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Abstract

Behavioural and neurophysiological studies in primates have increasingly shown the involvement of urgency signals during
the temporal integration of sensory evidence in perceptual decision-making. Neuronal correlates of such signals have been
found in the parietal cortex, and in separate studies, demonstrated attention-induced gain modulation of both excitatory
and inhibitory neurons. Although previous computational models of decision-making have incorporated gain modulation,
their abstract forms do not permit an understanding of the contribution of inhibitory gain modulation. Thus, the effects of
co-modulating both excitatory and inhibitory neuronal gains on decision-making dynamics and behavioural performance
remain unclear. In this work, we incorporate time-dependent co-modulation of the gains of both excitatory and inhibitory
neurons into our previous biologically based decision circuit model. We base our computational study in the context of two
classic motion-discrimination tasks performed in animals. Our model shows that by simultaneously increasing the gains of
both excitatory and inhibitory neurons, a variety of the observed dynamic neuronal firing activities can be replicated. In
particular, the model can exhibit winner-take-all decision-making behaviour with higher firing rates and within a
significantly more robust model parameter range. It also exhibits short-tailed reaction time distributions even when
operating near a dynamical bifurcation point. The model further shows that neuronal gain modulation can compensate for
weaker recurrent excitation in a decision neural circuit, and support decision formation and storage. Higher neuronal gain is
also suggested in the more cognitively demanding reaction time than in the fixed delay version of the task. Using the exact
temporal delays from the animal experiments, fast recruitment of gain co-modulation is shown to maximize reward rate,
with a timescale that is surprisingly near the experimentally fitted value. Our work provides insights into the simultaneous
and rapid modulation of excitatory and inhibitory neuronal gains, which enables flexible, robust, and optimal decision-
making.
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Introduction
Perceptual decision-making often requires temporal integration

of sensory information and its subsequent transformation to a

categorical motor choice [1]. The decision or response times in

speeded perceptual decision tasks can range from tens of

milliseconds to a second or more [2,3]. Perceptual decision-

making is not a simple standalone feed-forward sensorimotor

integration process, but is distributed and subjected to various

neuromodulatory or cognitive control processes, possibly to

enhance decision performance [1,4–12].

In difficult sensory discrimination tasks, for example, with near

ambiguous stimuli, the optimal approach would be to integrate

sensory evidence over a long period of time. However, long

temporal integration is seldom observed in experiments, and there

is evidence suggesting a temporally increasing urgency signal

during decision formation [13–21]. Neural correlates of such

urgency signals have been found in parietal cortical neurons

[12,17]. In other studies, the parietal and extrastriate cortical areas

are found to exhibit gain modulation of neuronal firing rates which

are dependent on behavioural context and attention [22–31], and

various biophysical mechanisms of neuronal gain modulation have

been proposed [23,24,32–51]. Visual attention in the parietal

cortex has been studied as an integral component in perceptual

decisions [30]. Interestingly, visual attention seems to be capable

of simultaneously modulating both excitatory and inhibitory

cortical neuronal gains [52], and can have a time-varying nature

[53]

Previous computational and theoretical models have incorpo-

rated urgency signals or dynamic gain modulation in their

decision-making models [12–20,54]. However, most of these

models are largely abstract and hence do not allow incorporating

inhibitory neuronal gain modulation. Thus, the computational

capabilities of simultaneous modulation of excitatory and inhib-

itory neuronal gains on perceptual decision-making dynamics and

behaviour remain unclear.

In this work, we incorporate a time-varying excitatory-

inhibitory gain modulation mechanism into our previous

cortical microcircuit model of decision-making [55,56]. The
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model is based on and compared very closely to two classic

visual motion discrimination task experiments performed in

animals: a reaction time task and a cued response task [57].

Our model is constrained by both the neuronal and behav-

ioural data of a reaction time task. The model naturally

captures the essential characteristics of the neuronal firing

rates throughout a trial in both experiments, with weaker gains

in the seemingly less cognitively demanding cued response

task. Dynamical systems analysis is used to provide insights

into the flexibility and robustness of the network dynamics

under the co-modulation of neuronal gains. We also show that

with gain modulation, strong recurrent synapses are not

necessary for making and storing decisions. Finally, using

realistic temporal delays in the reaction time task, our model

simulations show that rapid recruitment of gains can optimize

decision performance, and suggests that the animals may adopt

such a strategy. Part of this work has been presented at the

Computational and Systems Neuroscience 2010 meeting [58].

Results

Two-choice motion-discrimination tasks
The classic experiments of [57] involved primates performing

two versions of a dot-motion-discrimination task. In the reaction

time (RT) task (Figure 1A), subjects were trained to make a (e.g.

left- or rightward) saccadic eye movement in the direction of the

motion coherence of the random dots stimulus, at their own pace.

The stimulus was presented till a saccade was detected. For the

fixed duration (FD) task (Figure 1B), they were instead allowed a

(1 sec) fixed viewing duration following which they were required

to withhold their decision response until a cue was given to

respond. Neuronal firing activity in the lateral intraparietal area

(LIP) and behavioural performance were simultaneously recorded

(Figure 1C,D).

A biological cortical circuit model for decision-making
We used a neural circuit model of decision-making [55] that

consists of two competing excitatory neural populations, each

selective to a presented stimulus, e.g. with opposite motion

direction selectivities in a motion discrimination task. An implicit

population of interneurons provides common inhibitory feedback

in the network (see Figure 2A). This model was reduced and

approximated from a spiking neuronal network model of 2000

neurons [59] to an effectively analyzable model.

Input synaptic currents and output firing rates. As in

[55] and [56], the input-output function of a single noisy

excitatory cell is

ri~gE(t)fE(Ii) ð1Þ

where r is the population-averaged firing rate, I is the total

synaptic input current to a neuron, and i~L or R, denoting

selectivity to a leftward or rightward motion stimulus, respectively.

The non-linear input-output function fE(I) is approximated from

the first-passage time input-output relation of a leaky integrate-

and-fire neuron [46,55,60] (see Eq.(9) in the Materials and Methods

section). gE(t) and gI (t) represent the time-varying gain modula-

tion parameter (see Figure 2B) of excitatory and inhibitory cells,

respectively. For the inhibitory interneuronal population, we

assume that rI~gI fI (II ) is linear so that it can be implicitly

embedded in the reduced two-variable model for analysis [55].

Following [56], we assume that recurrent excitation and

inhibition in the network is mediated through NMDA and

GABAA receptors, respectively. At any given time, the total

synaptic currents to the two neural populations are given by

IL,total~JLLSLzJLRSR{JEI SIzIb

zImotion,LzItargetzInoise,L

IR,total~JRRSRzJRLSL{JEI SIzIb

zImotion,RzItargetzInoise,R

ð2Þ

where the Jij(w0) represents the effective synaptic coupling from

neural pool j to i. Within a selective population Jii is a constant

( = 0.32 nA) times the (dimensionless) strength of the recurrent

excitation, wzw1, while between selective populations, Jij , is the

same constant times w{~1{f
wz{1

1{f
v1, where f ~0:15 is the

fraction of selective neurons. wz (w{) can be viewed as

representing synaptic potentiation (depression) between neurons

in the same (different) excitatory population after learning [61,62].

Unless otherwise specified, we used wz~2:1, as in [56].

Ib, Itarget, Imotion and Inoise are the input currents due to overall

background inputs from neurons outside the local network, static

choice targets within the response fields of the LIP neurons, output

of upstream motion selective MT/V5 neurons, and noise from the

motion stimulus and from within the brain, respectively (Figure 2A,

C). SL and SR are synaptic gating variables of NMDA-mediated

receptors, i.e. the population-averaged fraction of open channels.

SI is the gating variable of GABAA receptors.

Following the deduction of [55], the network can be further

reduced to a two-variable model, as we may consider

JiiSizJijSj{JEI SIzIb

:Jii,eff SizJij,eff SjzIb,eff

ð3Þ

Author Summary

Perceptual decision-making involves not only simple
transformation of sensory information to a motor decision,
but can also be modulated by high-level cognition. For
example, the latter may include strategic allocation of
limited attentional resources over time in a decision task to
improve performance. At the neurophysiological level,
there is evidence supporting attention-induced neuronal
gain modulation of both excitatory and inhibitory cortical
neurons. In the context of perceptual discrimination tasks
performed by animals, we make use of a biologically
inspired computational model of decision-making to under-
stand the computational capabilities of such co-modulation
of neuronal gains. We find that dynamic co-modulation of
both excitatory and inhibitory neurons is important for
flexible, and cognitively demanding decision-making while
also enhancing robustness in the decision circuit’s func-
tions. Our model captures the neuronal activity and
behavioural data in the animal experiments remarkably
well. Decision performance in a reaction time task can be
optimized, maximizing the rate of receiving reward by using
fast gain recruitment. Our experimentally fitted timescale is
near the optimal one, suggesting that the animals
performed almost optimally. By providing both computa-
tional simulations and theoretical analyses, our computa-
tional model sheds light into the multiple functions of
rapid co-modulation of neuronal gains during decision-
making.

Excitatory-inhibitory Gains in Decision-making
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with Jij,eff v0 allowing competition via effective mutual inhibition

between the two selective excitatory populations (see Eq.(10) in the

Materials and Methods section).

Choice targets and motion stimulus inputs. The input

current due to the encoded target (Figure 2C) can be modeled as

Itarget~
0 , tvttarget

Jtarget mtarget , t§ttarget

(

where Jtarget is the coupling strength for the choice target and

mtarget is the firing rate of upstream visual areas encoding the

target. We set the choice target onset time, ttarget to be at 1300 ms

after the start of a trial simulation. The firing rate of upstream

neurons encoding the target, mtarget first attains 70 Hz before

exponentially decaying over time to 30 Hz with a time constant of

tad~120 ms. The exact exponential time course, which is adopted

from [56], is not important for our model’s computations, but

follows the experimental data in [17], mimicking visual adaptation

of the stationary visual target stimuli.

Firing rates of upstream MT neurons, selective for a particular

direction of motion, can be assumed to increase (decrease) roughly

linearly with the motion strength, when the motion is in the

preferred (anti-preferred) direction of the neuron, in the regimes of

motion strength experimentally tested [63] (Figure 2D). For

simplicity, we assume that there are no differences between the

slopes of this linear function, except in sign, for motion in the

preferred or anti-preferred directions (our results are qualitatively

similar if we assume lower slopes, e.g. 2–3 times shallower, for the

anti-preferred direction, see Figure S4). Thus the external current

encoding motion stimulus relayed to the LIP neurons is expressed

as

Imotion~
0 , tvtmotion

JMT m0 1+ c
100

� �
Hz , t§tmotion

(

where JMT is the coupling strength for the motion stimulus, c
ranging from 0% to 100% represents motion coherence of the

random dots, and tmotion~2100 ms is the motion stimulus onset

time. The z({) signifies motion direction in the preferred (anti-

preferred) direction of the neuron m0~40 Hz corresponds to the

mean firing rate of MT neurons for the ambiguous zero motion

coherence (c~0% [63]).

Time-varying gain modulation. We assume the simplest

form of gain modulation, a ‘‘gain field’’ [24,46,64] g with an

effective time constant and amplitude (Figure 2B inset; cf.

sigmoidal function in [65], hyperbolic function in [17], and the

more complex function in [15], [16]):

gE,I (t)~1zg0E,I
1{exp({(t{tgE,I

)=tg)
h i

ð4Þ

where E or I denotes the excitatory or inhibitory population.

tg I
~2000 ms is the onset time of gain modulation of inhibitory

Figure 1. Dot-motion discrimination task and neural recording data. (A,B) Sequence of time epochs within a trial in the reaction time (RT)
task (A) and the fixed duration (FD) task (B). The trial begins with the appearance of a fixation point followed by two choice targets, and then a
motion stimulus in the form of computer-generated random dots. The motion stimulus has a fraction of the dots moving towards either the left or
the right choice target, constituting the motion coherence of the stimulus. The subject is trained to discriminate this motion coherence and make a
motor choice (saccade) in the same direction as this motion coherent direction towards the corresponding choice target (right in the above figure). In
the RT task, the subject makes a saccade once it has accumulated sufficient evidence in support of its decision, and the motion stimulus is removed
once a saccade is made. In the FD task, the motion stimulus is presented for a fixed duration of time (e.g. 1 second) before it is removed during a
delay period. The subject has to remember the motion coherent direction to guide its saccadic choice. (C,D) LIP neural firing rate timecourse from the
RT task (C) and the FD task (D). Dashed (bold) lines are neural activities with eventual saccade moving away from (towards) their response fields, T2
(T1). Reproduced with permission from [57].
doi:10.1371/journal.pcbi.1003099.g001

Excitatory-inhibitory Gains in Decision-making
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neurons while tgE
~2040 ms is that for excitatory neurons. The 40

ms onset delay is used to replicate the signature ‘dip’ phenomenon

[18]. We then chose a time constant of tg~120 ms in our

simulations, to fit the neuronal and behavioural data of [57]. This

is also around the timescale of rapid covert shift of attention in

area LIP [66]. Our results are independent of the specific neural

implementation of the gain modulation mechanism.

Setting g0~0 would lead to a gain factor of 1, which we

assumed throughout the pre-motion stimulus epoch in a trial. In a

RT task, upon motion stimulus onset, g0E
~2 and g0I

~0:1. In a

FD task, the gains were scaled to g0E
~0:1 and g0I

~0:06 during

motion stimulus presentation to keep the firing rate encoding the

accumulated decision below the fixed response threshold. How-

ever, upon cue to respond (at 4000 ms), the gain was increased to

that of the RT task (with the same time constant). The specific

values of g0 were selected to fit the experimental data. The

increasing gain over the course of a trial during motion stimulus

presentation is representative of the fact that attentional modula-

tion of decision-making would increase over the course of evidence

accumulation, creating an urgency-to-response signal during this

process.

Note that while representing the gain modulation of the explicit

excitatory selective populations is straightforward (see Eq. 1), the

effect of changing the gain of the inhibitory interneurons implicit

in our effectively two population model is subtler. Increasing the

inhibitory gain decreases the effective synaptic couplings in Jii and

Jij by a linear factor of this gain as well as decreasing the mean

background synaptic input Ib by another linear factor (see Eq. 11

in the Materials and Methods section).

Dynamical equations. The slowest decay time constant in

the model is that of NMDA receptors (tS~100 ms). All other

dynamical variables operate at a much faster timescale and are

assumed to achieve their steady states relatively rapidly. Thus the

dynamical equations governing the network are [55,56]

dSi

dt
~{

Si

tS

z(1{Si)cri ð5Þ

where c~0:641 is a fitted parameter [55].

Model parameters. In any parameterized model, there is

always a fine balance between incorporating more biological

details and reducing the number of model parameters. There are

certainly simpler models than ours, with minimum parameters,

such as the drift-diffusion model, which, with or without gain

modulation can model the behavioural data [15,16,67,68].

However, as stated earlier, these abstract models cannot directly

Figure 2. A decision-making model. (A) Network model architecture. The network is fully connected, with recurrent inhibition provided by an
implicit population of inhibitory interneurons (dashed lines). Inputs to the left- or right-motion selective population of LIP neurons include that from
upstream MT/V5 neurons (IL or IR) and the choice targets (Itarget). (B) Sample gain modulation on a single-cell input-output relation. Dotted to solid
curves show effect of increasing gain. Inset: Temporal evolution of gain, light to dark colours show decreasing time constant of gain modulation. (C)
Timecourse of input currents. (D) Firing rate of an upstream MT neuron encoding motion stimulus, when motion is into or out of its response field
(RF).
doi:10.1371/journal.pcbi.1003099.g002

Excitatory-inhibitory Gains in Decision-making
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correlate with neuronal and synaptic properties, and thus cannot

realistically incorporate inhibitory gain modulation.

Other than the new parameters pertaining to our gain

modulation mechanism, the entire model parameters and their

values are identical to those in our previous modelling work [55]

and [56], more directly following the latter. The list of the more

critical adopted and new parameters is shown in Tables 1 and 2,

respectively.

The new parameters, pertaining to excitatory and inhibitory

gain modulation consist of only their onset times (tgE
,tg�I

), time

constants (tg), and amplitudes (g0E
,g0I

). These parameters were

used to provide a qualitative rather than quantitative fit to the

neural and behavioural data, and we simulated predictions at a

range of parameter values until the desired fits were isolated. The

onset times are constrained to qualitatively but reliably replicate

the signature dip phenomenon of the firing rates right after motion

stimulus onset and are fixed throughout this study. tg allows the

network to dynamically change configuration from the dip period

to the motion stimulus period. The value of tg is obtained from

fitting the neuronal and behavioural data and we shall explore its

effects towards the end of the paper. It also affords us an

opportunity to study the optimal time-scale of gain recruitment in

RT tasks, similar to [54], but with a more realistic model and

simulation setting (the time parameters in the simulated experi-

mental trial follow closely that of [57] and [15]). The model’s

ability to form and store decisions is independent of the values of

tgE
,tgI

and tg. This depends on the gain amplitude parameters

(g0E
,g0I

). We shall show that our model is not sensitive to our

chosen values of the gain amplitude parameters g0E
,g0I

. The

details of how the new parameters were constrained are provided

in the Materials and Methods section and in Table 2.

Epochs in a trial. A simulated trial can be categorized under

separate epochs [17] (i) fixation-only (tvttarget), with baseline

firing rates; (ii) fixation-target (ttargetƒtvtg ), with an initial phasic

burst of activity and then adapting into a steady firing; (iii) fixation-

target-gain (tgvtƒtmotion), where the neuronal gains are assumed

to start increasing; (iv) fixation-target-gain-motion (tmotion

vtƒtthreshold=cue) with an additional random-dot motion stimulus,

and firing rates of the two selective populations start to deviate.

tthreshold=cue is the time of threshold crossing when the motor action

of a saccade is initiated in an RT task or the time of cue

presentation in the FD task.

Table 1. Parameters based on previous work: 1Wang (2002), 2Wong and Wang (2006), 3Wong et al. (2007), 4Eckhoff et al. (2011),
5Churchland et al. (2008), and 6Britten et al. (1993).

Parameter Interpretation Value Reference

ts (NMDA-mediated) synaptic gating variable time constant 100 ms [1,2,3,4]

tnoise (AMPA-mediated) synaptic time constant 2 ms [1,2,3,4]

tref LIP neuronal (absolute) refractory period 2 ms [1,4]

tad LIP neuronal adaptive time constant 120 ms [3,4,5]

W+ Synaptic potentiation factor within selective population 2.1 [2]

f Fraction of selective neurons in excitatory neurons 0.15 [1,2,3,4]

JLL, JRR Recurrent synaptic strength within a selective population 0.32 nA [3]

JLR, JRL Recurrent synaptic strength between selective populations 0.32 nA [3]

JEI Synaptic strength from inhibitory to excitatory populations 8.58 nA [3]

JIE Synaptic strength from excitatory to inhibitory populations 0.32 nA [3]

Jtarget Synaptic strength for choice target 0.0022 nA/Hz [3]

JMT Synaptic strength for motion stimulus 0.000225 nA/Hz [3]

m0 MT firing rate for zero motion coherence 40 Hz [1,6]

snoise Standard deviation of noise 0.015 nA 2, 3

doi:10.1371/journal.pcbi.1003099.t001

Table 2. Parameters for fitting Aneural and Bbehavioural data in current work.

Parameter Interpretation Value Data types to fit Notes

g0E Excitatory gain maximal
amplitude

0 (f and t); 2 (m) in RT; 0.1 (m, d) in FD,
2 (c) in FD

A, B Explored in Results section

g0I Inhibitory gain maximal
amplitude

0 (f and t); 0.1 (m) in RT; 0.06 (m, d) in FD,
0.1 (c) in FD

A, B Explored in Results section

tg Gain modulation time
constant

120 ms A, B Explored in Results section

tgI Inhibitory gain onset time 50 ms after m onset A (‘dip’ behavior)

tgE Excitatory gain onset time 90 ms after m onset A (‘dip’ behavior)

RT: reaction time task; FD: fixed duration task. f: fixation; t: fixation and target epoch; m: fixation, target and motion epoch; m, d: fixation+target+delay period in FD task;
c: cued to response in FD task.
doi:10.1371/journal.pcbi.1003099.t002

Excitatory-inhibitory Gains in Decision-making
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A motor action (saccadic eye movement) is triggered when the

higher population firing rate crossed a prescribed threshold at 70
Hz (cf. Figures 7 and 9 in [57]). In a RT task, the time elapsed

from motion onset to threshold crossing yielded the decision time.

A non-decision latency of 245 ms due to sensory signal

transduction and motor saccadic preparation was added to the

decision time to obtain the observable RT.

Excitatory-inhibitory gain modulation in the reaction
time task

As shown in Figure 3A our model captures the essential

timecourse of the neural data in a RT task. Similar to previous

models [55,56,59], our model reproduces the faster ramping up

(down) of firing rates for larger motion coherences when the

motion is into (out of) the response field of a LIP neuron. Our

model can also reproduce the psychometric (accuracy) and

chronometric (reaction time, RT) data of the experiment of [57]

(Figure 3B and C), and the RT distributions for both correct and

error trials (Figure 3D and E). In addition, our model naturally

captures the characteristic dip at motion onset by modulating

inhibitory gain before excitatory gain, providing an alternative

mechanism to our earlier work [56]. In the RT task experiments

[57], the firing rates of LIP neurons during motion stimulus

presentation were observed to diverge from a level higher than the

adapted firing rate during the target epoch (Figure 1C). Our model

is able to replicate this phenomenon, unlike previous work

[56,69,70,71].

This activity timecourse of our two variable (rR,rL) model can be

better understood by investigating its dynamics on a two dimensional

phase/state space called the phase plane (see Materials and Methods,

Figure S1 and Figure 4). Here we shall for simplicity consider only the

unbiased motion stimulus (i.e. zero motion coherence, c~0%)

condition. We defer the explanation for non-zero motion coherence,

for both correct and error trials to [55], [56], and [72].

Following the procedure as in previous work [55,56], we first set

both dynamical equations in Eq. (5) to be
dSi

dt
~0 and solve for the

Si’s, where i~L,R. The solutions for each equation (called a

nullcline, orange and green curves in Figure 4) can be plotted in

the two dimensional (SR,SL) phase plane. We transform the

dynamical variables (synaptic gating variables) SR,SL to firing

rates rR,rL (see Materials and Methods), enabling direct comparison

with the experimental data.

Intersections of the nullclines, by definition, give us the steady

states of the network. Steady states can either be stable, i.e.

attractors (black filled circles in Figure 4), or unstable (open circles

Figure 3. Network model reproduces neural and behavioural data in the RT task. (A) Activity timecourse of model, averaged over multiple
trials, with different motion coherences, locked to motion onset (left) or saccadic response (right). Response threshold at 70 Hz, compare with
Figure 1. (B,C) Accuracy (B) and mean RT (C) generated by model and in the experiment of [57]. Psychometric functions fitted with a Weibull function,

p~1{0:5e({c=a)b

:, where a is the discrimination threshold at which performance is at 82% correct, and b yields the slope of the psychometric
function. a and b of the model (experiment): 7:38% and 1:28 (7:46% and 1:28), respectively. Error bars denote standard errors. (D,E) RT distributions
generated by model and in the experiment for correct (D) and error (E) trials. Upper, middle, lower panels: 51:2%, 12:8%, 3:2% coherence,
respectively.
doi:10.1371/journal.pcbi.1003099.g003

Excitatory-inhibitory Gains in Decision-making
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in Figure 4, see Materials and Methods and Figure S1). In the firing-

rate space, a steady state can be symmetric, i.e. lie along the phase

plane diagonal, or asymmetric, i.e.. off-diagonal. This means the

firing rates of the competing selective populations can be equal

(symmetric) or unequal (asymmetric).

Symmetric (on-diagonal) attractors allow stable, steady, equal

firing rates of both selective populations, which prevents decision-

making and categorical choice. A symmetric unstable steady state

on the other hand can force the network’s state to move off-

diagonally, causing the firing rate of one (winning) population to

increase while that of the other (losing) to decrease, enabling

decision-making and categorical choice. Asymmetric, ‘choice’

attractors ensure that the firing rates of the winning (losing)

populations reach a stable steady state, and do not increase

(decrease) without bound. Our modus operandi then is to let the

network reach symmetric attractors during the fixation and

fixation-target periods and then using gain modulation, approach

(along the diagonal line) a symmetric unstable steady state during

the fixation-target-gain-motion period (see Movie S1).

During the fixation period (Figure 4A, inset, shaded region), the

firing-rates of both competing selective populations are at a low,

spontaneous/baseline stable state. This is represented by the

network starting off and remaining at a low symmetric attractor

(Figure 4A).

When the choice targets appear, a burst of input current (Itarget)

transforms the nullclines such that there is only one attractor,

which is symmetric (Figure S1A, Movie S1). This precludes any

winner-take-all dynamics and allows the firing rates of both

competing populations to be reliably activated to an equal, high

level. After adaptation, the network settles at a symmetric attractor

(Figure 4B) with a higher firing-rate than that during the fixation

period. The grey region of Figure 4B represents the basin of

attraction of this symmetric attractor. Trajectories starting in this

region are attracted into this symmetric attractor. Although

Figure 4. Phase-planes at different epochs of a trial in the RT task. (A) Fixation (pre-target onset): Istim~0, gE~1, gI ~1. Orange and green

curves represent nullclines: where
dSL

dt
~0 and

dSR

dt
~0, respectively. (B) Fixation with targets: Istim~Itarget, gE~1, gI~1. Grey regions show the basin

of attraction for the symmetric (on-diagonal) attractor (see text for definition). (C) Fixation, with targets and gain onset: Istim~Itarget. Solid (dashed)
nullclines: gE~1, gI ~1:03 (gE~1:78, gI~1:06). Solid nullclines: with inhibitory gain onset prior to excitatory gain onset; dashed nullclines: with both
inhibitory and early stage of excitatory gain increase. (D) Fixation, with targets, gain modulation, and motion stimulus (zero coherence):
Istim~ItargetzImotion,c~0, gE~3, gI ~1:1. Closed and open circles represent stable (attractors) and unstable steady states, respectively. Diagonal line
(stable manifold) and the curve to which off-diagonal trajectories near an unstable steady state are repelled to (unstable manifold), are shown in
black and denoted by arrows moving towards or away from the unstable steady state, respectively. Blue: a sample trial with the corresponding
epochs in a trial in bold and labeled in inset, grey lines denote the unobserved part of the simulation trial after saccade initiation. Red: denotes the
time when the phase plane was viewed. Note the different scales between the top and bottom panels.
doi:10.1371/journal.pcbi.1003099.g004
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additional asymmetric attractors are present, the large basin of

attraction of this symmetric attractor shows that this symmetric

attractor is very stable. Even with noise (see noisy trajectory in

Figure 4B (dark blue)), any winner-take-all dynamics and

consequently, any decision-making during the target period is

prevented, and both populations fire at the same rate prior to the

onset of the motion stimulus (Figure 4B, inset, shaded region),

consistent with experimental data [17].

So far, we have ensured that our model behaves similar to our

previous work [55,56], although later, we shall show that the

presence of multiple stable states during the fixation and fixation-

target periods is not necessary. However, the model starts to differ

from here onward. Immediately upon motion stimulus onset, the

gain of the inhibitory neural population is turned on, creating a

lower but nearby symmetric, unstable steady state (Figure 4C,

solid nullclines). Only trajectories starting on the diagonal line

(called the stable manifold, see Materials and Methods, and

represented by the black curve with arrows pointing towards this

symmetric unstable steady state) are attracted to this unstable

steady state, all others are repelled away. Since the attractor

formed after target-adaptation is symmetric, i.e., on diagonal

(Figure 4B), the network starts from and moves along the diagonal

line (with equal firing rates) towards this lower unstable steady

state (sample trajectory in Figure 4C, dark blue). This creates an

equal ‘dip’ in firing rates. Before it can reach the unstable steady

state, the gains of the excitatory selective populations are activated.

Consequently, the symmetric unstable steady state is raised

(Figure 4C, dashed nullclines), and the population firing rates

increase, once again along the diagonal line (with equal firing

rates). This yields the recovery from the ‘dip’. Our delayed gain

onset can thus create the dip phenomenon and the recovery from

it (Figure 4C, inset; Figure 3A) without lowering the overall inputs

to the system (as implemented in previous modelling work).

The input current due to the motion stimulus (Imotion) causes the

net input to the network to increase, causing the symmetric

unstable steady state (after momentarily becoming stable, see

Movie S1) to be at an even higher firing rate (Figure 4D). As we

shall show, the co-modulation of both excitatory and inhibitory

gains is necessary to allow this symmetric unstable steady state to

be at a higher activity level than the adapted target firing-rate

(compare with Figure 4B). After briefly moving towards the

symmetric unstable steady state (sample noisy trajectory in

Figure 4D, dark blue), the network eventually gets perturbed off

the diagonal line. The network is then repelled away from this

unstable steady state to another curve (called the unstable

manifold, see Materials and Methods, and shown by the black curve

with arrows pointing away from the symmetric unstable steady

state) and towards one of the asymmetric ‘choice’ attractors. This

causes the firing rates of the competing selective populations to

diverge such that the firing-rate of one population ramps up while

that of the other ramps down, exhibiting winner-take-all

behaviour, and forcing a decision. Prior to reaching one of these

choice attractors, a motor action (saccade) is made when the

network crosses the motor/saccadic threshold (70 Hz in our case;

dashed horizontal black lines in all panels and insets of Figure 4).

The various epochs within a trial are summarized in Movie S1.

Additionally, the network can be reset before the start of the next

trial by allowing the gains to decay to a low value after the

threshold is crossed (see Figure S2).

Robust and flexible decision dynamics with excitatory-
inhibitory gain modulation

Having accounted for the observed neural and behavioural

data, we shall now demonstrate how gain modulation of both

excitatory and inhibitory neurons is necessary for flexible and

robust decision-making. For simplicity, we shall consider an

unbiased stimulus input, i.e. zero motion coherence (see [72] for

biased stimulus input) condition.

Following [55], we will map out the range of possible stable and

unstable steady states, i.e. the stability (bifurcation) diagram of the

system, as a function of a variable or parameter of interest.

Parameter regimes where both asymmetric attractors and

symmetric unstable steady states exist are regimes of decision-

making and categorical choice.

Figure 5 plots the stability diagram as a function of net (target

and motion) stimulus input Istim~ItargetzImotion for a single

selective excitatory population in the absence (black) and presence

(grey) of excitatory-inhibitory gain modulation. Each of these

consist of stable (bold lines) and unstable (dashed lines) loci of

steady states. The upper and lower stable branches denote the

‘choice’ attractors for the winning and losing selective populations,

respectively. Two of the stable loci and one unstable loci together

form a continuous smooth line (highlighted with the word

symmetric in Figure 5) that represents the symmetric steady states

along the phase-plane diagonal in Figure 4. Its stability changes

from stable to unstable and back to stable (Figure 5) as the net

stimulus input increased; the unstable region (double arrowheads)

is where decision-making is possible. One can already easily see

that this decision-making regime with excitatory-inhibitory gain

modulation (grey double arrowheads) is significantly much larger

than without gain modulation (black double arrowheads); i.e. co-

modulation of excitatory-inhibitory gains can lead to enhanced

robustness of the decision-making process.

As in [56], in the absence of gain modulation, the selective

excitatory populations transition from a low-activity spontaneous

attractor during fixation epoch (circle, Figure 5) to a high-activity

attractor during the choice target epoch (triangle, Figure 5) due to

the choice target input, without forming any decision. Later in the

trial, the motion stimulus further increases the net stimulus input.

Since the symmetric curve increases monotonically with net

stimulus input, this further increase in the input would force the

symmetric steady state further right in the stability diagram than

during the target period. Although this state has a higher firing

rate, it is stable and thus does not allow any winner-take-all

dynamics and decision making.

Previous modelling work solved this problem by reducing the

input current due to choice targets upon motion stimulus onset

[56,69–71], by assuming divided covert attention from choice

targets to the motion stimulus. The explicit reduction in target

input compensated for the increase in input at the onset of motion

stimulus. However, this manipulation leads to restrictions in the

dynamical range of the neural firing rates. For example, the firing

rates diverge at a level lower than the pre-motion stimulus firing

activity level, contrary to some experimental findings [57,73].

Furthermore, the choice targets remain on display throughout a

trial, rendering this implementation questionable. In this work, we

provide an alternative biologically plausible mechanism of

modulating the gains of both excitatory and inhibitory neurons.

Despite the increase in net stimulus input due to the motion

stimulus, gain modulation enables a transition from the symmetric

attractor during the target period (triangle in Figure 5) to a higher

activity, symmetric unstable steady state during the motion period

(square in Figure 5). The firing rates thereby diverge from a higher

activity level during the motion period than that of the adapted

target firing rate.

In addition to making the decision process more robust and

more dynamic, excitatory-inhibitory modulation can also create a

wider range of firing rates that can be achieved when storing

Excitatory-inhibitory Gains in Decision-making
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categorical choice (compare the firing rates of the black and grey

upper stable branches, which represent the neural storage of

choice). The higher firing rates for the grey upper stable branch

can more easily allow a fixed motor threshold to be crossed, i.e.

motor action to be initiated. It is precisely this flexible mechanism

that allows it to be also used for other behavioural task paradigm

e.g. the FD task, which we will later show. It is further noted that

these wide range of firing rates can also allow this threshold

(currently fixed at 70 Hz) to vary more widely, adding another

dimension towards more flexible decision-making strategy for

speed-accuracy trade-off [68,74–76], provided there is a separate

independent neural mechanism to instantiate such a decision/

motor threshold [77,78].

To further demonstrate the inflexibility of either excitatory or

inhibitory gain modulation as opposed to their co-modulation, we

plot the stability diagram of a single selective excitatory population

with respect to each (excitatory or inhibitory) gain parameter.

Figure 6A shows, for a fixed stimulus input, the effects on the

excitatory neural population as the excitatory gain gE is varied

with the inhibitory gain gI fixed at the control value of 1. As gE is

increased from 1, the selective populations can transition from a

regime with multiple high stable (HMS) steady states (including a

symmetric stable state) to one with a very high single stable (HSS)

firing activity. Similar transitions occur if we decrease the

inhibitory gain gI from 1 (Figure 6B). This means that increasing

(decreasing) excitatory (inhibitory) gains in isolation does not allow

any winner-take-all dynamics, as both populations fire at the same

level (Figure 6C).

Conversely, we may decrease (increase) excitatory (inhibitory)

gains in isolation. The selective populations transition through the

decision-making (DM) regime (where symmetric unstable steady

states coexist with asymmetric attractors) to a single low stable

branch (low single steady state, LSS). Increasing the inhibitory

gain leads to an additional regime with multiple steady states

including a low spontaneous stable state (LMS). The decision-

making regime has a lower firing rate than that during the target

period. Consequently, the firing rates of the selective populations

diverge at a lower firing rate than the adapted target firing rate.

Thus a decrease (increase) excitatory (inhibitory) gain in isolation

can enable decision-making but at a smaller dynamic range (e.g.

lower firing rates) and slower decisions (Figure 6D) than found in

experiments [57,73].

To more completely understand the interplay between stimulus

inputs and gain modulation parameters, we extend the stability

analysis of Figures 5 and 6A, B to the gain (gE , gI ) space for

different epochs (and hence overall stimulus inputs) within a trial.

As observed in Figure 6B (and Figure 5), in general, there are five

distinct dynamical regimes for a single excitatory selective

population (LSS, LMS, DM, HMS and HSS). We can see in

Figure 7 that in the gain space, the range for gE is larger than that

for gI due to the generally steeper input-output function of

inhibitory than excitatory neurons. More so, it should be noted

that our inhibitory gain modulation is not exactly multiplicative

(see Materials and Methods).

During the fixation epoch (Figure 7A), m0~0 Hz, the state

without gain modulation (gE , gI )~(1, 1) lies within the LMS

regime (black filled circle, Figure 7A). We have implemented the

state in this regime purely to be consistent with previous modelling

work [55,56]. However, a trial need not necessary have to start

within this regime; an alternative regime could be LSS (e.g. with a

Figure 5. Robust decision-making regime with excitatory-inhibitory gain increase. Stability diagram of a single selective excitatory
population as a function of the net stimulus input Istim with zero motion coherence. Black: without gain modulation, gE~1,gI ~1. Grey: gains
increase to gE~3,gI ~1:1. Solid and dashed lines are the stable and unstable steady-states, respectively. Double horizontal arrows show the range
where a symmetric unstable steady state (dashed symmetric curves) co-exists with asymmetric stable steady states (upper and lower stable
branches). These are the dynamic ranges of decision-making under these two conditions. Circle, triangle and square represent the fitted firing rate for
the net stimulus input during fixation, target and motion periods, respectively. Vertical dashed double arrows show the winner-take-all effect (from
the square) during motion stimulus and gain increase, either transiting to the upper winning branch or lower losing branch. Note that with gain
modulation, the upper branch is mostly higher than the 70 Hz response threshold, enabling saccade initiation to the winning direction.
doi:10.1371/journal.pcbi.1003099.g005
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smaller gE value). In the presence of a target stimulus of a (adapted

to) firing rate of 30 Hz, all the dynamical regimes generally shift

upward (Figure 7B). In particular, the LMS regime becomes much

smaller and not conducive for the population state to exist there,

unless with very precise fine-tuning. It therefore makes sense for

the transition to the HMS regime. Again, in principle, (gE , gI )

need not be (1, 1) (black filled circle, Figure 7B), but can be

anywhere within the HMS or even the HSS regime as long as the

activity is high. We chose (1, 1) to fit the neural data in [57]. Note

that the DM regime has significantly increased at this stage of the

trial.

With both choice target and motion stimulus onset (30 + 40
Hz, respectively), the dynamical regimes are only slightly

altered (Figure 7C). This is because the overall input into each

selective population is primarily dominated by the target input

(Figure 2C). The DM regime is rather wide in both Figures 7B

and C. The black filled circle in Figure 7C ((gE , gI )~(3, 1:1))

shows the model’s fit to both neural and experimental data

(Roitman and Shadlen (2002)), which is close to the transition

of dynamical regimes (bifurcation point) between DM and

HMS. Typically when approaching such a boundary, the

dynamics of the network is generally slow, and the RT

distributions can exhibit long tails [72,79]. However, if we

have gains that continuously increase over time (creating a

form of ‘urgency’ signal), we can curb such behaviour

(Figure 3D), which is not observed in [57] (see Figure 3E;

[15,65]).

Overall, Figure 7 summarizes our analyses and shows that our

model’s gain parameters are robust and insensitive to small

perturbations, and yet, tightly constrained by both neural and

behavioural data. In particular, Figure 7 shows that for any

afferent input, an increase in inhibitory gain alone can lead to

more robust dynamical regimes than with only excitatory gain

increase. However, the firing rate of the symmetric unstable steady

state would become too large (*85 Hz, see Movie S2) and would

not fit the experimentally observed divergence point of firing rates

[57]. The dynamical regimes robustness can be further and

continuously enhanced by following an appropriate increase in

both excitation and inhibition, i.e. a larger increase in excitatory

than inhibitory gains.

Figure 6. Excitatory or inhibitory gain modulation alone results in restrictive neural dynamics. (A,B) Stability diagrams of a single
selective excitatory population as a function of excitatory gain gE (A) and inhibitory gain gI (B). Arrows in (A) and (B) show direction of change as gE

or gI varies, respectively. Vertical dashed lines partition regimes of gE in (A) and gI in (B), respectively. A regime can have a single symmetric stable
steady state, which is either low (LSS) or high (HSS), or multiple stable steady states: one symmetric and two asymmetric, with two asymmetric
unstable steady states. The symmetric steady state can be low (LMS) or high (HMS). Or it may have a symmetric unstable steady state with
asymmetric stable and unstable steady states. This constitutes the decision-making (DM) regime. (C,D) Sample activity timecourses showing either no
winner-take-all behaviour (C) or divergence at low firing rates, when the excitatory (inhibitory) gain is increased (decreased) in isolation (C), or when
the excitatory (inhibitory) gain is decreased (increased) in isolation (D), respectively.
doi:10.1371/journal.pcbi.1003099.g006

Excitatory-inhibitory Gains in Decision-making

PLOS Computational Biology | www.ploscompbiol.org 10 June 2013 | Volume 9 | Issue 6 | e1003099



Low gains in a cued response task with fixed viewing
duration (FD) and a delay period

Comparison between model and experiment. Unlike the

RT task, in a cued-to-response version of the decision task with a

fixed viewing duration (FD), participants may not need to search

for a trade-off between response time and accuracy, and

emphasize only on the latter [57,80]. We hypothesize that such

FD tasks require lesser cognitive effort, and hence lesser (one

quarter) gain modulation values in our model than in the RT tasks.

Our fitted gain parameters are selected to be within the decision-

making regime (Figure 7C, opened circle).

In the FD task experiments, the neural firing rates during the

1 second motion stimulus epoch are found to be generally lower in the

FD task than in the RT task (Figure 1C,D). Furthermore, the

divergence of firing rates are also lower in the FD task. In fact, this

divergence can even take place at lower activity level than the (adapted)

target firing rate [18,80]. Most importantly, the firing rates in the FD

task are observed to diverge during motion presentation but

maintained at a low activity level during the delay period. Our model

with low gain modulations can account for these neuronal effects

(Figure 8A, B) of [57]. The lower gains cause slower ramping of

neuronal activity (compare with Figure 3A). Although the fixed viewing

duration of 1 sec would allow sufficient time to integrate sensory

information with higher gains, for lower gains it does not. Thus,

decisions are less accurate in the FD task than in the RT task (Figure 8B

inset). This is also consistent with the account in [59].

In Figures 8 A and B, we can see that during the motion stimulus

period, although the firing rates have already diverged and thus the

decisions formed, the activities are maintained at levels lower than the

response threshold of 70 Hz. This is achieved by having lower

excitatory and inhibitory gains. Thus, in the FD task, it is clear that

the threshold is actually a motor response threshold rather than a

decision threshold per se; the decision is already formed during

motion stimulus presentation prior to the delay period and response

cue. When the cue to respond is presented, the gains are increased to

values as in the RT task. The firing rate of the winning population

rapidly crosses the threshold and a corresponding saccade is initiated.

Strong recurrent excitation is not necessary for forming
and storing decisions

Previous work has suggested that strong recurrent excitation is

necessary for the formation of a decision and its maintainence in

working memory during a delay period [55,59]. In the absence of

gain modulation, with weak recurrent excitation (wzƒ1:6), the

stability diagram with respect to the net stimulus input current is

shown in Figure 9A (black trace). Since there is neither any unstable

steady state nor choice attractors, the network is incapable of

forming or maintaining decisions (Figure 9B). However, with

Figure 7. Dynamical regimes for excitatory and inhibitory gains. Distinct regimes of the network’s operation as a function of excitatory and
inhibitory gains gE and gI , respectively. A regime can have (i) a symmetric low single stable steady state (LSS), (ii) a symmetric high single stable state
(HSS), (iii) multiple stable steady states: one low symmetric and two asymmetric (LMS) with two asymmetric unstable steady states, (iv) multiple stable
steady states: one high symmetric and two asymmetric (HMS) with two asymmetric unstable steady states and (v) a symmetric unstable steady state
with asymmetric stable and unstable steady states, which constitutes the decision-making (DM) regime. Compare with Figure 6 A,B. The regimes of
gE ,gI are analysed for different net-stimulus inputs (Istim), i.e. during (A) fixation, (B) target, and (C) target and motion. Black dots show our fitted
gE ,gI parameters during these epochs, with black and open dots showing the fitted parameters during the RT and FD tasks, respectively.
doi:10.1371/journal.pcbi.1003099.g007
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excitatory and inhibitory gain enhancements, for the same weak

recurrent excitation and range of net stimulus input current, the

network can have a symmetric unstable steady state (Figure 9A,

dark grey trace) and can still perform very similar functions of

decision formation and storage (Figure 9C) as in Figure 8A. We

have used a higher excitatory gain gE~1:8 compared to the

gE~1:1 in Figure 8A, while maintaining gI~1:06 in both cases.

Although there is no intrinsic hysteresis in its stability diagram

(i.e. no LMS), the network can still sustain its decision formed

throughout the delay period (with the removal of motion stimulus

input) as long as the target stimulus remains (which is the case in

[57]). Upon response cue onset, the excitatory and inhibitory gains

are increased (gE~5, gI~1:1), so that the upper stable branch,

i.e. of the winning ‘choice’ attractor has firing rates that are higher

than the motor decision threshold (Figure 9A, light grey trace)

enabling the crossing of the saccadic threshold (Figure 9C).

Thus, we have demonstrated that with co-modulation of

excitation and inhibition, strong intrinsic recurrent excitation is

not necessary for decision formation and storage. This can be

explained heuristically by first noting that the input due to

recurrent excitation I is proportional to wzgEr, where r is the

(pre-synaptic) firing rate. Due to the multiplicative nature of these

parameters and variables, a high excitatory gain gE can

compensate weak recurrent excitation wz.

Optimal decision performance with fast recruitment of
gains

We have so far been assuming a single time constant of gain

modulation. However, this fitted time constant may not necessary

be the optimal time constant for the tasks which we have discussed.

In particular, a RT task involves a speed-accuracy tradeoff: slow

RTs are more accurate while fast RTs may lead to more errors

[54,81]. Since only the correct trials are rewarded and error trials

are penalised with a lengthened trial duration, performance can be

measured by the average reward rate, which can be quantitatively

defined as the total number of correct trials divided by the total

time duration spent in a block or multiple blocks of trials. Thus, a

form of optimal performance in RT task would require

maximizing the reward rate. The time duration of a trial not

only depends on the subject’s RT but also on the experimental task

design (e.g. inter-trial interval, and various other temporal delays).

In particular, a trial in [57] can consist of several temporal delays,

each contributing to the trial duration [15]: (i) between appear-

ance of the fixation point and monkey achieving stable fixation; (ii)

before the appearance of choice targets; (iii) before motion

stimulus was presented; (iv) the recorded RT of the monkey; (v)

saccade duration; (vi) a possible delay before reward was provided

depending on whether the choice was correct; and finally, (vii) an

inter-trial interval before the reappearance of the fixation point.

When calculating the overall time spent within a trial, we follow

the procedure in [15]. The average trial duration (TD) is as

follows.

On correct trials:

TDcor~
4900ms ,RTv600ms

4300mszRT ,RT§600ms,

�
ð6Þ

which accounts for the fact that the subjects had to wait a

minimum time after the onset of the motion stimulus before which

reward was delivered.

Figure 8. Network model reproduces neural and behavioural data in the FD task. (A) Sample activity timecourse for zero motion
coherence of model with weaker gains (gE~1:1 and gI ~1:06). motion stimulus duration: 1 second. Delay period: 1 second. (B) Activity timecourse of
model averaged across trials. Inset: Accuracy from model simulations, compared with that in RT task. Coherence threshold a and slope b of model
(experiment): 9:86% and 1:27 (10:01% and 1:65), respectively. The ratio aRT=aFD~0:75 is similar to that in the experiment.
doi:10.1371/journal.pcbi.1003099.g008
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On error trials:

TDerr~4150mszRTz4000 exp {
RT

1000ms

� �
ms ð7Þ

which takes into account the timeout following error choices and

the RT dependent timeout that was imposed to prevent impulsive

guesses. For simplicity, we do not include trials on which fixation

was broken without an immediate saccade being made to a choice

target. These were rare in the experiment of [57] and not included

in the data set used in their publication (Jamie Roitman, personal

communication).

The mean reward rate for a trial of a particular coherence is

given by

Reward Rate~
Fraction of correct choices

Mean trial duration
: ð8Þ

The mean trial duration for a particular coherence is the

weighted mean of the average trial durations for correct and error

trials. Since all six coherences used were uniformly distributed

within each block, the overall fraction of correct choices was

simply the arithmetic mean of the fraction of correct choices for

the individual coherences. Similarly, the overall mean TD was the

mean of the mean trial durations for the six coherences.

In order to understand how fast gain modulation should be

recruited in an RT task, we calculated the overall mean reward

rate as a function of the time constant of gain modulation tg

(Figure 10A). We find that the optimal time constant of gain

modulation operates at a relatively short timescale with t�g*190

ms (Figure 10A inset), for which accuracy is maximized while the

mean TD is minimized (Figure 10B, C, respectively). This short

time constant indicates the need for the fast recruitment of gain

modulation in order to maximise reward rate. Our fitted time

constant of 120 ms suggests that although monkeys in the

experiments are not performing optimally, they are not too far

from optimality. In particular, recruiting gain with a time constant

of 120 ms would cost an average reward rate of 0:33 rewards per

minute.

Modelling the behavioural data with this optimal time constant

produces left-shifted psychometric curves with a coherence

threshold a�RT~5:19% and a slope b�RT~1:33, corresponding to

a better performance than the experimental data and our model’s

fit to it (Figure 11A, upper panel). On the other hand,

chronometric curves are shifted upward, revealing slower

responses when compared to the experiment and our model’s fit

(Fig. 11A, lower panel), a consequence of the speed-accuracy

tradeoff.

When calculating this optimal gain time constant, we have

assumed that subjects recruit gain modulation with the same

timescale throughout multiple blocks of trials, irrespective of task

difficulty (motion coherence). However, if coherences are known,

higher reward rates may more likely be achieved by the optimal

recruitment of gain modulation for each individual coherence

[82]. This could be possible for experiments in which the

coherence is fixed within a block. Then the optimal gain time

constant decreases with coherence, except for zero motion

coherence, where it is near our model’s fit of tg~120 ms

(Figure 11B). For lower non-zero motion coherences, it is longer

Figure 9. Weak recurrent excitation in the FD task. (A) Stability diagram for a single selective excitatory population as a function of net
stimulus input current Istim , with weak recurrent excitation (wzƒ1:6) in the absence of gain modulation (gE~gI ~1), with low gains (gE~1:8,
gI ~1:06) and large gains (gE~5, gI ~1:1). Solid and dashed lines show stable and unstable steady states, respectively. (B) Without any gain
modulation, the network cannot perform decision-making nor store decisions. (C) With sufficient gain modulation, network can form a decision and
store it below a motor threshold (dotted horizontal line at 70 Hz). Upon cue to respond, higher set of gains allow threshold to be crossed and
saccade to be made.
doi:10.1371/journal.pcbi.1003099.g009
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than the single optimal gain time constant, but shorter than that

for higher ones. Since the optimal gain time constants are larger

for lower coherences (c~3:2% and 6:4%), a longer duration of

evidence accumulation becomes possible, and thus, RTs are

lengthened (Figure 11A, upper panel) and accuracies are improved

(Figure 11A, lower panel).

This task-difficulty dependent gain modulation strategy has a reward

rate (averaged over the motion coherences) that is higher than that of

the previous task-difficulty independent gain modulation strategy. In

fact, this difficulty-dependent strategy can lead to an average reward

rate of 9.66 rewards per minute, which is 0:25 rewards per minute

greater than the reward rate using a single time constant of gain

modulation (Figure 11C) throughout multiple blocks of trials.

The optimal time constants are applicable when we use the realistic

temporal delays of [57]. These impose temporal penalty delays to

discourage the monkeys from responding impulsively. Eq. (7) shows

that fast, erroneous responses elongate the error trial duration (TDerr)

more than slow ones according to the exp {
RT

1000ms

� �
term (see the

dashed curves in Figure S3A, lower panel). Although theoretically, an

erroneous response on a 0% coherence condition is ill-defined,

responses for this condition in the experiment were randomly (with

probability 0.5) deemed erroneous (see Figure S3A, middle panel) and

thus also incurred the error delays. Since accuracy on a 0% coherence

condition is 0.5, thus TDerr and TDcor are equi-probable. The reward

rate (see Eq. (8)) for responses that are too fast is therefore lower (see

Figure S3A, upper panel). Furthermore, the minimum trial duration

(see Eq. (6)) even for correct responses also discourages fast responding.

However, if only RTs, plus a fixed inter-trial interval (Figure S3 B,

lower panel) instead of TD were used to maximize reward rate [81],

then the optimal time constant for a 0% coherence would indeed

approach 0, i.e., it would be optimal to respond randomly and

immediately (Figure S3B, upper panel).

Discussion

Top-down cognitive control such as attention has been

suggested to form an integral component in perceptual decision-

making [30]. Our current study is inspired by the findings in [52],

which show that attention can induce gain modulation of both

excitatory and inhibitory neurons, and also by those of [53], which

suggest that attention can have a time-varying nature. However,

there has not yet been any study on how time-dependent gain

modulation of both excitatory and inhibitory neurons can affect

decision dynamics and performance.

Specifically focusing on the two highly-studied reaction time

(RT) and fixed delay (FD) decision task paradigms, we use both

computational simulations and dynamical systems analysis of a

biologically inspired decision-making model to address this issue.

In our study, we have shown that simultaneous dynamic gain

modulation of both excitatory and inhibitory neurons is capable of

reproducing the experimentally observed dynamic range of neural

activities throughout an entire trial. Our model is able to robustly

reproduce realistic temporal dynamics including the signature dip

phenomenon in the firing rates (shortly after motion stimulus

onset) without artificially lowering the overall stimulus input as

implemented in previous modelling work [56,69,70,71]. Interest-

ingly, there is some evidence to show that this dip is possibly

related to lateral inhibition in the neural circuit [83]. We are also

able to replicate the behavioural data of the monkey experiments,

including slow mean and short-tailed RT distributions even when

the network is operating near a dynamical bifurcation point

(Figures 5 and 7C).

Without specifying any particular neural mechanism, our

excitatory-inhibitory gain modulation can allow the same local

cortical circuit to flexibly adapt over time to different decision-

making task demands. By adopting higher gains in the RT than

FD task, we were able to capture not only the behavioural data as

in previous models [55,56,59] but also better replicate the

neuronal activity timecourse of recorded LIP neurons. In

particular, our model suggests that the presumed decision

threshold in the FD task could actually be more of a motor

activation threshold rather than an actual decision threshold – the

decision is already made during the stimulus presentation. Our

weaker gain implementation is based on the hypothesis that a RT

task, which requires optimizing a speed-accuracy trade-off, is more

cognitively demanding than the FD task.

When both excitatory and inhibitory neuronal gains are co-

modulated, our model becomes more robust to small changes with

respect to the stimulus input (Figure 5). Furthermore, Figure 7

shows that decision-making computations are robust when both

gains are increased by an appropriate amount. From a broader

perspective, this adds further support to our previous work that

modulation of both excitation and inhibition is necessary to

produce robust decision-making without sacrificing optimal

decision performance [72,84]. In a more realistic setting,

decision-making is usually influenced by a multitude of (e.g.

sensory) information through modulation of the neuronal firing

rate during temporal integration [56,73]. Thus, it may be

important to have a decision network operating with a larger

capacity to allow more potentially useful information to be stored

during sensory integration. Such higher information storage

capacity or larger decision bandwidth has recently been investi-

gated in other contexts [71,85]. This decision bandwidth was

previously shown to be relatively small with weak recurrent

excitation (small wz) [55].

In the absence of gain modulation, weak recurrent excitation

can lead to decisions made not being stored in working memory

Figure 10. Optimal timescale of gain modulation for maximiz-
ing mean reward rate. Network model performance as a function of
the time constant of gain modulation tg . (A) mean reward rate (RR); (B)
accuracy; (C) mean trial duration (TD). Dashed horizontal lines show our
model’s fit to the data, with tg~120 ms. Inset: zoomed in around the
optimal timescale, showing the optimal timescale is t�g~190.

doi:10.1371/journal.pcbi.1003099.g010
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(owing to an inability to sustain neural firing activity), and can

prevent the subsequent motor action from being triggered (owing

to neural firing activity which is lower than the motor threshold)

[55]. With even weaker recurrent excitation, a decision may not

even be formed at all [55]. This could impede performance in the

FD task, which requires working memory during a delay period

[84]. Our work here demonstrates that enhanced excitatory and

inhibitory gains can compensate such weak recurrent excitation to

make decisions, and even store them in working memory.

Our gain modulation mechanism is thus more flexible than

conventional decision-making models [55,56,59]. Incidentally,

Figure 9C is comparable to experimental data in [18,80]. Recent

experimental evidence has shown that the parietal cortical neurons

without persistent activity can still show some form of decision-

making (winner-take-all) capabilities [86], thus supporting our

proposed mechanism (see Figure 9A). Furthermore, by reducing

the gains in our model after threshold crossing, we can also easily

clear any storage of decisions, resetting the system towards a low

single stable state (LSS) at the end of a task trial (Figure S2), as

observed in many experiments [17,57,73,80]. This deviates from

previous computational work, which require negative current [87]

or transient synchronized firing [88] to reset the system. Clearly, to

inform such post-decision shutting down of gains, a different

neural circuit may be necessary, and the basal ganglia may be a

putative candidate [77,89].

Previous decision-making models have also incorporated time-

varying gain modulations or urgency signals to allow flexible

reconfiguration in the model dynamics, or in some cases,

attempted to capture the characteristics of (especially LIP)

neuronal firing rates throughout a decision-making trial [6,13–

17,21,54–56,65,69–71,82,89,90]. Although the models that incor-

porated urgency signals [15,16,21,54] share some similarities to

our model, the instantiations of these models differ in distinctive

ways. Specifically, in [15], the urgency signal multiplies the

instantaneous evidence (i.e. drift rate and noise in a drift-diffusion

process), while in [21] the decision bound or threshold generally

decreases over time. In a two-choice task, these two mechanisms

are equivalent [16]. The work in [54] resembles our model the

Figure 11. Optimal timescale of gain modulation for maximizing reward rate for individual coherences. (A) Network’s accuracy (upper
panel) and RT (lower panel) with the optimal timescale of t�g~190 ms (dashed), compared with experimental data (open circles), and our previous
model’s fit to it with tg~120 ms (black bold). Dash-dotted: model with an optimal gain time constant tgc

for each motion coherence. Lighter colours
in the lower panel are for error RTs. Error bars denote standard errors of the mean. (B) Comparing optimal tgc

for each individual motion coherence
(triangles, dash-dotted curve) with model fit (tg~120 ms, (black bold line)), and single optimal (tg�~190 ms, (dashed line)). (C) Comparing RR for
optimal tgc

for each individual coherence with that of model fit (tg~120 ms), and single optimal (t�g~190 ms). Dotted: average of the RR with tgc
over

all motion coherences.
doi:10.1371/journal.pcbi.1003099.g011
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most, in which the slope of the input-output function of the

population firing rate is modulated over time and the decision

network transits from a leaky to a competitive integrator (see also

similar discussions in [91,92]), whereas our gain modulation

mechanism is more multiplicative (see Eq.(1)). Generally, these

models are not as biologically grounded as our model, which was

previously reduced from a spiking neuronal network model

[55,56]. Our more realistic model is able to directly compare

and qualitatively account for the full dynamical range of the LIP

neuronal activity throughout a trial (e.g. compare with [57,73,80]).

In addition, as in [15], our model uses realistic temporal delays

and replicates the reaction time distributions in [57]. Finally, the

most important distinctive feature in our model is that it

incorporates the gain modulation of the inhibitory neural

population for flexible and robust decision-making, which none

of the previous modelling work has investigated.

Our work also demonstrates, for the first time, how dynamic

excitatory-inhibitory gain modulation in a biologically realistic model

can give rise to optimal decision performance. Using realistic temporal

delays from the experiment of [57], we found that our model’s

excitatory-inhibitory gain modulation timescale (tg) that maximizes

reward rate (RR) in a RT task is not far from the value we obtained

when fitting both the neural and behavioural data. This suggests that

the monkeys may be performing not far from optimality, although a

more in-depth study similar to [93] may be required to further support

this claim. Interestingly, we found that the fitted gain time constant

resides slightly on the left and steeper side of the RR-vs-tg (Figure 10A)

curve, i.e. tgvt�g. It would have been less cognitively demanding for

the subject to operate around the shallower right side of the curve,

where the cost of RR is lesser. The optimal gain time constant found in

our model may not be the true value, but simply the optimal value

given all other parameter settings. Precise experimental verification will

be required to measure and disentangle the contributions of different

parameters. Alternative model parameter settings such as with a higher

noise level or a different MT neuronal firing output (e.g. weaker

dependence on motion coherence in the anti-preferred direction)

would lead to different optimal gain time constants (Figures S4, S5).

However, changing these would introduce additional free model

parameters. In this work. we prefer to maintain the model parameters

based on previous work, especially since the main focus of our work

concerns the flexibility and robustness afforded by the co-modulation of

excitatory and inhibitory gains. It is however interesting to note that the

fast 120 ms time constant we used to fit the data is similar to that of the

urgency signal deduced in [21] from the same dataset [57].

The first part of our optimal performance study is based on the

assumption that subjects employ the same ‘strategy’, and thus a

fixed timescale of gain modulation throughout the whole block of

trials. However, in experiments in which coherence is fixed within

a block [76,81] and can be determined, adjustment of gains based

on task difficulty is the optimal strategy in the RT task. We

confirm this in the second part of our optimal reward study, which

shows that by strategizing the timecourse of gain recruitment (e.g.

via rapid feedback) for different task difficulty (e.g. motion

coherence), a higher optimal RR can be achieved. The main

contribution for higher RR, comes from the higher motion

coherences (easier tasks). The task-difficulty dependent recruit-

ment of gains, however, may not be practically adopted by

subjects. It is plausible that this flexible, more optimal strategy may

be too demanding to be practically implemented. The slight

increase in RR may not be worth the cognitive effort ([76] make a

similar argument in the context of response threshold modulation

instead of gain modulation). Furthermore, our optimal time

constants are applicable when temporal delays such as those in

[15,57] are used to penalise fast errors more than slower ones.

Since in this case, fast errors reduce the reward rate more, the

optimal time constant of gain-modulation gets skewed towards a

longer time. Not including such temporal penalisations, but using

a fixed inter-trial interval leads to much shorter optimal time

constants of gain modulation (see Figure S3B upper panel).

Assuming that the subject knows the coherence, the optimal time

constant for the 0% coherence condition then approaches 0, since

the subject can receive more trials and increase its reward rate by

guessing as fast as possible. Provided subjects are attempting to

maximize reward rate, the optimal time constant should be much

shorter on tasks that include a fixed inter-trial interval (e.g. [81])

and longer on those which penalise (either in time or through

explicit punishments) fast errors.

Finally, it would be interesting to test our proposed simulta-

neous excitatory-inhibitory gain modulation mechanism in

behaving animals performing perceptual decision-making tasks.

For example, the task can include a fraction of trials with some cue

to capture the subject’s attention, while putative excitatory and

inhibitory neurons are recorded. The neural activities and

behavioural performance could then be compared between trials

with or without the attentional cue.

Materials and Methods

Following [55] and [56], the non-linear input-output function of a

single noisy excitatory cell is approximated from the first-passage time

input-output relation of a leaky integrate-and-fire neuron [46,55,60].

fE(Ii)~
aIi{b

1{exp {d(aIi{b)½ �ztref (aIi{b)

� �
ð9Þ

where I is the total synaptic input current to a neuron, and i~L or R,

denoting selectivity to a leftward or rightward motion stimulus,

respectively. We follow the fitted parameters of a~270 Hz/nA,

b~108 Hz and d~0:154 s as in [55]. tref ~2 ms is the absolute

refractory period of the neuron, although our results are similar if we

ignore this term.

For the inhibitory interneuronal population, we assume that fI (II ) is

linear so that it can be implicitly embedded in the reduced two-variable

model for analysis [55]. This yields fI (II )~
cI

g2
JIE(SLzSR)zIbI½ �{ II

g2
zr0

1z
cI

g2

JII tI

, where IbI is the background input

current to the interneurons, r0~11:5 Hz, cI~615 (VnC){1, g2~2
and II~177 Hz are parameters from the first-passage time input-

output relation of a leaky integrate-and-fire interneuron. The decay

time constant of GABAA receptors is relatively much faster (5 ms), and

so the inhibitory gating variable SI can be assumed to quickly achieve

steady state, i.e. SI&rI tI .

We can now reduce our model into an effectively two variable

one by implicitly embedding the inhibitory coupling JEI in JLL,

JRR, JLR and JRL and Ib of Eq. (2), such that

JiiSizJijSj{JEI rI tIzIb

&JiiSizJijSj{

JEI gI

cI

g2
½JIE(SLzSR)zIbI �{

II

g2
zr0

1z
cI
g2

JII tI

0
BB@

1
CCAtIzIb

:Jii,eff SizJij,eff SjzIb,eff

ð10Þ
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with

Jii,eff :Jii{
gI

cI
g2

JEI JIEtI

1z
cI
g2

JII tI

w0

Jij,eff :Jij{
gI

cI
g2

JEI JIEtI

1z
cI
g2

JII tI

v0

Ib,eff :Ib{
gI JEI IbI (

cI IbI {II
g2

zr0)tI

1z
cI
g2

JII tI

:

ð11Þ

Note that Jij,eff v0 is required to allow competition via effective

mutual inhibition between the two selective excitatory populations.

This means that Jiiw

gI

cI

g2
JEI JIEtI

1z
cI

g2
JII tI

wJij . To allow all defined J ’s

to be w0, we shall replace Jij,eff with {DJij,eff D. To simplify the

notation, we shall henceforth remove the label ‘‘eff’’. Note that this

effectively makes our implementation of inhibitory gain strictly

non-multiplicative, although the results would be similar if it was;

in fact, multiplicative gain modulation is sufficient but not

necessary for producing our results [91].

Inoise in Eq. (2) is assumed to be primarily filtered by fast AMPA

receptors (with decay time constant tnoise of 2 ms) via an Ornstein-

Uhlenbeck process [55,94]

dInoise,i~{ Inoise,i{Ibð Þ dt

tnoise

zsnoise

ffiffiffiffiffiffiffiffiffiffi
dt

tnoise

s
g ð12Þ

where snoise is the standard deviation of the noise and g is

Gaussian distributed white noise with zero mean and unit

variance.

Simulations and stability analyses
We performed noisy simulations of our model using MATLAB

using a forward Euler-Marayama numerical scheme [95] with a

time-step of dt~0:1 ms. Smaller time steps do not affect our

results. In order to compute the average firing rates and

behavioural statistics, we performed 5000 trials of noisy simulation

for each set of model parameters.

The activity timecourse of our model can be best understood by

analysing its dynamics on the two dimensional state/phase space called

the phase plane (see Figure S1). We set both dynamical equations (Eq.

(5)) to be
dSi

dt
~0 and solve for the Si’s, where i~L,R. The solutions

for each equation (called a nullcline) can be plotted in the (SR,SL)

phase plane. Since the firing rates ri~Si= cts(1{Si)½ � are monotonic

functions of the average gating variables Si, transforming to (rR,rL)
coordinates yields the same qualitative dynamics.

Intersections of the nullclines give the steady states (fixed points) of

the network. For our purposes, these steady states can be stable, i.e.

point attractors (Figure S1A) or (semi-) unstable, i.e. saddle points

(Figure S1B). In a noiseless system, trajectories near an attractor will

move towards it (with local velocities called vector fields shown by the

length of the arrows in Figure S1A). For an unstable steady state, only

trajectories starting on a unique curve are attracted into it. This curve is

called the stable manifold of the unstable steady state. Trajectories on

all other parts of the plane are repelled away from it to another

associated curve, called its unstable manifold [55,96].

The loci of all steady states (stable and unstable) as a function of

a parameter yields a stability (bifurcation) diagram. Phase-plane

and stability (bifurcation) analyses of our two-variable network

model were done using XPPAUT [97].

Constraining model parameters
Apart from the new parameters mentioned in Table 2, we

maintained the parameters as in previous work, as reported in

Table 1. These parameters were used to provide a qualitative

rather than quantitative fit to the neural and behavioural data,

and we simulated predictions at a range of parameter values

until the desired fits were isolated. In order to constrain our

new parameters, we first ensured that our excitatory and

inhibitory gain maximal amplitude parameters (g0E
and g0I

)

were in the dynamical regime that allowed decision-making

(Figure 7). We then fitted the excitatory and inhibitory gain

onset times tgE
,tgI

to replicate the characteristic dip in neural

firing-rates at motion onset. Finally, we fit the gain modulation

time constant tg to the behavioural (reaction time and

accuracy) data, while ensuring that the neural activities were

not unrealistically low.

Supporting Information

Figure S1 Two dimensional state/phase space called
phase plane. The firing rate rL of the population selective towards

leftwards (L) motion is plotted against the firing rate rR of the

population selective towards rightward (R) motion. Orange and

green curves represent nullclines: where
dSL

dt
~0 and

dSR

dt
~0,

respectively. The synaptic gating variable SL=R activities are

transformed to firing rates, preserving the same qualitative dynamics.

Intersections of the nullclines yield the steady states of the system. (A)

A symmetric stable steady state (symmetric attractor). Trajec-

tories starting near this steady state are attracted into it, with local

velocities given by the arrows. This set of arrows is called the vector
field. The set of all starting points for trajectories attracted into this

attractor is called its basin of attraction. In this figure this is the

entire phase plane. (B) A symmetric unstable steady state, called a

(symmetric) saddle point. Only trajectories starting on a unique

curve (shown in light blue) are attracted into it. This curve is called the

stable manifold of the unstable steady state. Trajectories on all

other parts of the plane are eventually repelled away from the

unstable steady state, to another curve (shown in yellow), called its

unstable manifold. There are also two asymmetric attractors.

The stable manifold of the unstable steady state separates the basins

of attraction of these two attractors.

(TIF)

Figure S2 Post-decision shutdown. After the firing rate of

one of the selective populations has crossed the motor threshold

(70 Hz) for saccade initiation, the gains of both excitatory and

inhibitory neurons are allowed to decay towards 0. (A) Phase plane

at the end of a trial. The firing rate rL of the population selective

towards leftwards (L) motion is plotted against the firing rate rR of

the population selective towards rightward (R) motion. Orange

and green curves represent nullclines: where dSL

dt
~0 and dSR

dt
~0,

respectively Only a low, symmetric attractor is present. Post-

decision, trajectories start from either the upper left or the bottom

right, and move towards this attractor, with local velocities shown

by the arrows (B) As a result, the firing rates of both winning and

losing populations are reset to baseline, before the start of the next

trial, as observed in experiments.

(TIF)
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Figure S3 Task dependent optimal timescale of gain
modulation for maximizing reward rate for individual
coherences. (A) using the realistic temporal delays from Roitman

and Shadlen (2002). (B) in a reaction time task with a fixed inter-

trial interval (ITI). Upper, middle and lower panels show reward

rate (RR), accuracy and trial duration (A) or RTzITI (B). The

ITI shown here is 1500 ms. Solid and dashed curves in lower

panels show correct and error trials, respectively. Black arrows in

upper panels show how the optimal time constant of gain

modulation changes with increasing coherence.

(TIF)

Figure S4 Shallower slopes in relation to motion
coherence in the anti-preferred direction leads to
slightly longer reaction times and poorer accuracy.
(A) Timecourse of input currents for equal slopes (black) and 2

times shallower slopes (red) of input current out of the response

field, in relation to motion coherence. (B) Activity timecourse

of model, averaged over multiple trials, with different motion

coherences for (left) equal slopes and (right) 2 times shallower

slope of input current in relation to motion coherence in the

anti-preferred direction. Response threshold at 70 Hz,

compare with Figure 1. (C,D) Accuracy (C) and mean RT

(D) generated by model and in the experiment of [57]. The

model with equal slopes (see also Figure 3) and a modified

version with a 2 times shallower slope of input current in

relation to motion coherence in the anti-preferred direction

(red) are shown. (E) Network model performance as a function

of the time constant of gain modulation tg using the equal

slopes (black) as in the main manuscript (see Figure 10) and

another with a 2 times shallower slope (blue) of input current in

relation to motion coherence in the anti-preferred direction.

Upper panel: mean reward rate (RR); middle panel: accuracy;

lower panel: mean trial duration (TD). Dashed horizontal lines

show our model’s fit to the data with equal slopes and tg~120

ms. Vertical lines in the upper panel show the optimal

timescale of gain modulation. Inset: mean reward rate zoomed

in around the optimal timescale, showing the optimal timescale

is only around 20 ms shorter *170ms (compared to *190ms)

when using shallower slopes for input current in relation to

motion coherence in the anti-preferred direction. Shallower

slopes in relation to motion coherence in the anti-preferred

direction lead to a lesser discriminatory ability for the network.

Thus, the firing rates for the different motion coherences ramp

up/down closer together (B), resulting in poorer accuracy (C).

Furthermore, the changes are more pronounced for the higher

motion coherences (A) – the input currents to the losing

population are generally greater, leading to greater competi-

tion between the two competing populations. This subsequent-

ly slows the integration time of the winning population, and

hence lengthens the reaction time (D). This leads to a very

slightly shorter optimal gain time constant (E).

(TIF)

Figure S5 Optimal timescale of gain modulation for
maximizing mean reward rate for different noise levels.
Network model performance as a function of the time constant of

gain modulation tg using the noise level (black) in the main

manuscript (see Figure 10) and another with a higher (twice the

standard deviation) noise level (red). Upper panel: mean reward

rate (RR); middle panel: accuracy; lower panel: mean trial

duration (TD). Dashed horizontal lines show our model’s fit to

the data with tg~120 ms and noise as reported in the main

manuscript. Vertical lines in the upper panel show the optimal

timescale of gain modulation. Inset: mean reward rate zoomed in

around the optimal timescale, showing the optimal timescale is

around 200 ms longer *320ms (compared to *190ms) for a

higher (twice the standard deviation) noise level.

(TIF)

Movie S1 Dynamics of decision-making over an
entire trial. View slideshow to play. Upper and lower panels

show phase-planes and activity timecourses, respectively,

throughout the various epochs of a trial for coherence

c~0%. The firing rate rL of the population selective towards

leftwards (L) motion is plotted against the firing rate rR of the

population selective towards rightward (R) motion. Orange

and green curves represent nullclines: where dSL

dt
~0 and

dSR

dt
~0, respectively. The intersection of nullclines yield the

steady states. Arrows denote the local velocities of trajectories.

The network starts from a low symmetric attractor during the

fixation period. A burst of input current at the onset of choice

targets reconfigures the network such that only a single stable

steady state is present, preventing decision-making. After

adaptation, the network settles to a high symmetric attractor,

with additional asymmetric attractors also present. At motion

onset, the inhibitory gain is increased, forming an nearby

unstable steady state with a lower firing rate. The network

moves towards this steady state along the diagonal line (with

equal firing rates), but before it can reach it and firing rates

diverge, the excitatory gain is increased, raising this unstable

steady state. This reproduces the ‘‘dip’’ phenomenon. When

the input due to the motion stimulus comes into effect, the

network is reconfigured initially to a symmetric stable steady

state (which prevents early divergence of firing rates), and then

to a symmetric unstable steady state with a firing rate that is

higher than the adapted target firing rate. This unstable steady

state becomes more unstable (nullclines come closer together)

as both gains increase dynamically. Consequently, the firing

rates of the competing selective populations diverge and ramp

up (down) more and more quickly towards the winning (losing)

‘choice’ attractor. The motor/response threshold of 70 Hz is

crossed prior to the network reaching the corresponding

‘choice’ attractor, and a saccade is initiated. The increasing

instability caused by both attractor network and increasing

gain dynamics creates an urgency signal, leading to short tailed

RT distributions, even if the network operates close to a

dynamic transition (bifurcation) point.

(PPTX)

Movie S2 Larger dynamic ranges allow robust decision-
making for co-modulation of excitatory and inhibitory
gains. Stability diagrams are shown as a function of excitatory

gain gE for different inhibitory gains gI . Black dashed lines show

parameters that fit the behavioral and neural experimental data,

namely (gE ,gI )~(3,1:1). For each stability diagram as a function

of gE , dark shades show stable branches, while light shades show

unstable ones. As the inhibitory gain gI is reduced, the dynamic

range of the network decreases. Furthermore, our fitted param-

eters are not sensitive to small perturbations. If we increase or

decrease gE or gI slightly, our model adequately performs its

decision-making computations. However, if we had chosen a

much smaller value of gI as our parameter, small perturbations in

parameter values would have rendered the network incapable of

performing its decision-making computations. On the other hand,

we may increase gI , which would lead to the network performing

its decision-making computations with a larger dynamic range.

However, the unstable branch would then have a very large firing

rate (*85 Hz) and not fit the neural experimental data.

(AVI)
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