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Abstract

Motivation: The ever-growing size of sequencing data is a major bottleneck in bioinformatics as the advances of
hardware development cannot keep up with the data growth. Therefore, an enormous amount of data is collected
but rarely ever reused, because it is nearly impossible to find meaningful experiments in the stream of raw data.

Results: As a solution, we propose Needle, a fast and space-efficient index which can be built for thousands of
experiments in <2 h and can estimate the quantification of a transcript in these experiments in seconds, thereby out-
performing its competitors. The basic idea of the Needle index is to create multiple interleaved Bloom filters that
each store a set of representative k-mers depending on their multiplicity in the raw data. This is then used to quantify
the query.

Availability and implementation: https://github.com/seqan/needle.

Contact: mitra.darvish@fu-berlin.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The advances of whole genome sequencing technologies have led to
an exponential increase in sequencing data, and the amount of col-
lected data already exceeds several databases (https://www.ncbi.
nlm.nih.gov/sra/docs/sragrowth/, last time accessed: 24 February
2021). Especially in the domain of RNA-sequencing, researchers
want to quantify transcripts in their analysis (Seiler et al., 2021).
The analysis of existing sequencing experiments could be helpful for
a variety of reasons, including allowing researchers to (i) find leads
to promising new research topics or (ii) perform a sanity check of
their findings.

For instance, if sequencing experiments were easily searchable
by their quantification, differential gene expression analysis among
different conditions, genomes, tissue, etc. could be performed on all
existing sequencing data and could result in several possible genes
involved in the researched condition, which then can be the starting
point of a more in-depth research project. The same approach could
be used to determine whether a gene set known for a specific bio-
logical process is also involved in other processes. Alternatively,
such a large-scale quantification can be useful to verify findings
based on a small-scale analyses.

Therefore, quantifying massive collections of sequencing experi-
ments can open the door to a better and wider understanding of
transcripts and their biological meaning by making databases
searchable, even if this means to allocate additional space on the re-
spective servers.

However, extracting relevant information from a large amount
of raw data is currently not possible in reasonable time and space. A
standard procedure to narrow down the experiments to those rele-
vant for a study is to scan the associated metadata. But this proced-
ure only works effectively if the metadata is complete and
consistent, which is often not the case. Furthermore, the metadata is
not systematically updated to newer findings, so that any recently
discovered transcripts of interests cannot be found. Moreover, meta-
data searches usually do not contain any quantification information.
Therefore, space-efficient and fast search algorithms that can quick-
ly (re-)analyze and filter the raw sequencing data are needed to iden-
tify data of interest.

In the last few years, several tools for indexing a large amount of
sequencing data were developed. These tools are based on the ana-
lysis of the underlying set of k-mers (Bingmann et al., 2019; Harris
and Medvedev, 2020; Kitaya and Shibuya, 2021; Lemane et al.,
2021; Marchet et al., 2020; Pandey et al., 2018; Seiler et al., 2021;
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Solomon and Kingsford, 2016, 2018; Sun et al., 2018; Yu et al.,
2018). The main idea is to store the k-mers of a representative subset
[e.g. minimizers (Marçais et al., 2017)] of the sequencing reads in a
space-efficient data structures such as counting quotient filters
(Pandey et al., 2018), Bloom filters (e.g. Solomon and Kingsford,
2016) or interleaved Bloom filters (IBFs) (Seiler et al., 2021).
Despite being groundbreaking, all of these tools can only answer
simple membership queries, with no ability to quantify found
transcripts.

REINDEER (Marchet et al., 2020) was the first tool to not only
store representative k-mers for all given experiments but also how
often they occur. These so-called count values can either be exact or
approximate. Although a major breakthrough, REINDEER does
not offer an actual estimation of the quantification for a transcript,
but leaves it to the user to interpret the stored count values.

Recently, the tool Gazelle (Zhang et al., 2021) was published.
Similar to REINDEER, Gazelle stores k-mers and their counts, but un-
like REINDEER, they always perform a log-transform of the count
values to save space, claiming that storing the raw count values is not
necessary as significant differences in gene expression data often fol-
low a double log fold change (Zhang et al., 2021). Furthermore,
Gazelle offers an estimation of the quantification for a transcript by
taking the interquartile mean of the stored count values.

Traditionally, quantification involves a computationally expen-
sive alignment step, where the reads of one RNA-sequencing (RNA-
seq) experiment are aligned to a transcriptome to measure the ex-
pression, e.g. STAR (Dobin et al., 2013). Lately, alternative
approaches have been proposed, where this alignment step was
replaced by faster methods such as analyzing the k-mers of a tran-
script [e.g. Sailfish (Patro et al., 2014)] or using pseudoalignments
[e.g. the tools kallisto (Bray et al., 2016) and Salmon (Patro et al.,
2017)]. All of these approaches use an expectation–maximization al-
gorithm to handle ambiguity of reads or k-mers and a transcriptome
to determine relevant k-mers beforehand. Although these develop-
ments have been a considerable improvement compared to exact
alignments, analyzing a dataset of thousands of experiments is still
too costly.

In this article, we introduce Needle, a tool for semi-quantitative
analysis of large collections of expression experiments. Needle is
based on two ideas. First, it uses the IBF (Dadi et al., 2018; Seiler
et al., 2021) with minimizers instead of contiguously overlapping k-
mers to efficiently index and query these experiments. Second, ra-
ther than storing the exact raw count value of every minimizer,
Needle splits the count values of one experiment into meaningful
buckets and stores each bucket as one IBF.

We show how this discretization can efficiently and accurately
approximate the expression of given transcripts for all given files at
once. Due to the efficiency of the IBF, Needle can build the index
3� 54 times faster than REINDEER and the count values can be
obtained 16� 100 times faster while only using 3� 39% of the
space required by REINDEER, where the speed advantage depends
on the chosen minimizer window size. A direct comparison to
Gazelle was not possible as the tool is not publicly available yet, but
based on their provided analysis of Gazelle (Zhang et al., 2021), we
are quite confident that Needle also outperforms Gazelle.

2 Materials and methods

2.1 Minimizers
Alignment-free methods rely on a simpler, but still representative
method to capture similarities of sequences. Most common is the
usage of all k-mers, but similar k-mers often contain the same infor-
mation. Therefore, it is not necessary to store all of them. For this
reason, (w, k)-minimizers (Roberts et al., 2004; Schleimer et al.,
2003) are used in Needle.

A minimizer is the smallest k-mer of all k-mers (including those on
the reverse complement strand) inside a window of length w (see
Fig. 1 for an example). Often, the minimizer of one window will re-
main the minimizer (the smallest k-mer) when shifting the window by

one. In that case, the minimizer is stored only once, which leads to a
reduction of memory cost for minimizers compared to simple k-mers.

Notably, we also use ðw; kÞ �minimizers where the window size
w is equal to k. In this case, there is still the choice between the k-
mers of both strands. Hence, ðk;kÞ �minimizers represent canonical
k-mers.

In Figure 1, the smallest k-mer is defined by the lexicographical
ordering, but it has been shown that prior randomization is benefi-
cial as it prevents a skewed distribution (Marçais et al., 2017).

For the properties and the size of the data we will handle, k will
usually be in the range of 16� 32 because in this range the chance
of random hits is rather low.

2.2 The Interleaved Bloom Filter
An IBF (Dadi et al., 2018; Seiler et al., 2021) with b bins consists of
b Bloom filters (Bloom, 1970) which then are interleaved.

A Bloom filter is a probabilistic data structure based on a bitvec-
tor and h hash functions. To insert a value (minimizers), the bits
pointed to by the h hash functions are set to one. The minimizers are
treated as integers and the hash functions are based on fastrange
(Lemire, 2019) and different large irrational numbers as seeds to en-
sure uniform hashing. A value is considered to be present in a Bloom
filter if all of its hash positions are set.

Because different input values can have the same hash values for
some hash functions, a query answer of a Bloom Filter might be a
false positive. The bigger the Bloom Filter, the smaller the false posi-
tive rate. The probability of a false positive given a Bloom filter of
size n bits and m inserted elements is approximately

pf ¼ 1� 1� 1

n

� �h�m
 !h

: (1)

While one Bloom filter can only store information about one experi-
ment, the IBF can contain b experiments by interleaving b Bloom fil-
ters. Essentially, an IBF replaces each bit in the Bloom filter with a
bitvector of size b, where the i-th bit contains information about the
i-th experiment. Hence, an IBF consists of b � n bits. Inserting the in-
formation on a single experiment i works similar to the insertion
into a Bloom filter: the hash functions return the start positions to a
b-sized bitvector and the i-th bit of this subvector is set. Therefore,
retrieving all experiments containing a certain value is easy: All b-
sized bitvectors that the h hash functions point to are combined into
a final bitvector by using a logical AND operation. A set bit in such a
final result vector indicates that the experiment contains the
searched value (see Fig. 2 for an example).

These resulting bitvectors can be used to create count vectors by
simply accumulation.

Note that an IBF is similar to a Bloom filter at its core, as both
are bitvectors and therefore are easy to compress using sparse bitvec-
tors, at the cost of increasing the running time of a query.

2.3 Quantification
The main goal when quantifying a query usually is to be as accurate
as possible while still being fast and space-efficient. For a prefilter,

Fig. 1. Example of (8, 4)-minimizers. The shown 4-mers are the smallest 4-mers in

their respective window of size 8. The second minimizer originates from the reverse

complement strand and is denoted by lower letters and has to be read from right to

left. The last two windows share the same minimizer, as it is often the case for sub-

sequent windows. They are shown twice, but are only stored once
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this goal is reversed because a more in-depth analysis with more ac-
curate methods can follow once relevant experiments have been
extracted. Therefore, speed and space-efficiency are the main motiva-
tors for Needle. On that account, we define the expression value of a
transcript as the median of its minimizer counts. We chose the median
instead of the mean to disregard outliers (see Fig. 3 for an example).

This approach is potentially less accurate than a (pseudo-) align-
ment approach, as no alignment is performed and all minimizers, no
matter what their most likely origin is, are considered and all infor-
mation of their order is lost. Hence, isoforms or paralogous genes
might be harder to distinguish from each other. However, if parts of
a transcript are not covered at all or covered extensively, it will not
impact the expression value because the median is stable against
outliers.

We will show that this approach is still accurate enough to serve
as an efficient prefilter and its results are close to the actual expres-
sion values in most cases.

2.4 The q-quantitative filter
To store count values efficiently, we use q IBFs to discretize the
count value distribution. An IBF i contains only minimizers with
count values greater or equal than ti and smaller than tiþ1, where ti
and tiþ1 are called thresholds. There are q levels in total. For the last
level, all minimizers greater or equal to its threshold tq are stored
(see Fig. 4 for an example).

Determining good thresholds for RNA-seq experiments is chal-
lenging because the minimizer content differs for each experiment.
Furthermore, the minimizer count distribution does not contain
multiple local minima, meaning that there is no obvious approach to
partition the distribution.

Needle provides two options for defining the thresholds. The
first option consists of user-defined thresholds. The second option is
to use automatic thresholds for each individual experiment. Instead
of having the same threshold for each experiment on one level, each
experiment has its thresholds which are determined by recursively
computing the median of the number of minimizer occurrences to
determine ti, stopping once q � 1 thresholds are determined. Hence,
the minimizer content at every level is half of the minimizer content
at the previous level (except for the last level, which contains all
minimizers with counts > tq).

As this would lead to disregarding every minimizer smaller than
the first threshold, the first threshold is defined by a cutoff. The cut-
off is either user-defined or automatically determined by the file
size, similar to the cutoffs used in other tools (Pandey et al., 2018;
Solomon and Kingsford, 2016) (t1 ¼ cutoff).

The advantage of the user-defined thresholds is that the thresh-

olds do not need to be computed and take less space because there
are only q thresholds for all experiments. However, the automatic
thresholds are based on the actual minimizer count distribution of
the experiments.

2.4.1 Constructing the q-quantitative filter

The size of an IBF is crucial for the false positive rate and should
therefore be picked carefully. Needle expects the user to define a

desired false positive rate and sets the size of one IBF according to
the average number of minimizers that needs to be stored per experi-
ment. If the user-defined thresholds are used, it is necessary to check

the distribution of minimizers over the given levels for each experi-
ment. If the automatic thresholds are applied, the expected number
of minimizers can be estimated from the total number of minimizers

in a file by recursively dividing that number by two for every level.
As experiments can have a highly diverse number of minimizers,

especially if the experiments have different coverages, the false posi-
tive rate will not hold for every experiment, only for those with a

number of minimizers close to the average. To take the false positive
rate into account while querying, the actual false positive rate for
every experiment is stored in an extra output file.

Once the sizes of all IBF s are known, they are created simultan-
eously and kept in main memory, while going over every experiment

and inserting the minimizers in the correct IBF according to their
counts.

2.4.2 Querying the q-quantitative filter

To answer the query of how much a given transcript is expressed in
each of the target experiments, we count the number of (w, k)-mini-

mizers of the transcript at each level using the respective IBFs. Given
that the expression of a transcript is defined as the median of its

occurring minimizer count values, the expression value can be
obtained from the count values’ median. However, the actual count
values are not stored, and the median must be approximated. In the

following, we describe how this can be achieved by a linear scan
over all q IBFs of the q-quantative filter.

Let T be some transcript and T 0 be the set of all (w, k)-minimiz-
ers therein, with jT 0j ¼ m. Furthermore, let CiðT 0Þ be the number of
minimizers 2 T 0 found in the IBF at level i. Using this, we can ap-

proximate the median (¼ expression value) le for each experiment e
in the q-quantitive IBF by a linear interpolation of two adjacent lev-

els, indicated by the indices xe and ye ¼ xe þ 1. The index of xe is
chosen such that

Fig. 2. Example of an IBF. At the top, individual Bloom filters of length n are shown,

these were interleaved to create an IBF of size b�n using three hash functions.

When querying one minimizer, here ACGTACT, the hash functions return three

positions in the IBF, so that three sub-bitvectors can be retrieved. These sub-bitvec-

tors are combined with a bitwise & to a final resulting bitvector, where a 1 indicates

that the minimizer is found in that experiment. Here, ACGTACT can be found in

the last (blue) experiment. The figure is taken from Dadi et al. (2018) (A color ver-

sion of this figure appears in the online version of this article.)

Fig. 3. Example how the expression value is derived. The blue line stands for a tran-

script, while the yellow lines symbolize reads covering this transcript. As we do not

use an alignment step, this information is not available to Needle. The only avail-

able information is the number of minimizer counts in the file containing the reads.

For example, the 5 reads intersecting the box could each have a minimizer in the

box which would result in a count of 5. If a minimizer is unique to a transcript, the

minimizer counts represent the amount of reads covering the transcript. If the min-

imizer is not unique to a transcript, but also appears in a different transcript, the

minimizer count might be higher (e.g. 32 in the example). Taking the median of

these minimizer counts disregards the outliers and results in a reliable expression

value (A color version of this figure appears in the online version of this article.)
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ae ¼ Cxe
ðT 0Þ

be ¼
Xq

i¼ye

CiðT 0Þ

ae þ be �
m

2
^ be <

m

2
:

(2)

That is, the index of the level at which the sum of all counts in this
level (ae) and all levels above (be) is equal to or greater than half of
the number of (w, k)-minimizers present in T (m

2) and, in addition,
the count of all levels above (be) is less than this number. From this,
the median le can be approximated by

le ¼ ye � ðye � xeÞ �
m� be

ae

� �
: (3)

To calculate be, the number of found minimizers at levels higher
than ye has to be considered, otherwise the threshold of m

2 might
never be met. This is problematic as every IBF has its own false posi-
tive rate. Therefore, summing up the results of multiple IBFs would

lead to a higher false positive rate and makes a correction necessary.
The number of observed minimizers at one level (no) is the result of
true positives (ntp) and false positives, and it can be assumed that

no ¼ ntp þ ðn� ntpÞ � fpr (4)

holds for n being the number of minimizers in a transcript and fpr
the false positive rate of the underlying IBF for one specific experi-
ment. By transforming this formula, the number of true positives
can be estimated by:

ntp ¼
no � n � fpr

1� fpr
(5)

In summary, each of the q IBFs created is searched once to find the
two levels x and y. As a result of this, the search time is O(q).
Although this seems like a drawback, in reality, a small number of
levels q � 15 is sufficient and our current search speed outperforms
REINDEER by a factor of 27� 1205 (see Table 2).

Fig. 4. Example of Needle’s workflow for (4, 4)-minimizers. The q-quantitative filter is constructed by determining all minimizers and their occurrences. A minimizer z with

count c is added to level i if ti < c � tiþ1. For example, minimizer ‘ACCG’ occurs six times in the red file and is stored in the second level, because t2 ¼ 4 <¼ 6 < t3 ¼ 8.

Note that the dots in the otherwise empty levels represent minimizers not shown in the small excerpt of the RNA Seq files. The query transcript consists of 17 nucleotides and

has 14 minimizers. If half of that (7) are found for any color, the transcript’s expression is estimated. For the red example, this happens on the first level. For the blue example,

on the eighth level (because this is the last level, the expression is set to the threshold of that level) and, for the green example, on the seventh level (A color version of this figure

appears in the online version of this article.)
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The described search could either start with IBF1 and then search
IBFs with increasing levels, or start with the IBFq and then search
downwards. IBF1 depends on either the first user-defined threshold
or the cutoff value, which are usually not set to 0 to exclude mini-
mizers resulting from erroneous reads. Therefore, Needle starts with
IBFq because then it is not necessary to account for this dependency.

2.4.3 Normalization

Normalization is an important step in any further downstream ana-
lysis, but not every normalization method is affordable for a large
dataset. For instance, a normalization method considering all avail-
able data for the normalization [like DESeq2 (Love et al., 2014)]
becomes computationally expensive when using hundreds of experi-
ments. Therefore, Needle provides a normalization which is based
on the content of one experiment [like FPKM, TPM values (Zhao
et al., 2021)]. The estimated expression value is normalized by
dividing it by the value of the threshold of the second level t2 of that
experiment. Because the levels depend on every experiment and their
minimizer content, higher sequencing coverages lead to a greater
divisor and thereby to a more accurate comparison between the
experiments. (Level 1 and its thresholds t1 are ignored because they
are based on the cutoff.) Notably, unlike FPKM or TPM, the pre-
sented approach does not need a correction for the gene length be-
cause the determination of the median is independent of the number
of minimizers. Furthermore, this normalization method only works
for individual thresholds and not user-defined thresholds because it
is based on different thresholds per experiment.

2.5 Accuracy evaluation
To evaluate the accuracy of Needle’s approach, simulated and real
experiments were used to measure the quantification step by consid-
ering different expressions of transcripts in one sample and across
multiple samples.

All methods were tested with Needle(v1.0.1) and its direct com-
petitor REINDEER(v1.0.2), but also the pseudo-aligners kal-
listo(0.46.2) and Salmon(v1.5.1), which presumably give an upper
bound for the achievable accuracy, since they use an expensive
alignment step. For all tools, a k-mer size of 19 was used in accord-
ance with the analysis of the simulated data in Seiler et al. (2021).

2.5.1 Simulated data

We generated 256 experiments, each with two files containing dif-
ferentially expressed genes. For this, 75-bp paired-end reads based
on 100 randomly picked protein-coding transcripts of the human
genome were simulated using the simulator Polyester (Frazee et al.,
2015). In these experiments, 10% of transcripts were simulated as
differentially expressed, the fold change of the differentially
expressed transcripts was 1/4, 1/2, 2 or 4 with equal probability.
Four different coverages were used, namely 20, 40, 60 and 80,
which means 64 pairs of files for each coverage.

The simulated experiments were evaluated by determining the
fold change for the differentially expressed genes using the not nor-
malized expression values of the respective tool. Furthermore, we
computed the fold change between the different coverages for the
not differentially expressed genes.

2.5.2 Real data

To assess the accuracy with a real dataset, we used data from the
Sequencing Quality Control (SEQC) project (SEQC/MAQC-III
Consortium, 2014). The SEQC data contains four samples, where
Sample A consists of Universal Human Reference RNA (UHRR)
and Sample B of Human Brain Reference RNA (HBRR). Samples C
and D consist of a mixture of A and B in ratio 3/1 for C and 1/3 for
D. The expression of the RNA-seq data was determined by real-time
polymerase chain reaction (RT-PCR) for 818 genes. Furthermore,
expression values of microarray data for the same samples for
15 984 genes were taken into consideration.

Three evaluation methods were used. First, the Spearman correl-
ation between the ground truth expression values from the RT-PCR

and the expression values as determined by the respective tool.
Second, the Spearman correlation with the microarray expression
values was determined. And third, the mean square error of the
expected fold change of the ratio between C and D and fold change
calculated from the expression values determined by the different
tools was reported. The fold change based on the expression values
is based on the ratio of C and D and was calculated by the following
formula:

D

C
¼ Ai þ 3Bi

3Ai þ Bi
(6)

Where Ai and Bi represent the expression values of a transcript i for
experiment A and B.

2.6 Speed and space consumption
To evaluate the speed and space consumption of Needle, the well-
established dataset from Solomon and Kingsford (2016) was used. It
consists of 2568 RNA-Seq experiments containing blood, brain, and
breast tissue. Similar to our approach in Raptor (Seiler et al., 2021),
we excluded all experiments with an average read length below
50 bp. Reads shorter than that are rarely relevant, and this gave us
the opportunity to test the minimizer approach with a broader win-
dow size. Removing those files left us with 1742 RNA-Seq experi-
ments which have a size of around 6TiB (gzipped FASTQ files).

On this dataset, a preprocessing step was performed before the
actual index building, similar to previous analysis (e.g. Marchet
et al., 2020; Pandey et al., 2018). This preprocessing step calculates
the k-mers/minimizers beforehand and removes every k-mer/minim-
izer which does not meet a certain count threshold. The well-
established thresholds (Pandey et al., 2018; Solomon and Kingsford,
2016) were used, the thresholds depend on the size of the gzipped
file and are either 1 (for �300 MB), 3 (for 300� 500 MB), 10 (for
500� 1000 MB), 20 (for 1� 3 GB) or 50 (for >3 GB).

Furthermore, we used a k-mer size of 21 as proposed by
REINDEER (Marchet et al., 2020).

2.7 Using quantification for differential gene expression

analysis
One possible application of Needle is to use it as a prefilter to find
promising new leads in a research project. As a proof of concept, we
analyzed the above-mentioned 1742 experiments by using differen-
tial expression to find tissue-specific genes.

We quantify and normalize all known protein-coding genes in
these experiments with the (41, 21)-Needle index and consider all
genes, which are differentially overexpressed between one tissue
compared to the other two tissues according to the t-test using a p-
value that is corrected by the number of genes. These differentially
expressed genes are then analyzed with ShinyGO (Ge et al., 2019)
for a gene ontology analysis.

2.8 Extracting experiments based on quantification
Another possible application of Needle is to determine experiments
of interest. As a proof of concept and inspired by the analysis of
Marchet et al. (2020), we searched for overexpression of the breast
cancer oncogenes CCND1, ERBB2, FOXM1, MYC in the above
mentioned 1742 experiments, which contain 552 breast cancer sam-
ples according to the experiment’s metadata.

Overexpression is defined within a sample by considering the
mean expression of all protein-coding genes in that sample. If an
oncogene has a greater expression than the mean, it is considered
overexpressed. The set of samples with an overexpressed oncogenes
is then compared to the actual set of breast cancer samples to deter-
mine true and false positives, as well as true and false negatives.

3 Results

All analyses were performed on a Linux machine (MarIuX64 2.0)
with 1TB RAM and an Intel(R) Xeon(R) Gold 6248 CPU (@
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2.50 GHz with 20 cores and 58MB L3 cache). The false positive rate
of Needle was set to 0.05 for all analyses, as this is a typically used
false positive rate with Bloom filters (Bingmann et al., 2019). In our
supplementary, we provided the same results with a rather high false
positive rate of 0.3 as suggested by Bingmann et al. (2019) in their
approach.

3.1 Accuracy
For the simulated dataset, Needle was applied with user-defined
thresholds by using 15 thresholds ranging from 5 to 520. This covers
all coverages multiplied with the possible fold changes to see
Needle’s performance in the best-case scenario, where the possible
expression values are known beforehand. For the SEQC dataset,
Needle’s automatic threshold determination was applied, where the
number of levels was set to 10 because more levels had little impact
on Needle’s performance, as higher levels only store information
about minimizers with high counts.

As mentioned before, REINDEER’s query does not return an ex-
pression value but all k-mer occurrences, hence similar to the defin-
ition in Needle we took the median of these occurrences as the
expression value. Because REINDEER has an exact mode,
REINDEER’s result should be the upper bound of Needle’s accur-
acy, which only approximates the median.

As expected, kallisto and Salmon are the most accurate tools for
the simulated dataset, they have the smallest variation and their
medians are the closest to the actual fold changes of the differential-
ly expressed genes and the coverages (see Fig. 5). Needle and
REINDEER show a similar enough performance. Their medians
only differ slightly, and they show a greater variance. Interestingly,
Needle seems to perform a bit better than REINDEER as it has a

smaller variance in most cases. Furthermore, Needle’s performance
with different window sizes is in all instances accurate enough and
no big difference between the window sizes can be spotted.
Moreover, the variation of all tools increases with the fold change
for both the differentially expressed genes and the coverages, indi-
cating that the correct quantification of highly expressed transcripts
is more difficult to determine, probably due to repetitive regions.

For the SEQC dataset, we expected kallisto and Salmon to per-
form better than REINDEER and Needle as they use more informa-
tion such as the order of the k-mers, but surprisingly REINDEER
and Needle perform as good as kallisto and Salmon (see Table 1)
regarding the Spearman correlation. In some cases, Needle performs
even slightly better than the other tools. This is even more surprising
as REINDEER uses the same method to determine the expression
value of a transcript as Needle, but does so exactly instead of ap-
proximately. The better performance of Needle indicates that an ap-
proximation might be better equipped to deal with the noise in the
data and therefore is more robust.

Additionally, Needle’s normalization is seemingly slightly better
than kallisto’s and Salmon’s (see Table 1), but we think this is not a
significant difference, especially because the variance for all three
tools is around 3. However, it shows that Needle’s normalization
works similar to already established normalization methods like
TPM. The high mean square error for REINDEER with the SEQC
dataset is a result of the missing normalization method. If Needle is
performed without a normalization, the mean square error is 1.2 for
all window sizes and the variance is much higher. Furthermore, this
result underlines the importance of a normalization method, even in
cases where the experiments have similar coverages.

As already seen in the simulated dataset, using different window
sizes for the minimizers like has such a small impact on the accuracy
that the difference is negligible. Hence, the usage of minimizers in-
stead of k-mers is completely reasonable.

The similar performance of Needle and REINDEER to kallisto
and Salmon shows that using a definition as simple as the median of
the minimizer occurrences to determine the expression of a gene is
more than reasonable.

3.2 Space and speed
While running REINDEER, we encountered multiple problems,
which were also reported by other users. While constructing the
REINDEER index in its exact mode, we ran into a zlib error when
using fewer than 4 threads. But for multiple threads, querying lead
to a segmentation fault error. Therefore, we used 1 and 4 thread(s)
for the comparison. Moreover, for REINDEER approximation
mode using the log option, querying was not possible as it resulted
in either an output that did not return all count values, or caused a
memory allocation error. Hence, it was not possible to analyze the
accuracy of this mode. A run time comparison with all erroneous

Table 2. Comparison of Needle and REINDEER for k¼ 21 on the large real dataset

Build Query

Time RAM Index size 1 100 1000 RAM

1 Thread REINDEER — — — 813 897 1710 80.7

REINDEER log 432 39.4 27.9 >559 >559 >559 67.3

Needle (21, 21) 112 (118) 121.1 62.2 (20.1) 48 (20) 40 (33) 141 (208) 30.4 (9.7)

Needle (25, 21) 33 (37) 38.4 19.7 (6.9) 11 (8) 13 (12) 48 (68) 9.6 (2.9)

Needle (41, 21) 9 (8) 9.4 4.8 (1.7) 2 (3) 4 (3) 15 (20) 2.4 (0.7)

4 Threads REINDEER 251 44.1 50.5 >746 >746 >746 80.7

REINDEER log 218 39.4 27.9 >559 >559 >559 67.3

Needle (21, 21) 34 (33) 121.1 62.2 (20.1) 23 (12) 19 (17) 45 (62) 30.4 (9.7)

Needle (25, 21) 9 (11) 38.4 19.7 (6.9) 9 (5) 10 (7) 19 (19) 9.6 (2.9)

Needle (41, 21) 3 (3) 9.4 4.8 (1.7) 2 (1) 3 (2) 5 (6) 2.4 (0.7)

Note: For the query comparison, the run times for 1/100/1000 sequence(s) were measured. The RAM usage was the same for all query comparisons. The

REINDEER build with one thread resulted in a zlib error, the REINDEER log query resulted in a malloc error and the REINDEER query with 4 threads in a seg-

fault, in these cases the time for loading the index is reported. Needle ðw; kÞ represents Needle based on ðw; kÞ-minimizers. Build-Time is in minutes, Query-Times

in seconds, RAM, and Index size in GB. The values in parentheses are the results when using compressed IBFs.

Table 1. Comparison of Needle, kallisto and Salmon for k¼ 19 on

the SEQC dataset

SEQC Microarray MSE

kallisto 80.2 76.3 0.6

Salmon 80.7 76.7 0.6

REINDEER 80.3 76.8 1.3

Needle (19, 19) 80.6 77.1 0.5

Needle (23, 19) 80.5 77.1 0.5

Needle (39, 19) 80.4 76.9 0.5

Note: Needle ðw; kÞ represents Needle based on ðw; kÞ-minimizers. SEQC

represents the Spearman correlation in percent to the RT-PCR quantification,

microarray the Spearman correlation in percent to the miroarray quantifica-

tion and MSE gives the mean square error of the titration monotonicity tran-

script-wise.
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queries was nonetheless possible, as at least loading the index
worked. These loading times are reported for REINDEER’s query, if
the query resulted in an error.

Unlike the accuracy analysis on the SEQC dataset, we used 15
levels to avoid giving Needle an advantage by storing too few levels.
But even for the biggest Needle index, all IBFs from level 10 onward
only had a size of a few MBs. Thus, storing even more levels would
have little impact on Needle’s overall performance, which makes
this a fair comparison to REINDEER.

Needle outperforms REINDEER in every aspect, it is up to 48
times faster in construction than REINDEER log when using a win-
dow size of 41 and in its compressed form 16.4 times smaller (see
Table 2). Comparing Needle with a window size of 21 to the exact
REINDEER index using 4 threads, Needle is two times faster and its
index in compressed form takes less than half of REINDEER’s size.
Even compared to REINDEER’s smaller index (REINDEER log),
Needle performs better in every version regarding construction time
and compressed index size.

Needle (21, 21) has a larger memory footprint than REINDEER
because all IBFs are loaded into memory during construction.
However, we believe Needle is applicable for most modern use cases
as a memory usage of 121 GB can be handled by most modern serv-
ers and once the Needle index is created, the memory usage is only a
fraction of the built memory usage (see Table 2).

While Needle (21, 21) in its uncompressed form has a larger
index size than REINDEER, Needle has the ability to rely on a
much smaller index through compression, the usage of a greater
window size or the usage of a larger false positive rate (see
Supplementary Table S5).

The advantage of a greater window size can be seen in the huge
impact it has on the efficiency (see Table 2). An increase of the win-
dow size by 4 [(25, 21)-minimizers here, (23, 19)-minimizers in the ac-
curacy datasets], which was shown to be almost as accurate as a
window size equaling the k-mer size, leads to an improvement in the
construction time, the RAM usage and the index size by a factor of 3.
For an increase in the window size by 20 [(41, 21)-minimizers here,
(39, 19)-minimizers in the accuracy datasets] this speedup factor is at
least 12.

Therefore, it is reasonable to use greater window sizes because
the small loss of accuracy is exchanged for a huge gain in efficiency.

The advantages of Needle can also be seen in its fast query time
(see Table 2). When querying 1000 transcripts, Needle with
ðw;kÞ ¼ ð41;21Þ needs 15 s, which is over 100 times faster than
REINDEER’s 1, 710 s and still vastly faster than even querying just
one transcript with REINDEER, which takes more than 800 s. Even
with all k-mers ðw; kÞ ¼ ð21;21Þ, Needle is over 10 times faster.
While we could not run a query with REINDEER log successfully,
we were capable of loading the index, which is a necessary step in

the search, this took around 9 min. Hence, Needle also outperforms
in every version the REINDEER log index.

The number of threads only improves the query performance.
Therefore, the performance gain is more visible the more sequences
are searched.

Querying Needle with window sizes of 25 and 41 takes around
or less than a minute (for w¼25) and less than half of a minute (for
w¼41) for all numbers of transcripts. As expected, we can see that
the faster loading of a smaller compressed Needle index has less im-
pact with an increasing number of transcripts or the usage of mul-
tiple threads, making the uncompressed searches the fastest option
for searching 1000 transcripts as the overhead of the compressed
version becomes the determining factor.

3.3 Identifying tissue-specific genes
In this experiment, we want to examine if the overexpressed genes
identified with Needle were correctly annotated to the tissue type of
origin. Quantifying and normalizing all protein-coding human tran-
scripts (103, 155 total) took <20 min with one thread (<6 min with
four threads).

The differential expression analysis led to the discovery of 1423
differentially expressed genes for the blood tissue, 2293 for the brain
tissue and 90 for the breast tissue. As can be seen in Figure 6, the
found genes indeed correspond to known genes related to the tissue
of origin. The genes overexpressed in brain tissue samples are associ-
ated with the temporal, occipital, parietal and frontal lobe. The
overexpressed genes from the blood samples are associated with
blood directly but also to tissues involved in leukemia, indicating
that the blood tissue samples in the experiments might originate
from cancer patients. The overexpressed genes from the breast tissue
show a high enrichment for columnar cells, which is reasonable as
columnar cell lesions are diagnosed often in breast tissue due to the
increase in mammography screening (Logullo and Nimir, 2019).

Moreover, already known associations are found. For example,
the association between brain and kidney tissue (Chen et al., 2021)
or the association between breast and eye tissue (Houlston and
Damato, 1999).

Furthermore, we performed a disease ontology analysis as well
and as can be seen in the Supplementary Table S7, the associated
genes also correspond to the tissue of origin. This proves that the dif-
ferentially expressed genes found by Needle are useful for an ex-
ploratory analysis.

The point of the performed analysis was not to find new revela-
tions about the blood, brain or breast tissue, but demonstrate a use
case of Needle. Unlike kallisto or Salmon, Needle is capable of quanti-
fying thousands of genes in thousands of experiments in minutes.
Therefore, if a researcher is interested in finding new associations be-
tween different tissues, different diseases or different genomes, Needle
can be used as a starting point to find interesting transcripts.

Fig. 5. Left shows the differential expression comparison and right the coverage comparison of Needle, kallisto, Salmon and REINDEER for k¼19 on the simulated dataset.

Needle ðw; kÞ represents Needle based on ðw; kÞ-minimizers. The values on the x-axis in the left figure represent the ground truth, the expected fold change between differential

expressed genes, while the y-axis presents the actual measured fold change. The values on the x-axis in the right figure represent the ground truth, the actual fold change be-

tween coverages, for example 40/20 stands for coverage 40 divided by coverage 20, while the y-axis presents the actual observed fold change between coverages
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At the same time, this analysis can be seen as a confirmation of
already established knowledge. Therefore, Needle can also be used
as a sanity check.

3.4 Identifying cancer samples within a collection
As shown in Table 3, the false positive rate is low for all oncogenes,
but depending on the oncogene the false negative rate is quite high.
Nevertheless, the analysis was merely a proof of concept to show
that the quantification can be used for identifying a subset of experi-
ments of interest. The good results of the oncogene CCND1 are
promising that this is possible. A more in-depth analysis is necessary
to determine how oncogenes can more effectively be used to identify
breast cancer samples reliably, as it seems apparent that the usage of
only one oncogene has limitations.

4 Discussion

A database is only as good as its utility allows it to be, therefore stor-
ing an enormous amount of biological data without the possibility
to search through it efficiently makes storing the data almost point-
less. Hence, finding a solution to this bottleneck is one of the most
important challenges in computational biology today.

In our study, we have shown that it is not necessary to store the
exact occurrences of all representative k-mers, it is enough to map
them to some levels. Thus, all recent research (Bingmann et al.,
2019; Harris and Medvedev, 2020; Kitaya and Shibuya, 2021;
Lemane et al., 2021; Marchet et al., 2020; Pandey et al., 2018;
Seiler et al., 2021; Solomon and Kingsford, 2016, 2018; Sun et al.,
2018; Yu et al., 2018) for finding a fast and space efficient data
structure to answer in which experiments a transcript is present, can
be easily adapted to a tool estimating expression values by storing
this data structure multiple times. However, as we demonstrated in
our previous study (Seiler et al., 2021), the most efficient data struc-
ture at the moment is the IBF.

Furthermore, we confirmed the finding of Zhang et al. (2021)
that using a simple measure like the median or the interquartile
mean [as done by Zhang et al. (2021)] of the k-mer occurrences
results in meaningful expression values. Due to the similarity in ro-
bustness to outliers, we would not expect to see a significant

difference between using the median or the interquartile mean, but
further research would be necessary to confirm this hypothesis.

Moreover, we recommend the usage of minimizers instead of k-
mers [as we have done already in Seiler et al. (2021)]. While there is an
accuracy loss by using minimizers, the massive space and speed gain
makes this a reasonable approach. Which leads to the question whether
using k-mers in the contexts of prefilters is still a sensible choice.

We would have liked to also compare Needle to its other com-
petitor Gazelle, but to our knowledge, the software is not publicly
available yet. Based on the analysis done by the authors themselves,
the Gazelle index size of the 2586 RNA seq files that we used here
as the basis for our large dataset is 36.65 GB and is constructed in
9.23 h. It is not apparent to us whether they used the already estab-
lished cutoffs as well, but assuming they did and assuming that tak-

ing b1742
2568c ¼ 0:6 of their reported size is a lower bound for storing

1742 of the 2586 RNA seq files we used, then we would expect a
Gazelle index of size 21.99 GB to be constructed in 5.5 hours. This
is longer than the compressed Needle index for k-mers and all
Needle indices with a bigger window than k-mer size. Moreover, the
construction of Gazelle takes almost twice as long as even the slow-
est Needle construction.

Using 0.6 of Gazelle’s size seems a rather generous lower bound: if
we compare the REINDEER index sizes reported in this paper to the
ones reported in the REINDEER paper (Marchet et al., 2020) for the
2586 RNA seq files, then the index size we determined for the 1742
files make up more than 0.85 of the size for the 2586 files. This is not
surprising, as we reduced the dataset by not considering RNA seq files
with a smaller read size and therefore a smaller k-mer content.

Moreover, another advantage of Needle is that the false posi-
tive rate can be set be the user, such that its speed and space con-
sumption can be directly influenced by the level of desired
accuracy. Unfortunately, determining the influence of the false
positive rate on the actual accuracy is not straightforward be-
cause the false positive rate influences the estimation in two ways:
finding the levels where the estimation should happen (xe, ye in
Equation (2)) and determining the number of found minimizers
per level (ae, be in Equation (2)).

Even a high false positive rate of 0.3 can be reasonable—see
Supplementary Figures S7 and S8 and Table S4, where we found a
similar performance on the simulated dataset and a weaker correlation
for every Needle version on the SEQC data. Here, we can see for the
first time an actual difference in the window sizes, as the accuracy
strongly decreases with an increasing window size. This shows that the
accuracy depends on the picked ðw; kÞ-minimizers and the false posi-
tive rate. ðw; kÞ-minimizers with a greater window size have fewer min-
imizers for a sequence than ðw; kÞ-minimizers with a smaller window
size, therefore one false positive minimizer has a bigger impact for
greater window sizes. Further research is necessary to find a formula to
estimate the impact of those two factors on the accuracy.

However, even with a greater window size and a high false posi-
tive rate, the accuracy results are still good enough for a prefilter
and might be a reasonable choice considering the advantages of a
higher false positive rate, which is a further decrease in construction
and query time, RAM usage and index size. For example, the
Needle index (41, 21) with false positive rate 0.3 would need <1 GB
of space.

Fig. 6. Gene ontology analysis for genes found differentially expressed in blood, brain and breast tissue of 1742 RNA-seq experiments sorted by their fold enrichment. The col-

ors show the false discovery rate in negative log10

Table 3. Confusion matrix

CCND1 ERRB2 FOXM1 MYC

True positives 339 267 168 232

False positives 102 58 118 213

True negatives 1088 1132 1072 977

False negatives 213 285 384 320

False positive rate 0.09 0.05 0.1 0.18

False negative rate 0.39 0.52 0.7 0.58

Note: The results of finding breast cancer samples by searching for overex-

pression of the breast cancer oncogens CCND1, ERRB2, FOXM1 and MYC

in absolute numbers.

Needle 4107

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac492#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac492#supplementary-data


Furthermore, Needle could be further improved by using differ-
ent false positive rates per level. As the search starts at the highest
level and numerous transcripts will be found along the way, increas-
ing the false positive rate of the lower levels should have only a small
impact on the accuracy while having a greater influence on the size,
as the lower level IBF s are the biggest ones. Before such an improve-
ment is implemented, though, a more profound understanding of
the effect of the false positive rate on the accuracy is needed.

Moreover, the memory footprint of Needle could be further
improved by loading only a few IBFs to memory at a time, this ap-
proach will most probably increases the built time. A more in-depth
analysis is necessary to determine the best approach in terms of
memory footprint and speed.

Needle is based on unprocessed sequencing files, thereby ignor-
ing any available information that was uploaded alongside the
sequencing file, like alignment analysis containing counts for specific
transcripts. The advantage of Needle is that it is not limited by limi-
tations of previous analysis, which might miss newly annotated
genes, for example. Furthermore, Needle is easily searchable unlike
these uploaded analysis files and therefore provides more utility.
Nonetheless, it would be interesting to incorporate already existing
information into Needle and in this way improving Needle’s accur-
acy further. Additional research is necessary to find an efficient way
to implement such a feature.

Besides improvement possibilities of Needle itself, there is great
potential in further researching methods to analyze large collections
of sequencing experiments. We showed that within-sample and
between-sample analysis are possible and lead to meaningful results,
and presented an accurate normalization method for such large col-
lections. But the here presented analysis did not take advantage of
the sheer amount of available data. Therefore, further investigation
is necessary to determine, if there is an even better method to deter-
mine differential gene expression.

5 Conclusion and further work

We presented Needle, a fast and space-efficient prefilter for estimat-
ing the quantification of very large nucleotide sequences. Through
its very fast search, Needle can estimate the quantification of thou-
sands of sequences in a few minutes or even only seconds, paving
the way for new analyses that were before either very time and space
consuming or not possible at all. For example, one can easily test the
differential expression of genes on a huge dataset and reuse previ-
ously obtained data by searching through databases like the se-
quence read archive in a meaningful way. Moreover, such a quick
search could also open the door to the usage of machine learning
methods working directly with the sequencing data.

We believe that quick searches on the very large sequencing data
can open up entirely new analysis methods and therefore are an im-
portant step forward to a better understanding of the growing
sequencing data.
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