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Postoperative cognitive dysfunction (POCD), as one of the common postoperative complications, mainly occurs after surgery and
anesthesia, especially in the elderly. It refers to cognitive function changes such as decreased learning and memory ability and
inability to concentrate. In severe cases, there could be personality changes and a decline in social behavior. At present, a great
deal of research had been carried out on POCD, but its specific mechanism remains unclear. The release of peripheral
inflammation-related factors, the degradation and destruction of the blood-brain barrier, the occurrence of central
inflammation, and the neuronal apoptosis and synaptic loss could be promoted by neuroinflammation indicating that
inflammatory mechanisms may play key roles in the occurrence of POCD.

1. Introduction

With the development of modern medicine, a growing num-
ber of elderly patients have the possibility to receive one or
more life-extending surgical procedures [1]. However, post-
operative cognitive dysfunction (POCD), as one of the com-
mon complications after surgery, had seriously threatened
the quality of life especially for the elderly patients, extended
the length of hospital stay, and increased the medical cost
[2]. The international community is calling for systematic
research on POCD, and there is an urgent need for reliable
prediction and treatment methods [3, 4]. Until now, clini-
cians have not come to an agreement about POCD [5]. Post-
operative cognitive dysfunction had been broadly defined as
a significant decrease in cognitive ability following surgery
or anesthesia [6]. Deficiency in neurological function
included decreased executive ability, attention, verbal mem-
ory, intended motion, and visuospatial attraction [7]. Due to
conflicting results and controversial evidence in different
studies, the underlying pathogenesis of POCD remained
unclear [8]. Many researchers had successfully established
POCD models by intraperitoneal injection of lipopolysac-
charide (LPS) to mice to induce neuroinflammation, and
more attention had been paid to the mechanism of neuroin-

flammation caused by surgery or anesthesia in POCD ani-
mals [6, 9]. Neuroinflammation may be a common
precursor of cognitive decline and was involved in the devel-
opment of perioperative neurodegenerative diseases. There-
fore, limiting acute neuroinflammation may ameliorate
cognitive function, thus greatly improving patients’ outcome
[10]. This review will discuss the research progress of POCD
from the perspective of inflammatory mechanisms.

2. POCD and Inflammation-Related Factors

Surgical trauma or anesthesia could increase the level of
inflammatory cytokines in patients after surgery. Current
studies on inflammation-related factors had focused on
S100B protein, interleukin-6 (IL-6), interleukin-1β (IL-1β),
interleukin-17 (IL-17), tumor necrosis factor-α (TNF-α), the
complement system, inducible nitric oxide synthase (iNOS),
cyclooxygenase-2 (COX-2), prostaglandin E (PGE), and other
factors. And were the inflammatory cytokines from the surgi-
cal site or the local environment of the brain? The current view
was basically the same. As described below, surgery resulted in
an increase in inflammatory factors at the surgical site. Anes-
thesia could cause inflammation throughout the body as well
as in the brain. The unique inflammatory cells of the brain,
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such as microglia, were activated in response to proinflamma-
tory factors and promoted the progression of neuroinflamma-
tion. Each of these inflammatory factors will be described in
the following paragraphs.

2.1. S100B Protein. As a member of the S100 family, the
S100B protein belonged to calcium binding protein with
low molecular weight of about 9-13 kDa [11]. It was a neuro-
trophic factor and neuronal survival protein during the
development of the central nervous system [12] and could
be released from damaged astrocytes in response to inflam-
mation, ischemia reperfusion, and oxidative stress in the
body [13]. Associated with many diseases, Alzheimer’s dis-
ease [14], autoimmune diseases such as multiple sclerosis
[15], psychiatric diseases such as schizophrenia [16], cere-
brovascular diseases [17], and others, the S100B protein
helped to enhance the interaction between neurons and glial
cells [18] and indicated the severity of brain damage [19]. At
the physiological level, the S100B protein stimulated neurite
elongation, protected neuronal survival, and played a role in
neuronal maturation and glial cell proliferation in vitro [20].
But some others showed a high level of neurotoxicity [21].
High concentration of the S100B protein stimulated the
expression of proinflammatory cytokines, induced cell apo-
ptosis, exerted its neurotoxic effect, and promoted the
development of neurodegenerative diseases and neuroin-
flammation [22]. In some clinical studies, an association
between S100B and POCD had been found. The S100B pro-
tein level was significantly elevated in POCD patients after
total hip arthroplasty [23]. And in POCD patients after
transurethral resection of the prostate under general anes-
thesia, its expression was significantly higher than those in
patients without POCD [24]. Through investigating the rela-
tionship between POCD and the S100B protein level after
robot-assisted laparoscopic radical prostatectomy (RALRP),
it was concluded that S100B increased after RALRP, and this
increase was related to the development of POCD [25]. At
present, there is no consensus on whether the elevated
expression level was an accompanying symptom, a cause,
or a consequence. However, these researches may suggest
that the degree of S100B protein concentration increase
may be used as a biomarker for POCD and predict the
occurrence of POCD after surgery and anesthesia.

2.2. Interleukin-6. IL-6 as an important signaling molecule in
the immune system was an important regulator in synapse
formation [26]. Under normal conditions, the IL-6 level in
the central nervous system was usually low, possibly due to
the low expression level of constituent in CNS cells. In some
pathological ones, neurogliocyte [27] or neuronal stimula-
tion significantly increased IL-6 levels in the CNS [28].
Locally, high concentrations of IL-6 could inhibit the synap-
tic function [29]. In adult transgenic rats overexpressing IL-6
in astrocytes, the hippocampal neuron in the dentate gyrus
was reduced by 63% [29]. Neutralizing antibodies to IL-6
significantly improved long-term enhancement (LTP) and
spatial memory in rats [30]. Besides, through rigorous
regression analysis, the elevated plasma IL-6 level tended
to be a risk factor leading to cognitive impairment [31]. This

achievement further demonstrated that the role of IL-6 as a
regulator was critical to cognitive function. More is needed
to understand the conditions that the induction of IL-6 in
the CNS and the therapeutic strategies that could ameliorate
or promote the effects of IL-6.

2.3. Interleukin-1β. IL-1β was a potent proinflammatory
cytokine produced by innate immune cells. The function of
learning and memory in the brain depended on the proper
functioning of the hippocampus, where IL-1β receptors were
abundant [5, 32]. However, high levels of IL-1β were associ-
ated with decreased cognitive function [33]. Besides, some
studies have shown that increased levels of IL-1β in the
inflammatory response induced by LPS in mice aggravated
the cognitive impairment following anesthesia and surgery
[34]. Overexpression of IL-1β also induced the alteration
of microglial gene expression profile and microglial expan-
sion and promoted neuroinflammation [35, 36]. Although
there were few studies on the direct relationship between
IL-1β and POCD, the important role of IL-1β in neuroin-
flammatory response suggested that it may be a reminder
of its importance in POCD.

2.4. Interleukin-17. IL-17, an early promoter of T cell-
induced inflammatory response, not only was an important
member of the body against infection but also was closely
related to the regulation of autoimmunity [37]. It could
exacerbate inflammation by inducing the secretion of proin-
flammatory cytokines, such as IL-1β, IL-6, and TNF-α [38].
And in the development of multiple sclerosis and cerebral
hemorrhage, some research had suggested that IL-17 was
involved in the inflammatory response [39, 40]. It had also
been found to promote the breakdown of the blood-brain
barrier and the transfer of inflammatory mediators from
the periphery to the center [41, 42]. Another piece of evi-
dence had shown that blocking IL-17 alleviated cognitive
impairment due to inflammation caused by surgical trauma
[43]. In a clinical investigation, the serum IL-17 concentra-
tion of patients with Alzheimer’s disease (P = 0:0023) was
significantly higher than those of the control group [44]. In
animal studies, IL-17 was involved in LPS-induced neuroin-
flammation and cognitive impairment in elderly rats
through microglial activation [45]. Anti-IL-17 treatment
improved oxidative stress and neuroinflammation and ulti-
mately alleviated cognitive impairment in sevoflurane anes-
thetized elderly rats [46]. These above achievements hinted
that anti-IL-17 may represent a novel therapeutic strategy
for neuroinflammation and POCD.

2.5. Tumor Necrosis Factor-α. TNF-α was a protein involved
in the signaling of immune response cells, which could pro-
mote the inflammation [47, 48]. In the inflammatory
response, TNF-α increased the production of other proin-
flammatory cytokines, such as IL-1, IL-6, and IL-8 [49].
TNF-α was also involved in many physiological processes
in the central nervous system [50]. The presence of a large
number of cytokine receptors in the hippocampus during
neuroinflammation made it susceptible to high concentra-
tions of proinflammatory cytokines, such as TNF-α [51,
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52]. Once these cytokine receptors were activated at high
levels, the metabolic Glu2 receptors were downregulated to
enhance the AMPA/NMDA signaling which could disrupt
the LTP process [53]. In addition, TNF-α restrained inhibi-
tory neurotransmission by downregulating GABA receptors,
disrupted the delicate balance between excitatory and inhib-
itory neurotransmission, and ultimately promoted the gluta-
mate toxicity [54]. It had contributed to the advancement of
cognitive dysfunction. In these completed studies, isoflurane
anesthesia increased the incidence of POCD in diabetic rats
through the TNF-α-dependent mechanism [55]. After
undergoing elective head and neck cancer surgery under
general anesthesia, the postoperative TNF-α level was obvi-
ously increased in the POCD group [56]. The group with
the highest TNF-α level had a significantly higher incidence
of POCD than the control group undergoing unilateral hip
replacement [57]. Although there were so many studies
proving the corelationship between TNF-α and POCD, the
mechanism by which TNF regulated the progression of
POCD was still unclear.

2.6. The Complement System. The complement system con-
sisted of more than 30 proteins that had long been known
to be involved in immune defense against pathogens and
the removal of damaged cells. In the central nervous system,
complement proteins were widely expressed in neurons and
glial cells, and studies had shown that microglial cell-
mediated synaptic phagocytosis depended on the CR3/C3
(complement receptor 3/complement 3) [58]. More impor-
tantly, some research found that CR3 was a phagocytic
receptor on the surface of microglia and was specifically
expressed in the brain by microglia [59]. As a CR3-
recognized ligand, complement C3 was located in synapse-
rich regions of the brain and guided microglia to recognize
the phagocytosis [60]. It had been shown that the level of
complement protein in the hippocampus was high before
the deposition of β-amyloid (Aβ) and cognitive deficit in
Alzheimer’s disease model mice [61, 62]. Complement pro-
teins had been localized to the synaptic element before the
synapse was lost [61]. Furthermore, when the C3 or CR3
gene was knocked out, the microglia phagocytosis of synap-
tic structure was significantly reduced, the synaptic structure
was protected, and the cognitive function of mice was also
significantly improved [62, 63]. Therefore, the regulation of
complement signals may have the potential to be a new
treatment strategy for POCD.

2.7. Inducible Nitric Oxide Synthase. Nitric oxide synthase
(NOS) was an isoenzyme which was classified into neuronal
nitric oxide synthase (nNOS), endothelial nitric oxide syn-
thase (eNOS), and inducible nitric oxide synthase (iNOS)
[64]. As a participant in inflammation, iNOS did not appear
under normal condition and could be expressed by the stim-
ulation of endotoxin LPS and a variety of cytokines, such as
TNF-α and IL-1 [65]. It could promote synaptic plasticity
and brain deficits, such as cognitive deficits [66]. Further-
more, as a product of NOS, nitric oxide (NO) played a cru-
cial role in supporting normal physiological functions [67],
but pathological conditions such as inflammation could

stimulate high levels of the NO production which may trig-
ger neurodegeneration [68, 69]. L-Nitroarginine methyl
ester was a NOS inhibitor that could inhibit NO biosynthesis
and alleviate brain dysfunction [70]. By reversing the NO
signaling pathway, cognitive deficits and inflammatory
responses in mice induced by carotid artery exposure sur-
gery were alleviated [71]. Therefore, NO was considered to
be a predictive risk factor for Alzheimer’s disease (AD) and
early POCD [72].

2.8. Cyclooxygenase-2 and Prostaglandin E. Cyclooxygenases
were a group of heme-containing isoenzymes (COX-1 and
COX-2) that catalyzed the conversion of arachidonic acid
to the primarily bioactive prostaglandin (PG) [73]. COX-2
was constitutively expressed in the postsynaptic dendrites
and excitatory terminus of cortical and spinal neurons in
the brain [74]. And most of the focus of COX-2 induction
had been on neurodegenerative and psychiatric disorders
associated with neuroinflammation [74] and promoted the
progression of POCD to a certain extent [75]. Then, it could
produce PGE2 in response to synaptic activation. PGE2 may
undergo retrograde transport across the synapse, stimulate
glutamate release from presynaptic neurons by activating
the presynaptic Ep 2 receptor from the postsynaptic [76].
The increase of glutamate release reduced the number of
small albumin-positive GABA cells [77]. PGE2 had the abil-
ity to become a key messenger of COX-2-mediated synaptic
transmission and plasticity regulation in the hippocampus
[78]. On the side, PGE2 stimulated microglia, astrocytes,
and neurons to produce amyloid (Aβ) in vitro and in vivo
[79]. As we know, it was detrimental to brain function.
These previous studies had shown that COX-2 was involved
in synaptic transmission and plasticity while Prostaglandin
E2 (PGE2), a key molecule in COX-2-mediated synaptic
modification, played an indispensable role. Although these
were not directly related to POCD, they did bring us some
enlightenment.

3. POCD and the Blood-Brain Barrier

In general, the blood-brain barrier (BBB) was mainly com-
posed of the glial membrane, which consisted of the terminal
foot of astrocytes, capillary basement membrane, and capil-
lary endothelial cells [80]. Three layers of structures were
closely connected [81]. This compact structure allowed only
water, gases, and small fat-soluble molecules to passively
spread across the BBB [82]. However, proinflammatory
cytokines such as IL-1 and TNF-α could upregulate COX-2
in neurovascular endothelial cells, thereby promoting local
prostaglandin synthesis and impairing BBB permeability
[10, 83]. TNF-α also upregulated the transcription of matrix
metalloproteinase (MMP), especially MMP-9 which
degraded extracellular matrix proteins and further decom-
posed the BBB [81]. MMP-9 deletion mice which were
exposed to surgical trauma showed better cognitive perfor-
mance in terms of fear conditions compared to the wild-
type mice [84]. In the case of central nervous system
(CNS) inflammation and subsequent BBB breakdown,
bone-marrow-derived monocytes (BMDM) were recruited
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to CNS through an interaction between chemokine mono-
cyte chemical attractor protein 1 (MCP-1) and BMDM cell
surface [85]. Once BMDM was present in the CNS, it con-
tinued to secrete proinflammatory cytokines by upregulating
NF-κB transcription [86] and activated microglia cells to
further amplify the neuroinflammation. In mouse models,
the occurrence of POCD was reduced by preoperative deple-
tion of BMDM [87]. It suggested that BMDM migration
may play a key role in POCD. Therefore, it was believed that
once the BBB was destroyed, cytokines took the opportunity
to enter the CNS freely, led the transport of BMDMs to ner-
vous tissues, and initiated the state of dysregulation of
immune function. The immune system in the central nerve
system was linked to the periphery through the blood-
brain barrier, which aggravated the neuroinflammatory
response, brain tissue damage, and development of POCD.

4. POCD and the Gut-Brain Axis

Intestinal microflora mainly existed in the digestive tract and
was an important part of the human microflora. A great
many of animal and human research evidence suggested that
brain function and microenvironment were largely influ-
enced by gut microbes through hormones, immune mole-
cules, and the specific metabolites they produced [88]. The
connection between gut microbes and the brain was known
as the gut-brain axis [89]. The gut-brain axis was a two-way
communication system between the central nervous system
(the brain) and the gut [90]. An array of bacteria, viruses,
and other microbes made up the gut microbiome. Dysregu-
lation of intestinal flora may contribute to the progression of
neurodegenerative diseases and promote the release of
inflammatory markers such as TNF-α and IL-6 [91, 92].
Some studies found that AD patients were often accompa-
nied by intestinal flora disorders, increased BBB permeabil-
ity, and promoted large amounts of bacterial amyloid
protein and lipopolysaccharide into the circulatory system
and CNS, ultimately leading to cognitive impairment [93].
Mice on a high-fat diet also showed increased systemic and
CNS inflammation, which in turn resulted in reduced cogni-
tive function by affecting the gut-microbiota–gut-brain axis
system [94]. Bifidobacterium as an “immune organism”
could beneficially regulate neuroinflammatory response
and behavior in many models of neuroinflammation-
related diseases [95, 96]. Lactobacillus, another widely stud-
ied microbial strain, effectively protected against memory
deficits and neuroinflammation in aging mouse models with
Alzheimer’s disease [97, 98]. Therefore, intestinal flora had
been increasingly studied as a key regulator of neuroinflam-
mation. Galactose oligosaccharide (B-GOS) blends were
well-studied specific nondigestible galactose oligosaccha-
rides. In particular, it selectively promoted the proliferation
of bifidobacterium [99]. Other experiments had also
revealed that B-GOS inhibited the overactivation of microg-
lia and decreased the proportion of microglia of the M1 phe-
notype induced by surgery. In addition, B-GOS feeding
exerted a sufficient prebiotic effect in promoting the prolifer-
ation of potential anti-inflammatory microorganisms which
may contribute to the regulation of surgically induced neu-

roinflammatory responses via the microbiome-brain axis
[100]. Fecal filtrate from healthy people was injected into
the intestinal tract of patients with neurological diseases to
increase the number of beneficial bacteria and reduce the
number of harmful bacteria to maintain the homeostasis of
intestinal flora inpatients [101]. Dysregulation of intestinal
flora could contribute to the progression of neurodegenera-
tive diseases. Thus, regulation of the intestinal microbiota
may be a potential treatment for various neurological dis-
eases [102]. Although these measures had not yet been rolled
out effectively, they offered an opportunity to intervene in
the disease progression.

5. POCD and Microglia

Microglia, as the innate immune effector cells in the CNS,
had the characteristics of multiple synapses and plasticity
and played an extremely important role in the physiological
process of the CNS [103, 104]. Normally, the CX3CR1 pro-
tein in the brain bound to the microglia CX3CR1 receptor,
inactivating microglia [105]. When inflammation, infection,
trauma, or other neurological diseases occurred in the brain,
microglia cells, the first responders of pathogens in the CNS,
were rapidly activated and gained the phagocytic function.
They could affect the synaptic connections between neurons
and promote neuroinflammation [106]. Activated mast cells
(MCs) may also induce microglial activation and neuronal
damage leading to inflammation of the CNS [107]. Inactive
microglia could be activated and differentiated into one of
two phenotypes, M1 or M2 [108]. The M1 phenotype was
highly phagocytic and proinflammatory, while the M2 phe-
notype was anti-inflammatory and involved in tissue repair
and remodeling [109, 110]. Proinflammatory mediators
(TNF-α or LPS) promoted the differentiation of microglia
into the M1 type, while anti-inflammatory cytokines (IL-4)
promoted the expression of the M2 phenotype [111].
Microglia activated differentiation to the M1 type, leading
to continuous expression of proinflammatory cytokines
which amplified neuroinflammation and accelerated the
development of POCD [112, 113]. In various experimental
animal models, activated microglia released HMGB1, TNF-
α, and IL-1β [114]. These chemokines promoted the further
flow of BMDM into CNS, while the transported BMDM
continued to activate microglia to the M1 phenotype.
Besides, perioperative microglia depletion [112] and promo-
tion of M2 phenotype expression in mice research through
the administration of erythropoietin [115] improved both
memory and cognitive dysfunction. This further confirmed
that microglia may play an important role in the mechanism
of POCD. The characteristics of microglia in the elderly
human brain were malnutrition with increased expression
of inflammatory markers, decreased expression of neuropro-
tective factors, decreased ability of migration and clearance,
decreased ability to regulate injury and recovery, and chan-
ged from the anti-inflammatory state to the proinflamma-
tory state [116]. These changes underlay an increased
susceptibility to neurodegenerative changes in the elderly.
Although previous studies found that microglia activation
played a key role in the pathogenesis of POCD, the core

4 BioMed Research International



mechanism of how microglia affected neuronal function and
led to cognitive decline was still unclear.

6. POCD and Neurons and Synapses

The density of synapses decreased with age in humans and
other mammals, but not all brain regions were equally sensi-
tive to aging [117]. The changes were more pronounced in
the prefrontal cortex and hippocampus than in other brain
regions [118, 119]. Lack of neuronal activity or cell death
caused synapses to malfunction and led to neurodegenera-
tive diseases [120]. Neurons must undergo drastic structural
changes to become presynaptic or postsynaptic. Synapses
were structures that strengthened the connections between
neurons and a cross-cell unit composed of presynaptic
membrane, synaptic cleft, and postsynaptic membrane.
Because of this particular composition, they transmitted
information between neurons effectively [121]. Newly
formed synapses were not static, as they underwent constant
change in order to meet their behavioral needs in a con-
stantly changing environment [122]. These changes could
be in the formation of new synapses or in the enhancement
of synaptic efficacy known as synaptic plasticity [123].
Inflammatory cytokines produced by surgical or anesthetic
factors crossed the BBB and entered to the CNS to cause
the central inflammatory cell activation. These inflammatory
cells would continue to release a series of pathological pro-
teins such as inflammatory cytokines, injurious proteins,
and neurotoxins, which could interact with neurons and
synapses, resulting in neuronal death, synaptic loss, and
the inability of cell signaling, eventually leading to the occur-
rence of POCD [124]. Possible mechanisms were as follows:
(1) Phosphorylated Tau protein and synaptic terminal Aβ
plaques [125] aggregated in neurons, destroyed the structure
of surrounding neurons and synapses, and injured the sig-
naling function. (2) TNF-α [126] released by glial cells and
IL-16 [127] from lymphocytes could lead to intoxication
by inhibiting the metabolism and over accumulation of glu-
tamate. GABA receptors were downregulated to inhibit
inhibitory neurotransmission, such as parvalbumin (PV)
neurons, an important class of inhibitory interneurons in
GABA-capable neurons, which could disrupt the balance
between excitatory and inhibitory neurotransmission and
reduce neuronal excitability and synaptic activity [54]. (3)
Activation of inflammasome NLRP3 only in microglia
depended on JNK1-mediated dephosphorylation of S194
[128]. Mitochondria-derived reactive oxygen species
(MTROs) produced after surgery or anesthesia not only
acted as upstream NLRP3 activators but also participated
in the assembly of downstream inflammasomes [129]. Mito-
chondria, as the main site of reactive oxygen species (ROS)
production, were most vulnerable to ROS attacks. After oxi-
dative damage, the mitochondrial respiratory chain was
destroyed and a vicious cycle was formed which eventually
led to nerve apoptosis [130]. Generally speaking, the damage
of neurons and the decline of synaptic plasticity were the
most fundamental factors leading to POCD. This should
be universally acknowledged. Therefore, how to intervene

to reduce the loss of neuronal and synaptic function will
be the focus of future research.

7. Possible Prevention and Therapeutic Ways

The neuroinflammatory hypothesis offered many different
directions for candidate treatment of POCD. By blocking
various links of the inflammatory response, the blocking of
neuroinflammatory response had produced positive effects
in clinical or animal experiments.

Dexamethasone, as a synthetic glucocorticoid, had a
powerful anti-inflammatory effect. Meanwhile, anti-
inflammatory effects in brain cells had been demonstrated
in several studies [131, 132]. Postoperative inflammatory
response syndrome could be suppressed by using large doses
of dexamethasone during the cardiac surgery [133], and
patients receiving dexamethasone underwent shorter hospi-
tal stays and a lower risk of postoperative delirium and
infection [134]. In noncardiac and nonneurological proce-
dures, dexamethasone reduced the incidence of POCD in
elderly surgical patients when BIS was associated at 46–55
[135]. In sevoflurane-induced cognitive impairment in adult
rats, the addition of dexamethasone improved short-term
and long-term cognitive impairment in adult rats and
reduced the expression of the inflammatory cytokine IL-6
[136].

Cox-2 was constitutionally expressed in the brain and
involved in the development of neuroinflammation by cata-
lyzing the conversion of arachidonic acid into the proinflam-
matory prostaglandins [83]. It could increase the blood-
brain barrier permeability to promote the entry of inflam-
matory factors into the brain [10]. Therefore, COX-2 inhib-
itors were considered as important interventions for
neuroinflammation and potential targets for treatment of
POCD. Celecoxib, a highly selective COX-2 inhibitor, signif-
icantly reduced the incidence of POCD and plasma levels of
IL-1β, IL-6, TNF-α, COX-2, and S100B on day 7 after total
knee replacement in elderly patients, although there existed
no difference in the incidence of POCD between the two
groups after 3 months [137]. Parecoxib inhibited the overex-
pression of COX-2 and decreased the levels of IL-1β, IL-6,
TNF-α, and PGE2 in the brain of rats. The cognitive func-
tion of POCD rats was improved [138]. Intraperitoneal
injection of the COX-2 inhibitor meloxicam 24h after sple-
nectomy prevented surgically induced cognitive dysfunction
and inhibited glial cell activation in mice [139]. Cox-2 inhib-
itors had not been particularly fully studied for cognitive
improvement, while many studies proved a possible
solution.

Minocycline was a broad-spectrum antibacterial tetracy-
cline antibiotic that could easily cross the blood-brain bar-
rier (BBB) to exert anti-inflammatory effects [140]. It has
been proven that minocycline played a neuroprotective role
by inhibiting inflammatory responses and reducing neuro-
nal apoptosis [141]. In isoflurane or surgery-induced cogni-
tive impairment models, it was found that minocycline
could downregulate microglia marker IBA-1 protein expres-
sion [142] and upregulate anti-inflammatory cytokine IL-4
and IL-10 protein levels [143]. The pretreatment of
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minocycline enhanced spatial orientation memory in elderly
mice by inhibiting microglial activation and reducing the
release of proinflammatory cytokines in the hippocampus
[144]. Other study also showed that minocycline successfully
reduced the cognitive impairment associated with LPS-
induced neuroinflammation and decreased the production
of neuroinflammatory markers in the hippocampus and cor-
tex [145]. Being a key link in the induction of neuroinflam-
mation, microglia had been demonstrated in Alzheimer’s
disease [146]. Strategies targeting microglia provided an
interesting area for further research into the prevention
and even treatment of POCD. In a mouse model, periopera-
tive microglial depletion [112] and promotion of the M2
phenotypes by injection of erythropoietin [115] all improved
the memory dysfunction which were verified in passive
avoidance and new object recognition tests. In a recent rat
study, peripheral surgery induced CNS mast cell degranula-
tion and subsequent microglial activation [147]. The use of
sodium glycyrrhea reduced the degranulation of mast cells
and inhibited the activation of microglia in rats, thus
improving the memory ability [148].

As a key regulator of neuroinflammation, gut microbiota
could regulate host immunity and cognition [149]. There-
fore, the regulation of gut microbiota may be a potential
treatment for various of neurological diseases [102]. Prebi-
otics could be selectively utilized by host microbes to stimu-
late the gastrointestinal microbiota and confer health
benefits [150]. A growing body of evidence indicated that
the contained prebiotics diet was beneficial for the host
immune and gut-brain shaft. It helped to reduce the nerve
inflammation [151]. Surgical trauma and anesthesia altered
the composition of the gut microbiome. Neuroinflammatory
response and spatial learning and memory disorders could

be alleviated by preconditioning with SCFA (metabolites of
intestinal microorganisms [152]).

Anesthesia and surgery created inflammation of the
body. Appropriate inflammatory response could inhibit the
harmful factors and facilitate the rapid recovery of the
organism. Excessive inflammatory response and the inability
of inflammatory factors to distinguish between enemy and
self led to the disorder of neuronal function and promoted
the development of POCD. The intervention of various of
stages of inflammation occurrence and development had
achieved encouraging positive results. These studies had laid
a firm foundation for a more comprehensive intervention
and even treatment.

8. Conclusions

The morbidity of POCD was particularly prominent in the
elderly, and the increase of postoperative mortality made it
urgent to understand the pathogenesis. Involvement of
inflammation-related factors and microglia activation had
been shown to play a role in cognitive decline, while some
inflammatory factor receptor antagonists and drugs may
ameliorate the cognitive decline after surgery. The interac-
tion between the peripheral immune system and the CNS
was also involved. The role of inflammatory mechanisms
in the development of POCD was briefly illustrated in
Figure 1. But the current results were not enough to shed
light on how activated glial cells modulate neuronal trans-
mission and how they changed the synapses that could affect
neuron function. Clinical and primary medical professionals
are working hard to explore the pathogenesis of POCD,
develop effective drugs, or improve surgical techniques to
treat or prevent POCD. Although it may need more time
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Figure 1: Flowchart of inflammatory mechanisms. The picture shows that after anesthesia or surgery, the activation of multiple
inflammatory and proinflammatory cytokines, as well as the reduction of BBB function, promoted the transfer of inflammation-related
factors from the periphery to the center. With the neuroinflammation progressing, the function of neurons in the brain continued to
decline over time. And the presence of the gut-brain axis also played a key role in the transport of these cytokines. Consequently, the
inflammatory mechanism of POCD was a combination of multiple factors. Abbreviation: IL-1β: interleukin-1β; IL-6: interleukin-6; IL-
17: interleukin-17; TNF-α: tumor necrosis factor-α; iNOS: inducible nitric oxide synthase; COX-2: cyclooxygenase-2; PGE: prostaglandin
E; MMP: matrix metalloproteinase.
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to find new predictors and therapeutic targets, continuous
researches and explorations are expected to pave the way
for standardized treatment for POCD and bring good news
to POCD patients.
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