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Abstract

Status epilepticus (SE), a pro-epileptogenic brain insult in rodent models of temporal lobe epilepsy, is successfully induced
by pilocarpine in some, but not all, rats. This study aimed to identify characteristic alterations within the hippocampal neural
network prior to the onset of SE. Sixteen microwire electrodes were implanted into the left hippocampus of male Sprague-
Dawley rats. After a 7-day recovery period, animal behavior, hippocampal neuronal ensemble activities, and local field
potentials (LFP) were recorded before and after an intra-peritoneal injection of pilocarpine (350 mg/kg). The single-neuron
firing, population neuronal correlation, and coincident firing between neurons were compared between SE (n = 9) and
nonSE rats (n = 12). A significant decrease in the strength of functional connectivity prior to the onset of SE, as measured by
changes in coincident spike timing between pairs of hippocampal neurons, was exclusively found in SE rats. However,
single-neuron firing and LFP profiles did not show a significant difference between SE and nonSE rats. These results suggest
that desynchronization in the functional circuitry of the hippocampus, likely associated with a change in synaptic strength,
may serve as an electrophysiological marker prior to SE in pilocarpine-treated rats.
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Introduction

Temporal lobe epilepsy (TLE) is a common type of partial

epilepsy, and its development can be triggered by an initial brain

damaging insult such as traumatic brain injury, stroke, cerebral

tumor, and status epilepticus (SE) [1]. However, the mechanisms

underlying epileptogenesis remain largely unknown. In rodents,

pilocarpine-induced SE has been commonly used to induce

spontaneous recurrent seizures (SRS) and subsequent pathophys-

iological alterations in the brain comparable to those observed in

TLE patients [2,3,4,5]. The duration and magnitude of the initial

SE have been thought to be important factors contributing to

subsequent development of SRS after a latent period [6,7,8].

However, after the application of the same dose of pilocarpine, SE

is successfully induced in only a subset of experimental rats

[9,10,11,12], which suggests the existence of inter-individual

differences in vulnerability to the same excitotoxic insult. It

remains unknown whether any difference of neuronal network

activity between SE and nonSE rats can be identified before the

appearance of SE.

The hippocampal and dentate regions are crucial structures in

the development of TLE [13,14], and neurons in these areas

encode information through rate coding (via firing rate) and

temporal coding (via modulation of precise spike timing in single

neurons and neuronal ensembles) [15]. These codes and neuronal

population dynamics are related to precise patterns and strengths

of functional connectivity among neurons [16,17,18]. Previous

studies have analyzed hippocampal unit activity in animal TLE

models during interictal [19] or postictal periods [20]. Bower and

Buckmaster observed heterogeneous changes in a subset of dentate

granule cells few minutes before seizure initiation [21]. In addition

to the activities of single neurons, hippocampal networks have also

displayed biphasic interictal-to-ictal state transitions during the

development of pharmacologically induced epileptic seizures [22].

Therefore, it is interesting to ask whether early changes in

hippocampal neural activity following pilocarpine injection are

correlated with the occurrence of SE.

We hypothesized that some early patterns in hippocampal

neuronal network activity following pilocarpine injection can be

identified. In this study, hippocampal neural activity and behavior

patterns in rats were measured following administration of
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pilocarpine. We found a characteristic change in functional

connectivity of the hippocampus prior to SE.

Materials and Methods

Animals
Twenty-six male Sprague-Dawley rats weighting 200–350 g

were used in this study. Each rat was individually housed in a heat-

regulated environment (12-h day/night cycle) with food available

ad libitum. All procedures were approved by the Institutional

Animal Care and Use Committee of National Yang-Ming

University, Taipei, Taiwan, and adhered to the United States

National Institutes of Health (NIH) Guidelines for the Care and

Use of Laboratory Animals.

Surgical Implantation of Electrodes
Rats were anesthetized with isoflurane (3–5%). A microwire

array consisting of 16 Teflon-insulated stainless steel electrodes

(AM systems, Carlsborg, WA; #790700) was used with an

electrode-diameter of 50 mm and an inter-electrode separation of

250 mm [23]. The microwire array was surgically implanted into

the left hippocampus (AP -3.9 mm; ML +2.4 mm; DV -3.7 mm),

and a reference electrode was placed in the cerebellum [24]. Four

screws were attached to the skull to help anchor the dental cement.

Experimental Protocol
After 7 days of recovery from surgery, the microwire array of

electrodes was connected to the recording apparatus via a head

stage. After a 30-minute baseline recording, a dose of methyl-

scopolamine (1 mg/kg i.p., Sigma) was administered, followed 30

minutes later by an injection of pilocarpine (350 mg/kg i.p., P

6503, Sigma). At 90 minutes after pilocarpine injection, diazepam

(10 mg/kg i.p., Dupin injection, China Medical) was given to

alleviate seizure severity. Experimental procedures are shown in

Fig. 1A.

Behavioral Observations
To detect SE, we simultaneously recorded LFP and behavior.

An electrographic activity of a seizure was defined as a high-

amplitude (2 times higher than the baseline noise), high-frequency

(.5 Hz) discharge that lasted at least 10 seconds. Rat behavior

was recorded by a video camera (KMS-D12IR-8, ksounds), and

seizure patterns were assessed according to the five-stage

classification of Racine [25]. In this study, SE was defined as

a continuous motor seizure at stages 4-5 with a concomitant

electrographic seizure activity. The rats were divided into SE and

nonSE groups according to the presence or absence of SE during

the 90-minute recording period following an injection of

pilocarpine (Fig. 1B).

Confirmation of Electrode Positions
At the end of the experiment, rats were processed to confirm the

location of the microwire electrodes. Rats were deeply anesthe-

tized with chloral hydrate (500 mg/kg) and a 10-microampere

positive current was applied for 10 seconds to deposit Fe2+ into the

tissue [26]. The rats were perfused with 4% paraformaldehyde

solution followed by a 3% potassium ferrocyanide/4% para-

formaldehyde solution. Extracted brain tissue was washed with

0.1 M phosphate buffer and was treated with the same fixatives

overnight, followed by treatment with 30% sucrose in phosphate

buffer at 4uC for the next two nights. Brain tissue was sliced

coronally at 50 mm, and electrode tip positions were identified by

blue marks in the tissue created by the reaction products of the

iron deposition. Sections containing blue marks were counter-

stained with cresyl violet (Nissl staining, Fig. 2A).

Recordings of Spike and LFP Signals
We recorded LFP and neuronal ensemble activity from the

hippocampus using a 16-channel neuronal recording system

(Plexon Inc., Dallas, TX). LFP signals were preamplified (1000

x), filtered (0.5–100 Hz, 1-pole Butterworth filter), and digitized at

1 kHz. Spike activities were bandpass-filtered between 150 Hz

and 8 kHz (3-pole Butterworth filter) and were digitized at

40 kHz. The spike signals were imported into NeuroExplorer

(Plexon, Inc.) for subsequent offline analysis. All extracted

waveforms were sorted by amplitude and shape (Fig. 2B). Based

on principal component analysis (PCA), all waveforms were

projected into the first two principal components for unit

separation (Fig. 2C). We used the putative single units with

a minimum absolute refractory period of 2 ms in the autocorrelo-

gram (Fig. 2D) for further analysis.

Monitoring of SRS
Animals were monitored with a video camera for SRS for 12 h/

week (2 h/day, 7 days/week) from Weeks 2 to 5 after pilocarpine

injection. The SRS was classified according to Racine’s scale [25].

Data Analysis
We calculated the mean firing rate within 30 minutes before

and after pilocarpine treatment in 60-sec bins and plotted the

continuous firing rate change. To determine the firing rate change

prior to the onset of SE, the neuronal rates before pilocarpine

injection [-10:0 minutes] were compared with the rates after

pilocarpine injection [5:15 minutes].

To evaluate the strength of functional connections, we

measured the relative spike times of all neuronal pairs using

cross-correlation analysis [27,28,29]. We began by computing the

raw cross-correlation histograms (CCHraw) for pairs with at least

1500 spikes per spike train. The histogram was computed by

counting the relative spike times between two spike trains, binned

at 1 ms and normalized by the square root of the product of the

spike number in cell 1 multiplied by the spike number in cell 2

(Nspikes in cell 1 x Nspikes in cell 2)
0.5. We then separated the raw cross-

correlation histogram into two parts. One part, based on

coincident activity slower than 50 ms (JITTER50, calculated via

the ‘jitter’ method of Kohn and Smith [28]), is driven by common

inputs, slow covariations, and possible changes in animal behavior.

The other part, based on coincident activity faster than 50 ms

(COIN50 = CCHraw – JITTER50), has been considered an index

of functional connectivity between pairs of neurons and may

reflect synaptic strength. COIN50 is also referred to as the cross-

correlogram (‘CCG’). The CCHraw, JITTER50, and histograms

were smoothed with a 7-ms boxcar window. To determine pairs

with significant peaks, we randomly shuffled segments of activity

while preserving the average rate. The results from -150 to 150 ms

were examined, and significant pairs were defined when the

CCHraw peak exceeded the 5-95% envelope of JITTER50 of 2020

jittered spike trains in the -50 ms to 50 ms window (101 bins/

5%=2020). We calculated the connection probability (percentage

of significant pairs) and measured the change in CCG peak height

following pilocarpine injection in SE and nonSE groups.

Statistical Analysis
In this study, all values are reported as mean 6 the standard

error of the mean (SEM), and p,0.05 was considered as

statistically significant. To tell the difference between SE and

Connectivity Change Prior to Seizure Onset in Rats
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nonSE rats, we compared the changes in connection probability

with Chi square tests and evaluated the changes in connection

strength and peak width with two-sample t-tests. Paired t-tests

were used to assess the difference of neuronal firing rates between

pre- and post-pilocarpine treatment in the same rat.

Results

Pilocarpine-induced SE
Within 90 minutes following pilocarpine injection, 14 of the 26

rats showed stages 4-5 SE. Five of the 14 rats were excluded from

further analysis because of either losing the headset (n = 1) or dying

during severe convulsions (n = 4). Therefore, a total of 9 SE rats

were used for subsequent analysis. Twelve rats were defined as

nonSE rats because no sustained motor seizures were identified

throughout the recording period (Fig. 1B).

Abnormal behavior patterns, including head nodding, auto-

matisms, and limb shaking were observed about one minute after

pilocarpine injection in all rats (1.060.2 minutes for SE group and

1.160.2 minutes for nonSE group, p= 0.65). In SE rats, sustained

stages 4-5 seizures began 37.565.8 minutes after pilocarpine

injection. The LFP was recorded for 90 minutes following

pilocarpine injection to show the electrographic patterns in SE

and nonSE rats (Fig. 3). The seizure and LFP patterns showed

similar temporal profiles with respect to the occurrence of SE

(Table 1).

Firing Rate Changes in SE and nonSE Rats
In this study, a total of 262 units were recorded in 21 rats

(7.761.6 units/rat). Figure 4A shows the averaged time-varying

firing rates of SE (red) and nonSE (blue) rats. An increase in firing

rate following pilocarpine injection was found in both SE (from

3.560.6 Hz to 4.860.9 Hz, p = 0.0067) and nonSE rats (from

2.560.3 Hz to 3.860.5 Hz, p= 0.002). The firing ratios relative

to the baseline level were 1.460.2 and 1.460.1 for SE and nonSE

groups (p = 0.91), respectively. As shown in Fig. 4B, some units

(solid points) showed an increased firing rate after pilocarpine

injection, while the others exhibited either a decrease or no change

in firing rate.

Differences in Functional Connectivity Between SE and
nonSE Rats
We used cross-correlation analysis to measure functional

connectivity in 80 SE pairs and 86 nonSE pairs. We defined the

strength of functional connectivity as the peak height of the cross-

correlation histogram (CCHraw, see methods). Figure 5 shows

cross-correlation histograms from an example pair during baseline

Figure 1. Outline of the experimental procedure. A. Experimental steps for induction of status epilepticus (SE). B. Temporal profiles of SE in 9
rats after injection of pilocarpine. No SE was identified in 12 rats. The black bar indicates the occurrence of SE. The early post-pilocarpine period was
defined as the time period of 5–15 min after injection of pilocarpine, as delimited between the two vertical dashed lines.
doi:10.1371/journal.pone.0039763.g001

Connectivity Change Prior to Seizure Onset in Rats
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(Fig. 5A) and early preictal periods (Fig. 5B). Because synchronous

activity might arise from both common input and direct

connections, we used a jitter correction method (50 ms window)

to separate CCHraw (black) into the correlation by slow common

input (‘Jitter50’, blue) and fast coincident activity between neuronal

pairs (‘COIN50’, red) [28]. The common input component

(Jitter50) indicates the portion of the synchronous activity driven

by slow (.50 ms) correlated changes in firing rate, which suggests

a large-scale change in correlated activity. Conversely, a change in

synaptic efficacy between two neurons should be reflected as

a change in fast coincident activity (COIN50), although some

changes in network synchrony may also occur at fast time scales.

Next, we compared changes in peak height within the same pair

(upper panel in Fig. 6). The values of peak height from all neuronal

pairs are plotted in vertical scatter plots for SE (red points) and

nonSE (blue points) pairs. The black lines show the change in peak

height before and after pilocarpine injection. The lower panel of

Figure 6 shows the log values of peak height change from baseline

to post-pilocarpine pre-ictal period. With raw correlations

(CCHraw), an increase in peak height after pilocarpine adminis-

tration was found in both SE and nonSE pairs (SE and nonSE:

121.764.8% and 121.864.4%, respectively; p = 0.98, T83,

79 = 0.0196). Pilocarpine increased the correlation by common

input (JITTER50) in both SE and nonSE rats (120.264.3% and

116.364.1%, respectively; p= 0.58, T83, 79 = 20.5527). Notably,

fast coincident activity between neuronal pairs (COIN50) was

decreased in SE rats and was increased in nonSE rats

(76.0618.7% and 194.2633.8%, respectively; p= 1.1261024,

T83, 79 = 4.0082).

Thus, following pilocarpine injection, there was an overall

increase in synchronous activity and common input in both SE

and nonSE rats, but fast coincident activity showed opposite

changes for SE and nonSE rats. This difference between common

input and coincident activity was significantly larger in SE than in

nonSE pairs (x
2

1 = 26.59, p = 2.5161027 vs. x
2

1 = 0.05, p = 0.82,

based on the number of pairs showing increases in peak height).

Thus, SE and nonSE rats exhibited a significant difference in

network synchrony at the very early period before SE.

SRS During Weeks 2-5 After Pilocarpine Injection
In the 9 SE rats, 5 rats died during week 1, and the other 4 rats

exhibited SRS at approximately day 9 (9.561.9 days) after

pilocarpine injection. However, no SRS event was identified in the

12 nonSE rats.

Discussion

This study focused on hippocampal activity in the early pre-SE

period of pilocarpine-treated rats. The decrease in coincident

activity prior to SE suggests desynchronization of functional

Figure 2. Recording and analysis profiles of neuronal ensembles. A. Histological locations (asterisks) of recording electrode tips in the
hippocampus. Scale bar indicates 500 mm. B. Waveforms of hippocampal spikes (yellow) and noise signals (whitish-gray) separated by morphology
(calibration: 0.2 ms, 100 mV). C. Clusters of single units and noise signals separated according to the first two principal components (PC1 on x-axis;
PC2 on y-axis). D. Autocorrelogram of a single unit with an absolute refractory period of a minimum of 2 ms.
doi:10.1371/journal.pone.0039763.g002

Connectivity Change Prior to Seizure Onset in Rats
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Figure 3. Local field potentials in 10-sec time windows of representative SE and nonSE rats at baseline period (upper panel) and at
5 min (middle panel) and 85 min (lower panel) after pilocarpine treatment.
doi:10.1371/journal.pone.0039763.g003

Table 1. Mean onset time (6 SEM) of status epilepticus (SE) relative to behavioral and local field potential (LFP) patterns after i.p.
pilocarpine injection in nonSE and SE groups.

SE group (minute) NonSE group (minute)

Behavior Onset of intermittent convulsions 1.060.2 1.160.2

Onset of stages 4-5 seizures 37.565.8 No sustained seizures

LFP Onset of repetitive isolated spikes 2.660.5 3.660.7

Onset of almost continuous discharges 30.663.5 No continuous discharges

doi:10.1371/journal.pone.0039763.t001

Connectivity Change Prior to Seizure Onset in Rats
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connectivity of neuronal pairs is an early electrophysiological

feature of SE rats. In contrast, a characteristic early pattern

preceding SE was not found in conventional EEG parameters such

as neuronal ensemble activity and LFP signals.

Electrophysiological changes during preictal, ictal and postictal

periods have been analyzed in previous studies. Heterogeneous

firing rate and emerged discharge in the hippocampus have been

observed in the preictal period [21,30]. Ictal spreading was passed

through hippocampal connections [31,32]. During the latent

period, interictal spikes disrupted normal hippocampal function

[20]. However, the neuronal characteristics in the hippocampus

before the onset of SE are still uncertain. Here, we identified the

decreased strength of coincident firing in SE neurons which

indicates desynchronization of functional connectivity in the

hippocampus prior to the appearance of SE in pilocarpine-treated

rats. Notably, this desynchronization was found exclusively in SE

rats, but the mechanisms underlying this decreased functional

connectivity in the hippocampus remain largely unknown. In line

with previous studies [33,34], the alteration of functional

connectivity preceding SE identified in this study may reflect

a dysregulation phenomenon in the hippocampal and subicular/

entorhinal networks. Our data suggest that desynchronization of

hippocampus may render brain circuits to become more

vulnerable to an excitotoxic stimulation.

Functional changes in the brain can be estimated with various

parameters, such as synchronized oscillations of different frequen-

cy bands, signal correlations in neuronal firing and LFP, and

coincident discharges in single units [35,36,37,38]. For the

coincident discharge, the raw correlation in one pair is composed

of the correlation of the neuronal pair and the correlation by

common input. To demonstrate the correlation of neuronal pairs,

the correlation by common input should be excluded since it is

likely driven by a pool of cortical neurons providing inputs to the

recorded pair. Conventional cross-correlation algorithms for

measurement of spike timings and coincident firing do not extract

the information of functional connectivity embedded in common

input. To focus on the pure functional connectivity of hippocam-

pal neurons, we modified the cross-correlation algorithm with

a jitter correction and COIN50 in functional connectivity analysis

[28]. With this modification, the interference of common input

from different regions can be removed. Our data suggests that

disturbances of neuronal correlation, network dynamics and

disconnected synchrony precede the development of prominent

Figure 4. Changes in the firing rates of hippocampal units in
pilocarpine-treated rats. A. Relative discharge rates 30 min before
and after pilocarpine treatment in SE (red) and nonSE (blue) rats. B.
Rate-by-rate comparison of firing rate change before [-10:0 minute] and
after [5:15 minute] pilocarpine injection (see gray zones in panel A) of
individual neurons from SE (red dots) and nonSE (blue dots) rats. Filled
circles indicate significant difference of firing rate after pilocarpine
injection. Open circles indicate no change in firing rate.
doi:10.1371/journal.pone.0039763.g004

Figure 5. Cross-correlation histograms show coincident firing
of a sample pair of neurons from one SE rat between the
baseline period and early preictal period. Black line indicates the
raw correlation smoothed with a 7 ms boxcar window (CCHraw). The
jitter-predicted correlation (Jitter50, blue) indicates the correlation
driven by common input, as determined by jitter shuffling of the spike
train with a 50 ms window. The cross-correlogram (‘CCG’, or COIN50,
red) corresponds to pair-specific coincident activity, defined as the
difference between raw coincidences and jitter coincidences.
doi:10.1371/journal.pone.0039763.g005

Connectivity Change Prior to Seizure Onset in Rats
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seizures, which is in agreement with previous studies [22,37,39].

However, the effect of low firing rate neurons (,2.5 Hz) were

excluded because only the spike trains with .1500 spikes in 10-

min recording had sufficient spikes for statistical analysis. Direct

patch-clamp recordings from hippocampal neuron pairs in future

studies will help elucidate the mechanisms underlying the

connectivity change prior to SE.

In this study, 54% of pilocarpine-treated rats exhibited SE, but

the rest (46%) did not develop SE. The heterogeneous responses of

rats to the same dose of pilocarpine have been found in previous

studies [9,10,11,12]. According to our follow-up evaluation at

Weeks 2-5, the likelihood of developing SRS is higher in SE rats

compared with nonSE rats. Further studies are warranted to

clarify the role of the hippocampal connectivity change prior to SE

in the development of SRS. However, there are also potential

limitations in the present study. First, the occurrence of SRS might

be underestimated because behavior was recorded by intervals but

not by continuous observations. Second, the connectivity pattern

within the hippocampus might not reflect the only change to the

neuronal network, because the hippocampal area is not necessarily

the only site of seizure onset in a pilocarpine SE model [21].

Further studies with simultaneous recordings in different regions

may help clarify the neuronal correlates of these circuit changes.

Previous studies have identified neuronal complexity loss,

a decrease of dynamical similarity, and increases in accumulated

energy from scalp EEG recordings before the seizure attack [40].

Figure 6. Changes in functional connectivity across all neuronal pairs from cross-correlation analysis. Upper panel shows the raw
correlation (CCHraw), correlation driven by common input (Jitter50), and correlation of neuronal pairs (COIN50) based on peak values at baseline and
early preictal periods. Lower panel shows log ratios of the coincident peak of early preictal period to that of baseline period. The vertical scatter plots
integrate the distributions of all ratio results in CCHraw, Jitter50, and COIN50. Each data point represents a result from one neuronal pair. The mean
peak ratio is indicated by black horizontal line, and the median peak ratio is shown in green. The correlation value of neuronal pairs was significantly
larger in nonSE rats than SE rats.
doi:10.1371/journal.pone.0039763.g006

Connectivity Change Prior to Seizure Onset in Rats
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One recent human study has observed firing rate heterogeneity

from the middle frontal and temporal gyri before and during

seizure events, and the probability of spiking provides one possible

algorithm for seizure prediction [41]. In the present study, mean

firing rates of all units gradually increased after pilocarpine

injection, regardless of whether or not SE is induced, but

heterogeneous firing of individual neurons were found. The

findings suggest that a brain insult by pilocarpine gave rise to

hyperexcitability in hippocampal neurons, but the development of

SE may depend on a substantial change in functional connectivity.

In conclusion, the hippocampal desynchronization reflected as

a change of firing coincidence between neurons may be a useful

biomarker for predicting the subsequent occurrence of SE. Further

studies are needed to clarify the role of the early functional

connectivity change in the development of SRS.
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