bayesian
framework via posterior distributions without resorting to
arbitrary thresholding decisions.

RESULTS

The demographics, anesthesia regimens, and tremor outcomes
data are shown in Table 1. It is important to note that
the duration of anesthesia as reported in Table 1 is includes
induction, frame placement, stage 1 (unilateral DBS electrode
insertion), and stage 2 (insertion of battery pack and connection
to the intracranial lead), plus extubation. The actual surgical time
was around 3 h. The group-level electrode trajectories are shown
in Figure 2. All patients received a single DBS electrode in the
tractography-defined VIM (Model 3389, Medtronic Inc.).

We were able to acquire fMRI in all 10 patients. The fMRI
acquisition was only 10min duration, and we acquired two runs
of it with total 20min of additional scanning time, compared
with standard of care. The average temporal SNR was 190.23
(SD 68.99), with no significant difference between pre- and post-
cannula insertion (p = 0.2) conditions. The motion variable
analysis did not show motion above 1mm (mean 0.5; SD 0.2)
due to head immobilization. The immobilization pins induced a
significant inhomogeneity artifact in the EPI images (Figure 1B).
We corrected this artifact by affinely aligning the two runs,

pre- and post-cannula insertion, before registering both to the
anatomical images.

We observed a low-frequency (∼every 100 s) and
a high-frequency oscillatory BOLD signal artifact
(Supplementary Figure 1) in four patients—these artifacts,
where present, were specifically included in the general linear
model (GLM) together with the motion parameters. Secondly,
we extracted the artifact frequency by computing the first
two principal component vectors of each dataset (3dPVmap
software—AfNI) and used them for targeted bandpassing
during preprocessing.

After cannula insertion, there was a generalized decrease in
connectivity between the left motor and the left premotor cortex,
left putamen, left thalamus, right motor cortex, right premotor
cortex, and right thalamus. Similarly, the connectivity of the right
motor cortex with all the other ROIs in the tremor network also
decreased. The probability interval (uncertainty) of the change
was not statistically significant (Figure 3).

DISCUSSION

Here, we show the feasibility of acquiring a reliable and
responsive fMRI in patients undergoing asleep VIM DBS. We
observed two notable artifacts and developed and released an
analysis pipeline to correct for distortions during intraoperative
imaging. Processing options to address artifacts such as these
are now included as new options for afni_proc.py in the AFNI
software package.

Conventionally, the treatment of medication-refractory ET
with DBS is performed with the patient “awake,” using
microelectrode recordings and test stimulation (23). Despite
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FIGURE 2 | Sagittal representation of the combined volume of stimulation from the active electrodes at the group level overlaid on the motor thalamic atlas region

(Oxford thalamic connectivity atlas, Vim represented as green and ventral oralis anterior and posterior nuclei with bottle green). The group-level volumes of activated

tissue (VTA) are represented in orange, while a higher overlap (80% or greater) between individual VTAs is shown in yellow color. The VIM target’s average distance

from the lateral wall of the third ventricle was 10.1mm (SD 1.55). The target was on an average of 8.83mm (SD 1.35) anterior to the posterior commissure.

its excellent long-term effectiveness (24), some patients cannot
undergo awake DBS surgery either because of high surgical
risk or unwillingness to stay awake due to anxiety and fear.
With the enhanced accessibility of intraoperative imaging, asleep
DBS surgery has recently gained popularity, and it is reported
to be safe and accurate (25, 26). However, asleep VIM DBS
remains challenging because this nucleus is not readily visible
on conventional structural imaging. Furthermore, physiological
feedback during asleep VIM DBS is currently lacking, and
it may ultimately be required as a surrogate for long-term
clinical outcomes similar to intraoperative testing during awake
DBS (27).

As a first step toward this goal, we tested the feasibility of
acquiring fMRI during asleep DBS. We found fMRI acquisition
feasible but associated with two artifacts: a susceptibility
artifact and an oscillatory artifact. The susceptibility artifact
was related to metallic pins used for head immobilization
during surgery and can be addressed using non-metallic pins.

However, the exact origin of these oscillatory artifacts remains
uncertain. These artifacts could be intrinsic to the setup
or associated with external factors (e.g., the ventilator could
induce such low-frequency signals). Traditionally BOLD fMRI
suffers from numerous sources of structured noise (28), which
are difficult to isolate and affect the fMRI signal’s quality.
These include rapid and slow head movements, physiological
activity (breathing and heart-beat), and scanner artifacts. Even
after conventional preprocessing steps, such as slice-timing
correction, motion correction, high-pass filtering, and spatial
smoothing, some of these artifacts still remain (29) in any fMRI
analysis. In particular, clinical fMRI has practical constraints
that make the elimination of such artifacts challenging and
introduce additional artifacts (e.g., via oxygen delivery or
health monitoring equipment). Therefore, one must attempt
to reduce these artifacts during early testing of the clinical or
intraoperative fMRI analysis paradigm. As with all scanning
centers, gauging the scans’ consistency over time, such as
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FIGURE 3 | Changes in connectivity in the tremor network after brain cannula insertion. The changes in connectivity are color coded in the matrix (blue implies decline

and red implies increase). The magnitude of connectivity change is indicated by the bubble size, while the color intensity represents the statistical significance. There

was an overall decline in the tremor network’s connectivity after the canula insertion, although the group-level results did not reach statistical significance (GP, globus

pallidus; TII, middle temporal gyrus).

scanning phantoms or volunteers at regular intervals, is also
strongly advised.

In the scanning center used in the present work, efforts
are underway to determine the root causes of the artifacts
described above, including testing with a new FlexCoilsTM

coil and monitoring for specific noise sources, including from
the ventilator. Nierhaus et al. (30) reported an EEG artifact
during simultaneous MRI acquisition in a Siemens scanner with
frequency peaks in the range of physiologically relevant brain
rhythms (gamma frequency range) due to the MRI ventilation
system. A similar issue to our knowledge has not been reported
in the fMRI literature. The artifacts we observed are likely related,

in part, to some of the clinical scan setup and monitoring.
In our view, these represent a practical concern of note for
intraoperative scanning and something the researchers should be
mindful about.

We noticed that the fMRI signal was responsive to the brain
cannula insertion, and connectivity analysis showed an overall
decline in connectivity in the tremor network, especially the
connectivity between the bilateral motor cortices and other
nodes in the tremor network. Nevertheless, group analysis
failed to reach statistical significance. The insertion of a brain
cannula represents a clinically meaningful surgical manipulation
since patients often experience immediate, although transient,

Frontiers in Neurology | www.frontiersin.org 6 June 2021 | Volume 12 | Article 659002

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Sammartino et al. Intraoperative fMRI During DBS

tremor reduction after DBS placement (31, 32). Notably,
general anesthetics also reduce the global cerebral metabolic
rate, thereby reducing the long-range functional connectivity.
The necessity of scanning subjects with anesthesia is another
practical limitation of intraoperative scanning, compared with
research paradigms. At the anesthetic depth characterized by
the subjects’ unresponsiveness, a partial—but not complete—
reduction in connectivity is generally observed (33), up to
almost 25% lower under general anesthesia than in an awake
state (34). Standardizing the anesthetic regimen and using drug
dosages similar to those used during intraoperative physiological
monitoring can reduce variability in fMRI signal attributed to
the anesthetic depth. We standardized the anesthesia regimen
for all the cases based on a slow injection of 0.5 mg/kg of
Propofol over 3 to 5min followed immediately by a maintenance
infusion at the lowest rate compatible with the maintenance of
sedation. Carbon dioxide concentrations were maintained within
the normal physiological levels of between 4 and 5.7 kilopascals
(kPa), with a respiratory rate of 10–15 breaths per minute, and
blood oxygen saturations were maintained >95% with the use
of increased inspired oxygen concentration as it is standard
clinical practice.

The determination of stimulation-evoked fMRI changes
will be an exciting next step since therapeutic DBS was
shown to induce network-specific fMRI changes across subjects
(35, 36). The methodology and analysis pipeline developed
through this investigation can be deployed in future studies
to develop stimulation-induced intraoperative physiological
feedback during asleep DBS surgery. These efforts are limited by
the manufacturer’s guidelines prohibiting MRI acquisition with
3 T and indwelling DBS hardware (37). Continued investigations
to determine the safety conditions for scanning with DBS
hardware will enable further testing of stimulation-induced
fMRI changes.

In this paper, we purposefully report long-term tremor
outcomes after asleep DBS surgery in accordance to the current
practice in our field [see, for example, Gravbrot et al. (38)].

CONCLUSIONS

It was feasible to acquire functional MRI during neurosurgery
under general anesthesia. In a similar intraoperative setting,
specific sources of artifacts (e.g., ventilation, metal pins, frame,
general anesthesia) need to be accounted for when applying the
standard fMRI preprocessing steps to ensure the robustness of
the data. The suggested acquisition steps and the preprocessing
pipeline will help future investigators to determine functional

connectivity changes during asleep DBS and develop response
biomarkers suitable for live functional MRI feedback to guide
surgical decision making.
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