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Alzheimer’s disease (AD) and temporal lobe epilepsy (TLE) are the most common
forms of neurodegenerative disorders characterized by the loss of cells and progressive
irreversible alteration of cognitive functions, such as attention and memory. AD may
be an important cause of epilepsy in the elderly. Early diagnosis of diseases is very
important for their successful treatment. Many efforts have been done for defining
new biomarkers of these diseases. Significant advances have been made in the
searching of some AD and TLE reliable biomarkers, including cerebrospinal fluid
and plasma measurements and glucose positron emission tomography. However,
there is a great need for the biomarkers that would reflect changes of brain
activity within few milliseconds to obtain information about cognitive disturbances.
Successful early detection of AD and TLE requires specific biomarkers capable of
distinguishing individuals with the progressing disease from ones with other pathologies
that affect cognition. In this article, we review recent evidence suggesting that
magnetoencephalographic recordings and coherent analysis coupled with behavioral
evaluation can be a promising approach to an early detection of AD and TLE.

Highlights

– Data reviewed include the results of clinical and experimental studies.
– Theta and gamma rhythms are disturbed in epilepsy and AD.
– Common and different behavioral and oscillatory features of pathologies are compared.
– Coherent analysis can be useful for an early diagnostics of diseases.

Keywords: Alzheimer’s disease, temporal lobe epilepsy, memory, electroencephalography, oscillatory activity,
coherent analysis, early diagnostics

INTRODUCTION

It is known that theta and gamma oscillations are closely related to cognitive processes. The
theta rhythm (4–12 Hz) is prominent oscillations recorded in the hippocampus and surrounding
limbic structures during exploration and REM sleep (Vanderwolf, 1969; Bland, 1986; Buzsáki,
2002). Theta oscillations have also been registered in the neocortex where they are particularly
pronounced in the frontal midline (Klimesch et al., 1997; Kahana et al., 1999; Jensen and Tesche,
2002; Canolty et al., 2006; Guderian et al., 2009), and in the subcortical areas (Paré et al., 2002;
Magill et al., 2006; Nerad and McNaughton, 2006; DeCoteau et al., 2007; Kabanova et al., 2011).
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The theta rhythm is important in the formation and retrieval
of episodic and spatial memory (Hasselmo, 2005). The gamma
rhythm (25–100 Hz) usually co-occurs with theta rhythm in the
hippocampus (Bragin et al., 1995; Strogatz, 2003; Montgomery
et al., 2008). In the neocortex, gamma oscillations were identified
in the frontal and parietal areas (Bouyer et al., 1981; Benchenane
et al., 2010). The gamma rhythm is considered to play a role
in attention (Fries, 2009; Jutras et al., 2009; Buzsáki and Wang,
2010) and in themaintenance of relevant information inmemory
(Sauseng et al., 2009; Sridharan and Knudsen, 2015). Evidence
accumulates indicating that the coupling between the phase of
slow oscillations (in particular, theta) and the amplitude of fast
oscillations (gamma) may be involved in information processing
(Tort et al., 2009; Canolty and Knight, 2010; Lisman and Jensen,
2013).

A crucial component of the neural processing underlying
cognition is communication between selective brain structures
(Livanov et al., 1977; Engel et al., 2001; Vinogradova, 2001;
Igarashi et al., 2014). Mounting evidence points to brain rhythms
as a fundamental mechanism of dynamical coupling between
brain areas; this is proved by task- and state-dependent changes
in the coherence of local field potentials (LFPs; Fell et al., 2001;
Varela et al., 2001; Buzsáki, 2004; Womelsdorf et al., 2006;
Sauseng et al., 2008; Takehara-Nishiuchi andMcNaughton, 2008;
Astasheva et al., 2016; Bott et al., 2016; Vinck et al., 2016) and
cross-correlated unit activity (Tabuchi et al., 2000; Engel et al.,
2001; Igarashi et al., 2014). Synchronized activities of brain areas
exert strong effects on their ability to interact with each other
(Womelsdorf et al., 2006), and provide a mechanism for the
formation of cell ensembles and their coordination by linking
the activity of multiple neurons (Harris et al., 2003; Colgin
and Moser, 2010; Buzsáki, 2010; Buzsáki and Watson, 2012;
Igarashi et al., 2014). Besides, the oscillations can be considered
as rhythmic changes in neuronal excitability (Volgushev et al.,
1998; Fries, 2005).

The hypothesis ‘‘communication through coherence’’ by Fries
(2005) is now widely accepted (Jensen et al., 2007; Mitchell
et al., 2008; Colgin et al., 2009; Rutishauser et al., 2010; Wang,
2010; Colgin, 2011, 2015; Igarashi et al., 2014; Astasheva et al.,
2016). This hypothesis assumes that anatomic communications
can become effective or inefficient owing to presence or lack of
rhythmic synchronization (Fries, 2005; Bastos et al., 2015).

It is known that communication between selective brain
structures as well as oscillatory activity in them can violate
in neurological and psychiatric disorders (Bakker et al., 2012;
Buzsáki and Watson, 2012; Froriep et al., 2012; Kirihara
et al., 2012; Inostroza et al., 2013; Laurent et al., 2015).
However, there is much to be learned and discussed. Despite
decades of research, the disturbances in the rhythm coherence
underlying pathologies, such as temporal lobe epilepsy (TLE) and
Alzheimer’s disease (AD) remain poorly understood.

This review article summarizes the data on the alterations
of the theta and gamma coherence based on examples from
TLE and AD. In addition, we analyzed the information on
some similarities and differences in these disorders, mainly
in the disturbances of specific types of memory, theta and
gamma rhythms and their coherence. These analyses may shed

light on plausible links between neural damage and rhythmic
disturbances in these diseases and help to design new approaches
to early diagnostics of pathologies.

COHERENCE OF THE THETA AND GAMMA
RHYTHMS

The brain cortex generates great number of oscillations
at different frequencies. Low-frequency brain rhythms are
dynamically involved across distributed brain regions by sensory
signals or cognitive tasks; at the same time, high-frequency
brain activity reflects local cortical processing (Canolty and
Knight, 2010). External or internal events can lead to the
synchronization of rhythms and thus form a more complex
functional phenomenon known as phase coherence or phase
coupling (Fell et al., 2008; Cavanagh et al., 2009; Canolty
and Knight, 2010). The standard phase coherence reveals
the relative constancy of the phase difference between two
oscillations of the same frequency, i.e., within-frequency
synchrony (Rodriguez et al., 1999; Hurtado et al., 2004). It was
shown that phase coupling reflects various cognitive processes in
humans (Canolty et al., 2006; Axmacher et al., 2010), monkeys
(Canolty and Knight, 2010), rats (Montgomery and Buzsáki,
2007; Tort et al., 2008, 2009; Nácher et al., 2013) and mice (Wulff
et al., 2009). The within-frequency phase coupling between
oscillations in different brain areas (see Figure 1) was studied
extensively because of its proposed role in the regulation of
inter-area communications (Womelsdorf et al., 2006; Gregoriou
et al., 2009; Siegel et al., 2009). Similarly to within-frequency
synchrony, the cross-frequency phase–phase coupling, may
serve as a mechanism for regulation of communications
between different spatiotemporal scales (Palva et al., 2005,
2010; Holz et al., 2010). Besides, the correlation between
the amplitude envelopes of two brain waves at different
frequencies, called cross-frequency amplitude–amplitude
coupling, is also an oscillatory characteristic (Shirvalkar
et al., 2010; Tanninen et al., 2017). The amplitude–amplitude
cross-frequency coupling was observed by some authors
(Friston, 1997; Palva et al., 2010; Shirvalkar et al., 2010), but
despite correlations with behavior, its functional role remains
unclear.

The phase coupling between theta and gamma oscillations,
namely, the phase–amplitude cross-frequency coupling
(phase–amplitude CFC) or ‘‘nested’’ oscillations (Buzsáki
et al., 1983, 2003; Soltesz and Deschênes, 1993; Bragin et al.,
1995; Lisman and Idiart, 1995; Mormann et al., 2005; Canolty
et al., 2006; Sirota et al., 2008; Tort et al., 2008, 2009, 2010;
Sauseng et al., 2009; Wulff et al., 2009; Scheffer-Teixeira et al.,
2012; Schomburg et al., 2014) and the phase–phase CFC (or ‘‘n:m
phase-locking’’) in which several gamma cycles are entrained
within one cycle of theta (Tass et al., 1998; Belluscio et al.,
2012; Zheng and Zhang, 2013; Xu et al., 2015; Zheng et al.,
2016) are the most studied phenomena of phase coherence.
The phase–amplitude CFC describes the dependence between
the phase of the low-frequency rhythm and the amplitude of
the high-frequency oscillations (Canolty and Knight, 2010;
see Figure 2). Thus, it reflects the interrelations between local
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FIGURE 1 | Theta coherence between brain areas changes during epileptogenesis. (A) Phase–phase coupling of theta oscillations between two brain areas (i) and (ii).
To the left: synthetic data used for theta rhythm illustration. To the right: coherence spectrum (or phase-specific measures) between two signals can determine the
strength of theta phase coupling. (B) Behavioral data for rats during the performance the episodic-like memory task. Distribution of exploratory times per object in
the test phase for the control and epileptic groups; ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.005. The inset represents the object configuration in the task. (C) Representative
hippocampal activity of an epileptic rat recorded in the stratum pyramidale (SP), lacunosum moleculare (SLM) and moleculare (ML) during walking. (D) Specific
alterations in hippocampal theta activity in temporal lobe epilepsy (TLE) brain during object exploration in the episodic-like memory task; the time–frequency power
spectrum of hippocampal field potentials in the SLM and the ML layers is shown for the 1–30 Hz frequency band. (E) Theta coherence between hippocampal
SLM–ML layers during exploration of each individual object in the episodic-like memory task; the mean values of theta coherence per object within the mean (red
line) and standard deviation (discontinuous line) for the whole session in the control and epileptic animals are shown. (F) Theta coherence between the hippocampus
and medial prefrontal cortex (mPFC) increases pre-ictally. To the left: a mean coherogram (coherence vs. time, 0–20 Hz) of 120 s and 30 s pre-ictal local field
potential (LFP) segments from the hippocampus and mPFC (30 s pre-ictal segment is designated by a black rectangle). To the right: mean ± standard error of the
mean (SEM; solid ± dashed lines) coherence of 120 s (blue lines) and 30 s (green lines) recordings before seizures. (G) Representative wavelet coherograms and
smoothed standard deviation of wavelet coherence of LFPs recorded in the hippocampus and medial septal-diagonal band (MSDB) in healthy (left) and epileptic
animals. Adapted with permission from Buzsáki and Watson (2012) (A), Inostroza et al. (2013) (B–E), Broggini et al. (2016) (F) and Kabanova et al. (2011) (G).
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FIGURE 2 | Theta–gamma cross-frequency coupling (CFC) and its alteration in a rat model of TLE. (A) Schematic illustration of cross-frequency phase-phase
coupling. Phases of theta and gamma oscillations are correlated, as shown (to the right) by the phase-phase plot of the two frequencies; (i) and (ii)—different brain
areas, Hi—hippocampus. (B) A heuristic model of cross-frequency phase–amplitude coupling. Gamma oscillations are large (red line) in the excitatory phase of theta
wave (black line) and small (blue line) in the inhibitory phase of theta wave. (C) The theta phase modulates the low-frequency gamma (LG) amplitude. A
phase–amplitude comodulogram computed for LFP of the hippocampal CA3 field recorded at SP during execution of spatial task is shown. (D) Theta modulation of
the LG amplitude in the CA3 region during context exploration increases with learning. Color scale representation of the mean LG amplitude as a function of the
theta phase for each trial in the session (left). The mean LG amplitude per theta phase averaged over the first and last 20 trials is also shown (right). (E) Example of
comodulation maps of hippocampal theta phase modulating mPFC gamma oscillation amplitude 120 s and 30 s before seizure onset. (F) Box plot showing mean
hippocampal theta/mPFC gamma modulation index (MI), 120 s and 30 s before seizure onset; ∗p < 0.001. Adapted with permission from Buzsáki and Watson
(2012) (A), Kirihara et al. (2012) (B), Tort et al. (2009) (C,D) and Broggini et al. (2016) (E,F).

microscale (Colgin et al., 2009; Quilichini et al., 2010) and
system-level macroscale neuronal networks (Lisman and Idiart,
1995; Canolty and Knight, 2010; Szczepanski et al., 2014).
This is probably the most prominent ‘‘law’’ underlying the
hierarchy of the system of brain oscillators, when the phase of

slower oscillations modulates the amplitude of a faster rhythm
(or rhythms; Bragin et al., 1995; Buzsáki, 2006; Buzsáki and
Mizuseki, 2014). Thus, phase–amplitude CFC can be used as an
index of cortical excitability and network interactions (Knight,
2007; Haider and McCormick, 2009; Voytek et al., 2013). In
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non-epileptogenic hippocampi of neurosurgical patients and
in a healthy brain of rodents, the degree of theta–gamma
phase–amplitude coupling increases with learning (Tort et al.,
2008, 2009; Lega et al., 2016). In the hippocampus, gamma and
theta oscillations normally show amarked phase–amplitude CFC
considered to be central to hippocampal functions (Tort et al.,
2008, 2009; Newman et al., 2013). Thus, during spatial learning,
the strength of hippocampal theta–gamma coupling usually
directly correlated with the increase in correct performance of a
cognitive task (Tort et al., 2009; Figure 2C).

At the same time, phase–phase CFC provides, as believed, a
physiological mechanism for the linkage of the activity generated
at significantly different rates. Since gamma oscillations are
faster than theta ones, numerous cycles of gamma arise during
a single cycle of theta (Figures 2A,B). The phenomenon of
phase–phase theta–gamma coupling means that gamma waves
always begin at the same phase of theta waves. Phase–phase
CFC was hypothesized to take part in cognitive processes, such
as attention and memory (Lisman and Idiart, 1995; Schack
and Weiss, 2005; Sauseng et al., 2009; Holz et al., 2010; Fell
and Axmacher, 2011). An influential model in which theta and
gamma oscillations would interact to produce a neural code
(‘‘7 ± 2 short-term memories’’) has been proposed a decade ago
(Lisman and Idiart, 1995); later it was improved, but the essence
of this theta–gamma coding model was remained (Jensen and
Lisman, 2005; Lisman, 2005; Lisman and Buzsáki, 2008; Lisman
and Jensen, 2013). Latest findings show that this mechanism
indeed is used by the hippocampus (Belluscio et al., 2012; Zheng
and Zhang, 2013; Xu et al., 2015; Zheng et al., 2016; but see
Scheffer-Teixeira and Tort, 2016). It is assumed that the temporal
coordination of neuronal spikes by phase–phase theta–gamma
coupling may improve transferring information as well as spike
timing-dependent plasticity (Markram et al., 1997; Fell and
Axmacher, 2011). Desynchronization of these rhythms could be
altered in certain neurodegenerative pathologies.

COHERENCE BIAS IN TLE AND AD

Alterations in Rhythm Coherence in the
Epileptic Brain
Epilepsy, a disorder associated with increased network
excitability and neuron loss, is usually accompanied by rewiring
in the brain (for review see Morimoto et al., 2004). TLE is the
most common and pharmacologically resistant type of adult
focal epilepsy. In patients with TLE, a selective and marked
degradation of episodic (autobiographic) memory was shown,
in which specific memory items are placed within temporal
context during encoding and retrieval (Dupont et al., 2000).
Animals with TLE also exhibited a highly specific impairment
of the episodic-like memory while preserving other forms
of hippocampal-dependent memories (Burgess et al., 2002;
Helmstaedter, 2002; Tulving, 2002; Chauvière et al., 2009).

Hippocampal Network
The analysis of hippocampal LFPs in neurosurgical patients
during the execution of episodic memory tasks revealed a

sharp increase of gamma oscillations before successful item
encoding in non-epileptogenic hippocampi. At the same time,
the epileptogenic hippocampi exhibited a significant decrease
in the gamma band power, which predicts successful item
encoding (Lega et al., 2012, 2015). Thus, typical changes
in the gamma band power during this process are reversed
for human epileptogenic hippocampus (Lega et al., 2015).
Besides, it was shown in the TLE model (Inostroza et al.,
2013) that kainate-treated rats with deficit of episodic-like
memory exhibited reduction of hippocampal theta power
and coherence along the CA1–dentate axis. In TLE animals,
decreased theta coherence in the LFP signals was concentrated
between the hippocampal stratum lacunosum-moleculare (SLM)
and ML of dentate gyrus (DG; Figures 1D,E). Inostroza et al.
(2013) believe that these data point to discoordination of
hippocampal inputs from layers III and II of the entorhinal
cortex (EC) and from the contralateral hippocampus as a
possible cause for dysfunction of episodic-like memory in TLE
animals.

Hippocampal–Entorhinal Cortex Network
It is known that a crucial mechanism of episodic memory is the
coherence of neuronal activity in the hippocampal–entorhinal
circuit; this mechanism is usually impaired in TLE
(Helmstaedter, 2002). An alteration of theta coherence between
the EC and the DG was revealed in behaving kainate-injected
epileptic mice during the interictal phase (Froriep et al., 2012).
Indeed, in epileptic mice, the theta activity in the EC was
delayed with respect to that of the DG, while the theta activity
in healthy animals was synchronized between EC and DG,
demonstrating the within-frequency phase coupling. On the
basis of a computational neural mass model, the authors
suggested that hippocampal cell loss destroyed the coupling of
the subnetworks, which induced the EC–DG shift (Froriep et al.,
2012).

In experiments with healthy rats, the inputs from the medial
and lateral EC (via temporoammonic and perforant inputs)
evoked a firing of hippocampal neurons, which reflects an
integrated representation of spatial and temporal information
(O’Keefe and Nadel, 1978; Komorowski et al., 2009; Mankin
et al., 2012; Kraus et al., 2013; Kitamura et al., 2014) as well
as new experience (Frank et al., 2000; Wood et al., 2000).
This neuronal coding is precisely organized within a time scale,
which is controlled by ongoing oscillations, especially by the
hippocampal theta and gamma rhythms (Bland and Oddie,
2001; Hasselmo et al., 2002; Huxter et al., 2008; Mizuseki et al.,
2009; Easton et al., 2012; Buzsáki and Moser, 2013; Lisman
and Jensen, 2013). A careful measurement of the proximodistal
coherence of the theta activity in the dorsal hippocampus
of normal and epileptic animals showed that healthy rats
exhibited a stronger coordination between the temporoammonic
and perforant entorhinal inputs near CA3 field (at proximal
locations), while epileptic rats showed stronger coordination
near subiculum (at distal locations; Laurent et al., 2015).
This opposing trend in epileptic rats was associated with
the connectivity constraint, which accompanies cell death in
the hippocampus. Laurent et al. (2015) also discovered that
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the ‘‘appropriate timing between entorhinal inputs arriving
over several theta cycles at the proximal and distal ends of
the dorsal hippocampus was impaired in epileptic rats.’’ It
is important that ‘‘the computational reconstruction of LFP
signals predicted that timing variability has a major impact on
repairing theta coherence.’’ Thus, the proximodistal organization
of entorhinal inputs plays an important role in temporal lobe
physiology, and this organization alters during TLE (Laurent
et al., 2015).

Hippocampal–Medial Prefrontal Cortex Network
As was mentioned above, experiments with healthy animals
showed that theta and gamma oscillations are usually present and
work in synchrony in the hippocampus and medial prefrontal
cortex (mPFC) during the performance of cognitive tasks
(Tort et al., 2008; Benchenane et al., 2010). Hippocampal
theta oscillations are normally coupled to mPFC theta waves
(Benchenane et al., 2010) and modulate hippocampal and
mPFC gamma oscillations during cognitive behavior (Jones
and Wilson, 2005; Siapas et al., 2005; Tort et al., 2008). In a
TLE model generated by perforant path stimulation, abnormal
changes in the hippocampal−mPFC circuit were observed
during the recording of mPFC and hippocampal LFPs in rats
with spontaneous recurrent seizures (Broggini et al., 2016).
Broggini et al. (2016) showed that recurrent seizures weaken
hippocampal theta rhythm while the hippocampal and mPFC
theta coherence increases during a period preceding the onset
of seizures (Figure 1F). Simultaneously with the increase in
theta synchrony a stronger coupling between hippocampal theta
and mPFC gamma oscillations was observed (Figures 2E,F).
Using the Granger causality, it was shown that the increase
in hippocampus–mPFC synchrony in the preictal phase was
provoked by hippocampal networks. The data indicate that the
increase in hippocampal—mPFC coherence may predict the
seizure onset (Broggini et al., 2016). Besides, the too strong
coupling of hippocampal theta and mPFC gamma oscillations
may induce abnormal plasticity in mPFC communications
(Zheng and Zhang, 2015), which can be a reason of changes
observed in mPFC cells (Tang and Loke, 2010).

Hippocampal–Septal Network
The registration of LFPs in the hippocampus and medial
septal-diagonal band (MSDB) complex of rats and guinea
pigs revealed that normally theta oscillations were relatively
synchronous in these brain regions (Nerad and McNaughton,
2006; Astasheva and Kichigina, 2009; Kabanova et al., 2011).
Usually theta power in the MSDB was smaller compared to
that in the hippocampus, but the frequency of theta oscillations,
although it did not coincide in these structures, did not differ
significantly. The theta coherence between the hippocampus and
MSDB was relatively high: a phase analysis revealed no clear
unidirectional shifts (<10 ms) in the hippocampal and MSDB
theta phases in healthy animals (Nerad and McNaughton, 2006;
Kabanova, 2011; Kabanova et al., 2011). In chronic epileptic
animals, a significant decrease of the theta power was revealed
in the hippocampus (Arabadzisz et al., 2005; Colom et al.,
2006; Dugladze et al., 2007; Astasheva and Kichigina, 2009;

Marcelin et al., 2009) andMSDB (Sinelnikova, 2012). In addition,
in a pilocarpine rat model of TLE, a dysfunctional and uncoupled
septohippocampal network was revealed (García-Hernández
et al., 2010). However, in the perforant path kindling model of
TLE some increase in synchronization between hippocampus
and MSDB within the theta band was observed in waking
guinea pigs during epileptogenesis (Figure 1G; Kabanova et al.,
2011). Besides, in this model of TLE, a dramatic increase of
the theta oscillations simultaneously in the rabbit hippocampus
and MSDB before (within 20 s) the seizures was observed
(Kitchigina and Butuzova, 2009). This phenomenon reminds
the events in the hippocampal–mPFC network over time prior
to seizure onset in rats in the same model of TLE (Broggini
et al., 2016). Interestingly, in a perforant path kindling model of
TLE in guinea pigs, the interactions between the hippocampus
and MSDB changed for opposite during epileptogenesis: at
the beginning of kindling, the MSDB was ahead in the
theta phase, but after formation of the pathological focus,
MSDB lagged the hippocampus (Kabanova et al., 2011). In
addition, the relationships between rhythmic bursts of septal
neurons and the phases of the hippocampal theta waves during
spontaneous seizures in rabbits with TLE model could reverse to
almost opposite comparative to interictal ones (Kitchigina and
Butuzova, 2009); i.e., these relationships were not constants.

It was shown in earlier experiments that the natural theta
rhythm evoked, e.g., by sensory stimuli prevents seizure onset
under the influence of epileptogenic factors (Miller et al., 1994;
Colom et al., 2006; Kitchigina and Butuzova, 2009). At the
same time, excessive theta synchrony leads to the generation
of epileptiform activity (Kitchigina and Butuzova, 2009). Thus,
for the prevention of seizure development, a strong control
of the level and pattern of the hippocampus—MSDB theta
synchronization is necessary.

Alterations in the Rhythm Coherence in
Alzheimer’s Disease and in the AD Models
Disturbances of Theta and Gamma Rhythms in Brain
With AD Pathology
AD is a progressive neurodegenerative disease associated with
an irreversible deterioration of cognitive functions, especially
memory. Although the etiology of AD remains unknown and
now there is no reliable treatment, a consensus has emerged early
in this century on the amyloid hypothesis (Selkoe, 2000; Palop
and Mucke, 2010), which posits that the amyloid β (Aβ) peptide,
a major constituent of amyloid plaques, is mostly responsible for
the alteration of cognitive functions (Francis et al., 2010; Palop
and Mucke, 2010). In the last years, however, this hypothesis was
challenged: a potential role of an impairment of metabolism of
amyloid precursor protein (APP) and its progress through tau
pathology were considered in the etiology of AD (for review,
see Kametani and Hasegawa, 2018). Moreover, the recent data
of experiments with wild-type and APP/PS1 transgenic mice
indicate that amyloid plaques can possess capacity for binding
additional Aβ (Gureviciene et al., 2017).

Various forms of memory are disturbed in AD (Didic et al.,
2011). It has been assumed that navigation deficits can help
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to separate individuals at higher risk of developing AD from
patients with other neurodegenerative diseases (Lithfous et al.,
2013). As it was revealed in some works, AD patients, as opposed
to healthy age-matched control subjects, exhibit an increase
in the relative power of slow oscillations (in particular, theta
rhythm) and a decrease in the relative power of fast oscillations
(gamma rhythm; Adler et al., 2003; Herrmann and Demiralp,
2005; van der Hiele et al., 2007; Czigler et al., 2008; Moretti
et al., 2010). On the contrary, in other works, an increased
gamma rhythm power and the lack of theta increase in AD
patients were reported (Caravaglios et al., 2010; Wang et al.,
2017). Some authors noted that changes in EEG of resting AD
patients might not be specific, and various types of dementia
can also exhibit similar network disturbances (Herrmann and
Demiralp, 2005). Besides, contrary to the data on AD patients,
a decrease of both theta and gamma bands was revealed in
Tg5xFAD mice, a transgenic mouse model of AD; in this case,
the decrease preceded alterations in learning performances in
spatial task (Schneider et al., 2014). In addition, transgenic
APP23 mice, another mouse model of AD, demonstrated the
compromised spectral contributions of hippocampal theta and
gamma oscillations, compared to non-transgenic controls: a
markedly lower spectral power of theta oscillations (∼10 Hz)
and a higher power of gamma oscillations (25–50 Hz; Ittner
et al., 2014), changes opposite to those in AD patients. Hence, a
decrease or an increase in theta and gamma oscillations power
per se may not be specific for this pathology (Herrmann and
Demiralp, 2005).

Alterations in Theta–Gamma Coherence Are
Indicative for Brain With AD Pathology
Probably, most convincing evidence of rhythm disturbances
in a pathological AD brain is alterations in the theta–gamma
CFC. Thus, in humans with AD, an enhanced CFC between
the gamma and low-frequency bands (in particular, theta)
compared to healthy control was revealed (Wang et al., 2017).
During performance of working memory tasks, evidence for a
relationship between altered theta-gamma coupling and working
memory deficits in individuals with AD was obtained (Goodman
et al., 2018).

In the AD model (adult APP23 transgenic free-roaming
mice), an impairment of cross-frequency gamma amplitude
modulation by hippocampal theta rhythm was observed (Ittner
et al., 2014; Figure 3). It is important that these changes
were observed before the onset of Aβ plaque pathology.
Moreover, it was shown on TgCRND8 mice that a significant
proportion of 1-month-old animals exhibited marked alterations
in the theta–gamma coupling in the output region of the
hippocampus, the subiculum. This uncoupling of rhythms
arises before any histopathological abnormalities such as the
presence of amyloid plaques (Goutagny et al., 2013). In addition,
it was shown that 1-month-old TgCRND8 mice expressed
extremely low levels of Aβ compared to controls. Goutagny
et al. (2013) suggested that in animals (TgCRND8 mice)
disturbed theta–gamma CFC in the subiculum may be the
earliest detectable AD-related biomarker. This is in contrast
with the existing hypothesis, which states that the beginning of

FIGURE 3 | Gamma amplitude modulation by theta phase is impaired in a
mouse model of Alzheimer’s disease (AD; amyloid precursor protein 23,
APP23 mice). (A) Raw EEG (LFP), band pass filtered signals for theta
(4–12 Hz) and gamma (25–100 Hz) oscillations, gamma amplitude envelope
(green) and theta phase in APP23 and non-transgenic (non-tg) mice (blue).
Representative signals from five animals per genotype are shown.
(B) Representative phase–amplitude comodulograms computed for
hippocampal LFPs recorded in non-tg and APP23 mice. (C) Phase–amplitude
plot computed for hippocampal LFPs recorded in non-tg and APP23 mice
(means ± SEM). (D) MI computed for the phase–amplitude distributions
shown in (C); ∗p < 0.05. Adapted from Ittner et al. (2014; Open Access).

hippocampal network alterations and memory deficits in animal
models of AD are caused by the overproduction of soluble
Aβ (Francis et al., 2010; Palop and Mucke, 2010; Scott et al.,
2012).

Interestingly, though APP is supposed to be critically involved
in the pathophysiology of AD, APP-deficient mice exhibit
cognitive deficits (Seabrook et al., 1999; Senechal et al., 2008);
this confirms that APP plays an important role in the functioning
of neurons in the healthy brain. Recently, strongly diminished
theta–gamma coupling in LFPs from the dorsal hippocampus
and parietal cortex was revealed in APP knockout mice.
Besides, cross-regional hippocampal–prefrontal CFC was largely
disrupted in these knockout mice (Zhang et al., 2016). This
effect may be of importance for the origination of cognitive
deficits in APP-deficient animals. Thus, APP is important
for the interaction of rhythms of different frequencies. The
facts mentioned above possibly indicate, that very thin frontier
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FIGURE 4 | Entorhinal tau overexpression affects phase–amplitude hippocampal—prefrontal CFC. The degree of modulation of gamma amplitude by mPFC theta
phase quantified with the MI. (A) Representative examples of normalized hippocampal (to the left) and prefrontal (to the right) gamma amplitude aligned to concurrent
prefrontal theta phase. (B) Changes in the MI before and after the CS (median ± 25th and 75th percentile). Compared against GFP-expressing rats (light gray), the
change in MI of prefrontal theta-hippocampal gamma coupling was smaller while that of prefrontal theta-prefrontal gamma coupling was larger in tau-expressing rats
(dark gray); ∗∗∗p < 0.001. Abbreviations: CS, conditioned stimulus; GFP, green fluorescent protein. Adapted with permission from Tanninen et al. (2017).

between functioning of APP in the healthy and pathological
brains exists.

Quite recently, it has been tested whether a preclinical
AD pathologic feature, tau aggregation in the EC, can disrupt
the coordination of LFPs between its two efferent regions,
the hippocampus and prelimbic mPFC (Figure 4; Tanninen
et al., 2017). Tanninen and colleagues revealed strengthened
phase–phase and amplitude–amplitude couplings of theta and
gamma oscillations in these two regions during associative
learning in healthy rats (the rats underwent trace eyeblink
conditioning and were learned to associate two stimuli
separated by a short time interval). In tau-expressing rats,
the hippocampus and PFC showed a significant attenuation
of stimulus-evoked theta oscillations. In addition, despite
normal memory acquisition, the learning-related oscillatory
coupling between the hippocampus and the PFC in these
rats was diminished; at the same time, the entorhinal tau
overexpression enhanced the stimulus-evoked theta–gamma
phase–amplitude coupling within the mPFC (Figure 4).
The authors suggested that the tau aggregation in the
EC caused aberrant long-range circuit activity during
associative learning, indicating the disturbances in neural
oscillations of preclinical AD stages (Tanninen et al.,
2017).

The tau aggregation has been also described in epileptic
patients and animals with marked cognitive disturbances (Thom
et al., 2011; Tai et al., 2017, 2018). Though the data about
rhythmic abnormalities are absent in the works mentioned, these
disorder can be expected to occur.

ELECTRO-CLINICAL DATA FOR PATIENTS
WITH “EPILEPTIC PRODROMAL AD”

A similarity in the alterations of oscillatory activity in
the AD/TLE brain (in particular, disturbances in theta-

gamma coherence in hippocampal-cortical networks) suggests
that these diseases have some common properties and,
probably, at least partially similar mechanisms of their
development.

The potential relation between TLE and AD has been
supported by experimental and clinical data. Thus, aging is a
common and well-established risk factor for epilepsy and AD
(Armon et al., 2000; Maguire and Frith, 2003; Amatniek et al.,
2006; Bernardi et al., 2010; Born et al., 2014; Chan et al., 2015).
Besides, AD may be an important cause of epileptic disorders, as
shown in elderly humans (Armon et al., 2000; Bird et al., 2005;
Bernardi et al., 2010; Palop and Mucke, 2016) and in animals
with AD models (Bezzina et al., 2015; Chan et al., 2015). Patients
with AD have a 5- to 10-fold increased risk of the development
of seizures or other forms of epileptiform activity (Amatniek
et al., 2006). Although seizure pathology was previously believed
to be secondary to AD, it was found that neuronal activity can
regulate regional vulnerability to Aβ (Palop et al., 2007; Palop
and Mucke, 2010; Bero et al., 2011); in particular, enhanced
neuronal excitability can increase Aβ generation (Cirrito et al.,
2008). Moreover, disturbed activity may contribute to the
development of cognitive violations: epileptiform and rhythmic
abnormalities in the temporal regions (in particular in the
hippocampus) can cause amnestic disorders, which were reduced
by antiepileptic drug treatment (Gallassi, 2006; Bakker et al.,
2012). In patients with seizures in combination with AD, a case
series from California with so called ‘‘vu/déjà vu’’ phenomena
was described (Vossel et al., 2013), while another series from
France (Cretin et al., 2016) had some cases that were termed
‘‘epileptic prodromal AD.’’ The authors believed that there is
an epileptic version of AD, which usually starts with seizures
as an initial symptom followed by cognitive deficit. Similar
signs of cognitive and behavioral impairments in TLE and
AD have been recently described by Chin and Scharfman
(2013).
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Many clinical evidence indicates an increased comorbidity
of seizure pathology in AD: it is becoming clear that AD is
associated with neuronal hyperexcitability as well as network
hypersynchronicity, which is the main reasons of epilepsy
development (Eichler and Meier, 2008; Noebels, 2011; Saito
et al., 2012; Varga et al., 2014). Indeed, epileptic prodromal
AD patients suffer from seizures sometimes even before
developing clear cognitive disorders. The epileptiform activity
may manifest itself in the early stages of AD more often than
was previously proposed. Thus, seizures in patients with AD
and amnestic mild cognitive impairment are associated with an
earlier appearance of cognitive decline (Amatniek et al., 2006;
Scarmeas et al., 2009; Irizarry et al., 2012; Vossel et al., 2013).
In the study of Sarkis and colleagues, the authors describe
patients with recurrent medically refractory epileptic auras,
which ultimately lead to the disease diagnosed as AD (Sarkis
et al., 2017).

At the same time, neurodegenerative processes peculiar
to dementia can play a central role in the development of
epilepsy in the patients predisposed to cognitive deficit. Adult-
onset epilepsy of unknown cause could thus represent a risk
factor for the ongoing neurodegenerative damage, even when
epileptic manifestations and clinically recognized dementia are
separated by long time (Cretin et al., 2016; Sarkis et al.,
2017).

The facts of cognitive impairment in animals with
epileptiform activity were derived from different studies
devoted to the role of the tau peptide (Roberson et al., 2011)
or APP overexpression in mouse models of AD (Born et al.,
2014). Genetic suppression of the APP level resulted in a
normalization of EEG activity (Born et al., 2014) as well
as the tau reduction was beneficial for animals in multiple
models of AD (Roberson et al., 2007, 2011; Gómez de
Barreda et al., 2010; Ittner et al., 2010). Unfortunately, this
is only true in animal models of the disease, not in AD
patients.

In the hippocampus, one of the main foci of cell death
in TLE and AD brains, the network hypersynchronicity and
epileptiform activity can be the result of formation of extensive
aberrant neuronal connections. This aberrant remodeling was
revealed in epileptic rats and in APP transgenic mice (Harris
et al., 2003; Palop et al., 2007; Minkeviciene et al., 2009;
Palop and Mucke, 2010; Vogt et al., 2011). The aberrant
reconstruction can be a cause of alterations in the oscillatory
activity and rhythm coherence in brains with TLE and AD
pathologies.

CONCLUSION

It is known that the main problem in diagnosis of
neurodegenerative diseases is the detection of neuronal
abnormalities at early stages of their development. At
present significant achievements have been made in the
development of methods for the detection of some biomarkers
of AD and TLE, including cerebrospinal fluid and plasma
measurements and glucose positron emission tomography
(Shiihara et al., 2006; Scholl-Bürgi et al., 2008; Mattsson et al.,

2009; Shaw et al., 2009; Visser et al., 2009; Blennow et al.,
2007; Jack et al., 2011; van Karnebeek et al., 2012). However,
there is an urgent need for biomarkers that would reflect
changes in brain functioning within few milliseconds to obtain
information about the progressing cognitive deficiency (Yener
and Basar, 2013; Wang and Meng, 2016). The application of
magnetoencephalography in combination with the coherent
analysis, in particular during cognitive loading, is a promising
approach to early diagnosis of these diseases. Thus, the specific
disturbances in interactions of theta–gamma oscillations in
hippocampal, hippocampal–entorhinal, hippocampal–prefrontal
and hippocampal–septal networks were revealed in the epileptic
brain. In the AD models, marked changes were observed in
the theta–gamma coupling in the subiculum, an output region
of the hippocampus. In addition, a decreased theta–gamma
coupling between the hippocampus and the parietal cortex
as well as between the hippocampus and the PFC was also
shown.

At present, the methods for detection of theta–gamma
coherence during cognitive loading are still not absolutely
perfect. Thus, changes in theta–gamma coupling may simply
reflect memory-related increases in gamma power and
phase synchrony (Montgomery and Buzsáki, 2007). Novel
approaches (in particular, optogenetics) should allow one
to alter the relationship between gamma power and theta
phase without affecting theta/gamma rhythms themselves
(Colgin, 2015). This manipulation would enable one to
directly determine how coupling between theta and gamma
oscillations affects neuronal activity and memory operations
in the brain. New approaches would help to elaborate precise
early biomarkers for the diagnosis of AD and TLE. The
advances of coherence methods in the detection of rhythm
violation will help to deepen our understanding of the
mechanisms of disturbances in theta–gamma relationship
in the AD/TLE brain. Possibly, in future, specific disturbances
in theta–gamma coherence will serve as markers of particular
cell damage and will allow one to direct therapeutic influences
to certain neural loci at early stages of the development of the
disease.
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