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Abstract

The strength and breadth of an individual’s antibody repertoire is an important predictor of

their response to influenza infection or vaccination. Although progress has been made in

understanding qualitatively how repeated exposures shape the antibody mediated immune

response, quantitative understanding remains limited. We developed a set of mathematical

models describing short-term antibody kinetics following influenza infection or vaccination

and fit them to haemagglutination inhibition (HI) titres from 5 groups of ferrets which were

exposed to different combinations of trivalent inactivated influenza vaccine (TIV with or with-

out adjuvant), A/H3N2 priming inoculation and post-vaccination A/H1N1 inoculation. We fit

models with various immunological mechanisms that have been empirically observed but

have not previously been included in mathematical models of antibody landscapes, includ-

ing: titre ceiling effects, antigenic seniority and exposure-type specific cross reactivity.

Based on the parameter estimates of the best supported models, we describe a number of

key immunological features. We found quantifiable differences in the degree of homologous

and cross-reactive antibody boosting elicited by different exposure types. Infection and adju-

vanted vaccination generally resulted in strong, broadly reactive responses whereas unad-

juvanted vaccination resulted in a weak, narrow response. We found that the order of

exposure mattered: priming with A/H3N2 improved subsequent vaccine response, and the

second dose of adjuvanted vaccination resulted in substantially greater antibody boosting

than the first. Either antigenic seniority or a titre ceiling effect were included in the two best

fitting models, suggesting a role for a mechanism describing diminishing antibody boosting

with repeated exposures. Although there was considerable uncertainty in our estimates of

antibody waning parameters, our results suggest that both short and long term waning were

present and would be identifiable with a larger set of experiments. These results highlight

the potential use of repeat exposure animal models in revealing short-term, strain-specific

immune dynamics of influenza.
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Author summary

Despite most individuals having some preexisting immunity from past influenza infec-

tions and vaccinations, a significant proportion of the human population is infected with

influenza each year. Predicting how an individual’s antibody profile will change following

exposure is therefore useful for evaluating which populations are at greatest risk and how

effective vaccination strategies might be. However, interpretation of antibody data from

humans is complicated by immunological interactions between all previous, unobserved

exposures in an individual’s life. We developed a mathematical model to describe short-

term antibody kinetics that are important in building an individual’s immune profile but

are difficult to observe in human populations. We validated this model using antibody

data from ferrets with known, varied infection and vaccination histories. We were able to

quantify the independent contributions of various exposures and immunological mecha-

nisms in generating observed antibody titres. These results suggest that data from experi-

mental systems may be included in models of human antibody dynamics, which may

improve predictions of vaccination strategy effectiveness and how population susceptibil-

ity changes over time.

Introduction

Natural infection with influenza stimulates a complex and multifaceted immune response to

neutralise and clear the infection [1]. The adaptive immune response is of particular interest

for seasonal epidemic and pandemic preparedness, as responses from previous exposures

provide some long-term protection against reinfection and disease via antibody and T-cell

mediated immunity [2, 3]. Focusing on the adaptive immune response is also advantageous

because it can be (i) induced in advance of an epidemic through vaccination and (ii) mea-

sured and compared against correlates of protection to improve public health forecasting

[4–7].

Influenza is an antigenically variable virus and undergoes continual antigenic drift, whereby

mutations in immunodominant epitopes are selected by immunological pressure, allowing

influenza lineages to escape population herd immunity [8–10]. This results in the continual

loss of long-term immunity as antibodies effective against past strains fail to neutralise novel

variants [11]. The current strategy for combating antigenic drift is to regularly update the sea-

sonal influenza vaccine to better represent circulating strains, resulting in a competition

between virus and vaccine formulation. Vaccines are more effective in some years than others

due to factors such as: the antigenic match between the vaccine and circulating strain, and

prior exposure histories of the population [12, 13]. Consequently, there has been a recent push

towards a universal influenza vaccination strategy, either through new vaccines or improved

strength and breadth of immunity using existing technologies [14, 15].

Whilst there is some cross-reactivity and cross-protection within influenza A virus subtypes

and within influenza B virus lineages, humans experience numerous infections over their lives

[16–18]. Each successive influenza exposure, which may be vaccination or infection, can

strengthen the available repertoire of T and B cells which target epitopes on circulating and

previously encountered strains [19, 20]. In the humoural response, this occurs by boosting

antibodies produced by pre-existing long-lived plasma cells and activated memory B cells

(MBCs), and through generating a novel B cell response targeting unrecognised epitopes [21–

23]. Given that individuals experience repeated infections and vaccinations from antigenically

varied influenza viruses, interpreting the composition of an observed antibody response is
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confounded by the complex interaction of an individual’s immunity from prior infections

with the infecting virus [24–27].

A large body of experimental and observational work exists describing the contribution of

infection histories to observed influenza susceptibility profiles, antibody landscapes and vacci-

nation responses, often under the terms “original antigenic sin” or “antigenic seniority” [1,

28–34]. Furthermore, next generation assays to characterise antibody diversity and B cell iden-

tity have provided a detailed understanding of immune dynamics, including short term

immune kinetics, duration of the humoural response, and immunodominance of different

antigenic sites [35–40]. However, few studies have integrated these mechanisms into quantita-

tive frameworks which can be used to explain and predict serological data from human popu-

lations, which often rely on simpler and less finely resolved assays [18, 22, 41, 42].

Animal models, in particular ferrets, have been used to generate much of our understand-

ing of influenza immunology due to opportunity for intensive observation and control [36,

43–48]. Here, we exploit the experimental flexibility and transparency of a ferret model to find

evidence for and quantify multiple immunological mechanisms that may be important in

characterising antibody landscapes generated from complex exposure histories, yet are observ-

able using only routine antibody assays. Quantifying short term mechanisms in a ferret system

might reveal patterns that could be used to improve the predictability and interpretation of

human antibody landscapes following exposure [49].

We developed a mathematical model of antibody boosting and biphasic waning to describe

antibody kinetics using previously published antibody titre data from a group of ferrets with

varied but known exposure histories [43]. Previous models of antibody kinetics have often

focused on the response to a single immunogen following one exposure [50–52]. Here, we take

into account previously described immunological phenomena to describe cross-reactive anti-

body titres arising from varied exposure histories. These phenomena included exposure type-

specific homologous and cross-reactive antibody kinetics, the role of priming on subsequent

vaccination, titre-dependent antibody boosting (or titre ceiling effects) and reduced antibody

boosting with each subsequent exposure (antigenic seniority) [32, 53–59]. By fitting models

with various combinations of these mechanisms to haemagglutination inhibition (HI) titre

data from ferrets, we sought to identify immunological mechanisms that are important in

describing observed antibody profiles arising from multiple exposures. Parameter estimates

from these model fits allowed us to quantify the impact of prior infection and adjuvant inclu-

sion on antibody levels following vaccination and to compare homologous and cross reactive

boosting profiles of different exposure types.

Materials & methods

Study data

Antibody titre data were obtained from a previously published ferret study [43]. The experi-

mental protocol was originally designed to reflect different possible human infection and vac-

cination histories at the time of the 2009 pandemic. Here we present a secondary analysis of

these data, with the intention of characterizing underlying immunological processes.

Briefly, five experimental groups each of three ferrets underwent different combinations of

infection with seasonal influenza A and/or vaccination with Northern and Southern Hemi-

sphere trivalent inactivated influenza vaccine (TIV), with or without Freund’s incomplete

adjuvant (IFA), over the course of 70 days (Table 1). Serum samples were collected at days 0,

21, 37, 49 and 70 from all ferrets (Fig 1). HI titres were used to determine antibody titres to

each infection and TIV strain. Dilution plates with 12 wells were used, such that the highest

possible recorded dilution was 1:40960, and the lowest detectable titre was 1:20. Undetectable
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titres were recorded as<1:20. All analyses here were carried out using log titres, defined as

k ¼ log2
D
10

� �
, where D was the recorded dilution. Observed log titres were therefore assigned

values between 0 and 12, where<1: 20 = 0, 1: 20 = 1 and�1: 40960 = 12.

Full adult doses of human TIV were used in groups A, B, C and D. The first vaccination

(Southern Hemisphere 2008 TIV) contained A/Solomon Islands/3/2006 (H1N1), A/Brisbane/

10/2007 (H3N2) and B/Brisbane/3/2007, administered at day 28 (TIV 1). The second vaccina-

tion (Northern Hemisphere 2007/2008 TIV) contained A/Solomon Islands/3/2006 (H1N1), A/

Wisconsin/67/2005 (H3N2) and B/Malaysia/2506/2004, administered at day 42 (TIV 2).

Table 1. Description of experimental protocol.

Group Infection with A/Panama/2007/

99 (H3N2)

Immunisation with S.H TIV

2008�
Immunisation with N.H TIV

2007/2008��
Infection with A/Fukushima/141/

06 (H1N1)

Number of

ferrets

Group

A

No Yes (no adjuvant) Yes (no adjuvant) Yes 3

Group

B

No Yes (with adjuvant) Yes (with adjuvant) Yes 3

Group

C

Yes Yes (no adjuvant) Yes (no adjuvant) Yes 3

Group

D

Yes Yes (with adjuvant) Yes (with adjuvant) Yes 3

Group

E

Yes No No Yes 3

�Southern Hemisphere (S.H.) TIV 2008: A/Solomon Islands/3/2006 (H1N1), A/Brisbane/10/2007 (H3N2), B/Brisbane/3/2007

��Northern Hemisphere (N.H.) TIV 2007/2008: A/Solomon Islands/3/2006 (H1N1), A/Wisconsin/67/2005 (H3N2), B/Malaysia/2506/2004

https://doi.org/10.1371/journal.pcbi.1007294.t001

Fig 1. Summary of experimental protocol. Days since first event are shown on the x-axis, with the 5 groups (A, B, C, D & E) shown as rows. Red

stars represent infection with either A/Panama/2007/1999 (H3N2) or A/Fukushima/141/2006 (H1N1). Red syringes represent vaccination with

either Southern Hemisphere TIV 2008 (TIV 1) or Northern Hemisphere TIV 2007/2008 (TIV 2) with (grey border) or without (black border)

adjuvant. Vertical, dashed black lines represent times of blood sample collection, providing HI titres against each of the vaccination and infection

strains at that time point.

https://doi.org/10.1371/journal.pcbi.1007294.g001
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Vaccines used in groups B and D were emulsified in an equal volume of IFA immediately

before administration (TIV 1/2 + adjuvant). All vaccines contained 15μg of HA of each strain,

and were delivered to sedated animals intramuscularly in the quadriceps muscles of both hind

legs. Infections were carried out by dropwise intranasal challenges with 103.5 50% tissue culture

infectious doses (TCID50) in 0.5 mL with A/Panama/2007/1999 (H3N2) in groups C, D and E,

and with A/Fukushima/141/2006 (H1N1) in all groups.

Models of antibody kinetics

The mathematical model describes the kinetics of homologous and heterologous antibody

titres following exposure. Fig 2 depicts the example of an individual becoming infected and

later vaccinated, though the model may characterise any sequence of exposures. Conceptually

similar mathematical models of boosting followed by biphasic waning have been used previ-

ously to describe antibody secreting cell (ASC) and antibody kinetics [50, 52, 60, 61].

After an infection (start at time ξ1), homologous antibody titres undergo boosting rising lin-

early (on the log scale) by μ1 log units to a peak after time tp1, ignoring any delay between expo-

sure and the start of antibody production. Titres then quickly drop by a fixed proportion, d1,

over ts1 days (in the timescale of a few days to weeks), representing the initial short-term wan-

ing phase as free antibodies and early short-lived ASCs begin to decay following clearance of

the initial antigen dose [33]. Antibody waning then switches to a constant rate m1 (log titre

units lost per day) for the remainder of time (representing the population of persistent ASCs,

lasting months to years) until subsequent vaccination (syringe at time ξ2), when antibody

dynamics become dominated by a new set of boosting and waning parameters. We did not

include a third, steady state phase due to the short time frame of these experiments [62]. Anti-

bodies effective against heterologous strains experience boosting and biphasic waning in pro-

portion to the exposure strain, with the proportion dependent on the antigenic distance

between the measured and exposure strains. We assumed that the lower bound of detection of

the HI assay (a log titre of 0) was synonymous with a true absence of antibodies, such that

model predicted titres could not wane below this level.

We then built on this base model to incorporate additional immunological mechanisms

that are important in describing antibody boosting and waning. These included: biphasic or

monophasic antibody waning; exposure-type specific or type non-specific cross-reactivity;

antigenic seniority; the impact of priming infection on subsequent vaccine response; and titre-

dependent boosting. We considered models with different numbers of exposure types to

match the experimental design: either 3 (infection, TIV, TIV + adjuvant) or 6 (priming infec-

tion, secondary infection, initial TIV, secondary TIV, initial TIV + adjuvant, secondary TIV

+ adjuvant). The base boosting and waning model remains the same across model variants,

but these mechanisms add complexity to the boosting parameter, μ, and link different expo-

sures with common parameters. A full description of each of these mechanisms and their

implementation is described in S1 Supporting Protocol.

We fit each of the 64 potential model variants in a Bayesian framework using parallel-tem-

pering Markov chain Monte Carlo (PT-MCMC) to estimate the posterior medians and 95%

credible intervals (CI) of all free model parameters. For each model, we ran 3 chains each for

5000000 iterations. Where the effective sample size (ESS) was <200 or the Gelman-Rubin

diagnostic (R̂) was <1.1 for any estimated parameter (calculated using the coda R package

[63]), we ran 5 chains each for 10000000 iterations and obtained upper 95% confidence inter-

vals for R̂ of<1.1 for all estimated parameters presented here. ESS and R̂ estimates for all

parameters are provided in S5 Table. We then performed a model comparison analysis using

Pareto-smoothed importance sampling leave-one-out cross-validation (PSIS-LOO) with the
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loo R package [64, 65]. Briefly, the purpose of this analysis was to compare the expected log

point-wise predictive density (ELPD) of different model fits to compare their out-of-sample

prediction accuracy. Comparing ELPD estimates serves a similar purpose to comparing other

information criteria, where a lower ELPD suggests greater predictive power penalised by

model complexity. Results shown in the main text are from the most complex model (most

free parameters) variant with δELPD<1 compared to the lowest ELPD. Parameter estimates

from all model variants with a δELPD<20 are shown in S7–S14 Figs. Posterior parameter esti-

mates are shown as medians and 95% CIs. Further details of the model fitting and comparison

are described in S1 Supporting Protocol. All code and data are available as an R package at

https://github.com/jameshay218/antibodyKinetics.

Results

Antibody kinetics following a single exposure support biphasic waning

To validate our boosting and biphasic waning model for a single exposure, we fit the base

model to HI titres against A/Panama/2007/1999 (H3N2) from group E alone (Fig 3). Ignoring

the later exposure to A/Fukushima/141/06 (H1N1) at day 56, from which we do not expect

any cross-subtypic antibody reactivity, these data in isolation reflect a typical antibody trajec-

tory following exposure to a single immunogen and measurement of antibodies against it [34,

50]. The models with biphasic waning (both with estimated long term waning rate, m, and

fixed m = 0) were better supported than the models with monophasic waning or no waning

Fig 2. Base model. Schematic showing the relationship between model parameters and antibody kinetics over time. Black line shows

antibody titres effective against one immunogen. Grey line highlights how antibody titres to a different influenza immunogen (that is

less antigenically similar to the exposure immunogen than the black line) develop in parallel driven by cross-reactive antibodies.

After each exposure, antibody levels undergo linear boosting on a log scale followed by an initial, short waning phase and then a

slower, long-term waning phase. This example demonstrates two exposures, initially with infection (star symbol) and subsequently

with vaccine (syringe symbol), where antibody dynamics are governed by a set of parameters depending on the exposure type. Note

that the y-axis is on a log scale and all observations are discrete and taken as the floor value. Model parameters are described in S1

Table.

https://doi.org/10.1371/journal.pcbi.1007294.g002
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(ELPD -20.6 (standard error (SE), 3.37) and -20.5 (SE, 3.77) compared to -23.4 (SE, 3.71) and

-28.1 (SE, 3.48) respectively), although we note that these differences are small with respect to

the standard error of the ELPD estimates. The biphasic waning models with estimated long-

term waning m and fixed long-term waning m = 0 had a difference in ELPD of<1, suggesting

that both models had similar predictive performance. Overall, these results suggest that the

model with monophasic waning is justified over the version with no waning, and that the

biphasic waning model is better still than the monophasic waning model. Posterior estimates

for model parameters were: μ = 9.91 (median, 95% CI 7.08–12.7); d = 0.551 (median, 95% CI

0.183–0.695); ts = 19.5 days (median, 95% CI 6.39–27.4 days); m = 0.0414 (median, 95% CI

0.00405–0.103).

Variation in antibody kinetics driven by different exposure histories

Overall, ferrets that received more frequent and immunogenic exposures achieved the highest,

most broadly reactive and long-lived antibody titres. The full data show substantial variation

in observed antibody titres across the groups driven by different exposure types and

Fig 3. Comparison of four model fits to data from three ferrets following exposure to a single immunogen. All ferrets

were infected with A/Panama/2007/99 (H3N2) at day 0. Y-axis shows log HI titre against A/Panama/2007/99 (H3N2).

Note that ferrets were also infected with A/Fukushima/141/06 (H1N1) at day 56, but we do not expect any cross-subtypic

antibody reactivity. Solid black line and grey region show best-fit model trajectory and 95% credible intervals (CI) of

latent antibody titres. Black diamond and error bars show median and 95% CI of model predicted observations. Blue

crosses and dashed lines show observed log HI titre for the three individual ferrets. Subplot titles show estimated expected

log-predictive density (ELPD) and corresponding standard error (SE). A: Biphasic waning; B: biphasic waning with a

fixed long-term waning rate of m = 0; C: monophasic waning with ts = d = 0; D; no short or long term waning with m = ts
= d = 0.

https://doi.org/10.1371/journal.pcbi.1007294.g003
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combinations. Following two doses of unadjuvanted TIV, ferrets achieved only modest

increases in titres against the vaccine strains (Fig 4A), with 2 out of 3 ferrets failing to generate

H3N2 titres that persisted past day 37. The addition of an adjuvant resulted in increased and

persistent titres against the vaccine strains in all ferrets by day 49. Titres against A/Fukushima/

141/2006 (H1N1), which is antigenically similar to A/Solomon Islands/3/2006 (H1N1), were

also increased at this time point (Fig 4B). Similarly, priming infection resulted in higher and

long-lived titres to the vaccine strains and A/Fukushima/141/2006 (H1N1) relative to ferrets in

the unprimed, unadjuvanted TIV protocol (Fig 4C). Observed titres at day 21 against A/Pan-

ama/2007/1999 (H3N2) were consistently high following priming infection in groups C-E,

with one ferret in each of groups C and E also experiencing some boosting of antibodies

against the other H3N2 strains. All ferrets were infected with A/Fukushima/141/2006 (H1N1)

at day 56, leading to elevated titres to both H1N1 strains by day 70 in all ferrets.

Model comparison results

The top two model variants had ELPD estimates of -412.1 (SE, 21.4) and -412.6 (SE, 20.7)

respectively. Both of these models included: a role for priming infection in increasing subse-

quent vaccine response; different boosting profiles between vaccination and infection; differ-

ent boosting profiles with adjuvant versus without adjuvant; and biphasic antibody waning.

The model with the lowest ELPD (model ID 21, S6 Table) had 30 free parameters and also

included titre-dependent boosting, no antigenic seniority, and no exposure type-specific cross

reactivity. The other model (model ID 62, S6 Table) had 33 free parameters and did not

include titre-dependent boosting, but did include antigenic seniority and exposure type-spe-

cific cross reactivity. Fig 4 shows the latter (more complex) model variant fitted to the data.

Parameter estimates for these two models are shown in S4 Table. The remainder of the results

refer to the latter model with more free parameters.

Other model variants may provide latent titre predictions more in line with biological

expectations, though we note that they are not as well justified based on the model comparison

analysis. For example, the predicted latent titres at the time of secondary vaccination (day 42)

were unexpectedly lower in group D than group C under the chosen model variant (Fig 4C &

4D). Oil-in-water adjuvants are hypothesised to increase recruitment of neutrophils, antibody

presenting cells and antigen bearing B cells at draining lymph nodes, and we would therefore

expect antibody titres following adjuvanted TIV to be higher than unadjuvanted TIV through-

out this time frame [66, 67]. These unexpected results are likely due to limitations of the flexi-

ble model structure, which finds the set of parameter estimates best supported by all of the

data, potentially at the cost of some biological realism. For example, a model variant identical

to the one used in Fig 4 with the addition of titre-dependent boosting provided waning param-

eter estimates in line with the expectation of adjuvanted vaccination leading to higher antibody

titres at all times relative to unadjuvanted vaccination (S4 Fig, model ID 54, S5 Table).

Overall, ELPD estimates ranged from -412.1 (SE, 21.4) in the highest ranked model to

-543.6 (SE, 21.8) in the lowest ranked model (S6 Table). The simplest model with 8 free param-

eters was the third lowest ranked model (ELPD -539.0 (SE, 21.9)), whereas the most complex

model with 35 free parameters was the the 7th highest ranked model (ELPD -417.0 (SE, 21.2)).

We note that some of the simpler model variants may have similar predictive performance to

the best fitting model and may therefore be more suitable in a general predictive application.

For example, further constraining the antibody trajectories in Fig 4E from day 56 is possible by

assuming shared kinetics parameters for the A/Panama/2007/1999 (H3N2) and A/Fukushima/

141/2006 (H1N1) infections, as we would expect these trajectories to be similar given that they

are both primary exposures to that subtype. One of the fitted model variants (model ID 64,
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Fig 4. Model trajectory fits. Subplots A-E correspond to groups A-E as described in Fig 1. Exposure events are as described in Table 1. Coloured lines

show the posterior median latent antibody trajectories following exposure. Coloured shaded regions show 95% credible intervals of the model fit. Bars

show 95% prediction intervals on observable titres. Coloured points show observed discrete log antibody titres by HI assay for each of the three individual

ferrets in each group. Gray shaded regions show the upper and lower limits of detection in the assay. For the same ferrets, titres to A/H3N2 strains are

shown in the left column and A/H1N1 strains in the right column. Red dashed lines show times of exposures. Symbols above each subplot: star represents

infection; syringe represents TIV; and syringe with gray border represents TIV + adjuvant. Symbols are coloured based on their formulation. TIV 1

contained the following influenza A strains: A/Solomon Islands/3/2006 (H1N1) and A/Brisbane/10/2007 (H3N2). TIV 2 contained: A/Solomon Islands/3/

2006 (H1N1) and A/Wisconsin/67/2005 (H3N2).

https://doi.org/10.1371/journal.pcbi.1007294.g004
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S6 Table) that was identical to the one in Fig 4 but assumed 3 rather than 6 distinct exposure

types produced tighter 95% CIs post A/Fukushima/141/2006 (H1N1) infection (S3 Fig). How-

ever, this model variant is less well supported based on the model comparison analysis (ELPD

-441.7 (SE, 20.3), δELPD = 29.6) and provided estimates of post-infection waning that were

almost identical to those for A/Panama/2007/1999 (H3N2) infection in the 6 exposure type

model; overall, suggesting that the A/Fukushima/141/2006 (H1N1) data did not contribute to

the posterior estimates (model ID 64, S5 Table). Our aim was not to predict unseen data but

rather to quantify immunological mechanisms.

As a crude measure of mechanism importance, we performed Pseudo-Bayesian model aver-

aging (Pseudo-BMA+) to estimate the relative weights of each model variant and thereby

weights of models with a particular mechanism relative to models without [68]. Although

comparison of variable importance using information criteria must be interpreted with cau-

tion (for example, changing the sample size or experimental protocol may change the results),

Pseudo-BMA+ serves as a rough estimate of which mechanisms are most important in

explaining these data [69]. Variable weights were: 1.00 for the presence of priming; 0.999 for

the presence of 6 exposure types; 0.836 for the presence of biphasic waning; 0.579 for the pres-

ence of titre dependent boosting; 0.572 for the presence of type specific cross reactivity; and

0.406 for the presence of antigenic seniority. The top two models had Pseudo-BMA+ weights

of 0.331 and 0.303, with a drop off to the third model with a weight of 0.0977. The top two

models included only titre-dependent boosting and antigenic seniority respectively, suggesting

that inclusion of at least one of these mechanisms improved predictive performance. The con-

sistency of parameter estimates across the best fitting model variants is demonstrated in S7–

S14 Figs.

Comparison of homologous boosting by exposure type

The level of homologous boosting resulting from priming infection (Infection 1) and second-

ary infection (Infection 2) was similar, shown by similar estimates for μ from both infections

(Fig 5A). We inferred that antibody titres fell only marginally following the initial waning

phase (μ(1 − d), Fig 5B). The antibody waning rate was not identifiable for secondary infection

due to the lack of observations following this exposure. We found evidence for only low levels

of homologous antibody boosting following both initial and secondary doses of unadjuvanted

TIV (TIV 1 and TIV 2) that quickly waned to near undetectable levels during the initial waning

phase.

The addition of an adjuvant appeared to have no significant impact on the homologous

antibody response to the first vaccine dose, but did improve the response to a second dose of

vaccine (TIV 1 compared to TIV 1 + adjuvant and TIV 2 compared TIV 2 + adjuvant, Fig 5B).

Titres against A/Brisbane/10/2007 (H3N2) and A/Solomon Islands/3/2006 (H1N1) were simi-

lar following the first unadjuvanted vaccine dose and the first adjuvanted vaccine dose (TIV 1

compared to TIV 1 + adjuvant, Fig 4A & 4B). However, the second adjuvanted TIV dose

appeared to elicit a significant persistent boost to the vaccine strains, which resulted in peak

titres near the limit of detection of this assay (TIV 2 compared to TIV 2 + adjuvant, Fig 4A &

4B).

Comparison of cross reactivity by exposure type

In models with type-specific cross-reactivity, we found differences in the width of cross reac-

tivity elicited by the 6 exposure types shown in Fig 5. Secondary infection appeared to elicit a

level of cross reactivity in line with that of the priming infection, whereas cross reactivity for

both unadjuvanted and adjuvanted vaccination appeared to be narrower and only boosted
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antibodies that were effective against antigenically similar viruses (Fig 6). σ describes the

degree by which antibody titre decreases as a function of antigenic distance, where higher val-

ues of σ suggest lower cross reactive breadth. When a single cross reactivity gradient was

assumed for all exposure types (as in the highest ranked model), we estimated the cross reactiv-

ity gradient to be 2.33 (median; 95% CI: 1.74–3.01), suggesting narrower cross reactivity than

would be expected given the definition for cross reactivity based on ferret antisera (an anti-

genic distance of 1 unit should see a reduction in antibody boosting of 1 log titre unit) [70].

Fig 5. Estimated model parameters. Violin plots showing estimated posterior densities with medians and 95% credible

intervals marked as horizontal black lines. Violin plots are similar to boxplots, but show the full probability density with

some smoothing through a kernel density estimator. Dashed gray lines show bounds on uniform prior. (A) Estimates for

homologous boosting parameter, μ. (B) Estimates for homologous boost at the end of the initial waning period, μ(1 − d).

(C) Estimates for duration of initial waning phase, ts. (D) Estimates for proportion of initial boost lost during the initial

waning phase, d. (E) Estimates for long term waning rate, m. Estimates for TIV 1, TIV 1 + adjuvant and Infection 2

excluded due to lack of identifiability. (F) Estimates for cross reactivity gradient, σ. Note that this value is fixed at 1 for

priming infection (Infection 1), shown by the horizontal dotted line. Values for TIV 2 and TIV 1 + adjuvant excluded due

to lack of identifiability.

https://doi.org/10.1371/journal.pcbi.1007294.g005
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Fig 6 demonstrates that homologous boosting (the y-intercept) was too small to elicit any mea-

surable cross reactive boosting at these antigenic distances. The cross reactivity gradient

parameter, σ, could therefore not be identified for the second dose of unadjuvanted TIV and

first dose of adjuvanted TIV, and we were only able to recover the prior distribution for these

parameters. These values were therefore excluded from Fig 5F.

Magnitude and duration of waning phases

Our model provided support for the presence of an initial short-term, rapid waning phase fol-

lowed by a secondary long-term, sustained waning phase. For all vaccine doses, we estimated

that the majority of the antibody boost waned within two weeks of reaching the peak (upper

95% CI 17.3, 5.15, 12.5 and 2.16 days for TIV 1, TIV 2, TIV 1 + adjuvant and TIV 2 + adjuvant

respectively, Fig 5A & 5B). Conversely for priming infection, we estimated that the antibody

titre was maintained at near peak levels with an estimated initial waning phase duration of

18.9 days (median; 95% CI 11.0–29.3) and a 21.6% (median; 95% CI: 2.02–48.8%) drop in log

titre relative to the peak. We estimated similar long-term waning rates for second unadju-

vanted TIV, second adjuvanted TIV and priming infection (Fig 5E).

Fig 6. Estimated cross reactivity profiles by exposure type. Solid black lines shows posterior means; shaded regions

show 95% credible intervals. Dashed grey lines show antigenic distances and corresponding cross reactive boosts given

the strains used here. Note that the y-intercept shows the degree of homologous boosting for that exposure type.

Table shows assumed antigenic distances between each strain, with no cross reactivity between subtypes.

https://doi.org/10.1371/journal.pcbi.1007294.g006
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We could not produce constrained estimates for the waning phases that take place follow-

ing infection with A/Fukushima/141/2006 (H1N1) at day 56, given that only one subsequent

observation was made at day 70. Although the 95% CI does not exclude biphasic waning rates

consistent with the other exposures, any single trajectory in this range that passes through the

single observation is similarly likely given these data.

Impact of priming

Prior to receiving non-adjuvanted TIV, experimental group C was infected with H3N2 Pan-

ama/2007/1999 at day 0, which represented a host being primed by natural infection prior to

vaccination. Our model allowed us to identify additional homologous and cross-reactive anti-

body boosting that resulted from priming improving the subsequent vaccine response, as com-

parable experimental groups were given the same vaccination schedule with or without

priming infection. The model suggested that priming infection added a substantial boost (7.28

log units (median, 95% CI 5.85–8.92)) to antibodies against the A/H1N1 and A/H3N2 vaccine

strains at the time of vaccination in addition to that provided by the vaccine itself (Fig 5A).

Given our assumption that a log titre of 0 represents the true absence of antibodies, we cannot

be certain that the higher titres observed at day 37 are due to a single large boost from primed

vaccination rather than an antibody boost below the limit of detection from the priming infec-

tion followed by a small subsequent TIV boost. However, previous antibody kinetics results

showing higher vaccine-induced antibody boosting following priming from the same detect-

able starting titre suggest that the former explanation is likely [71].

We estimated the cross reactivity of this additional boost to be broad with a gradient of

0.882 (median; 95% CI: 0.531–1.49), suggesting that priming increases the cross-reactive

breadth of the vaccine response. It should be noted that whilst additional priming-induced

vaccine boosting is well supported by the model fit, the model overestimates the antibody titre

to A/Fukushima/141/2006 (H1N1) at day 37 elicited by initial dose of TIV following priming

by H3N2 infection (Fig 4C). This may be a result of subtype-specific interactions that are not

captured by our model.

Limited evidence for antigenic seniority and titre dependent boosting

Despite the relatively short duration of these experiments, we found some evidence for a trend

of decreasing antibody response with increasing number of prior exposures and/or higher pre-

exposure titres. In the best fitting model with antigenic seniority, we estimated τ to be 0.213

(median; 95% CI: 0.134–0.300), suggesting that antibody boosting decreased substantially with

increasing number exposures after taking into account exposure type and priming. τ measures

the proportion of the full boost that is lost with each successive exposure experiences relative

to the first (ie. boosting decreases linearly as a function of increasing prior exposures). A

higher value of τ therefore indicates more boosting suppression with an increasing number of

prior exposures. Based on these estimates, the amount of antibody boosting would be reduced

by over 50% following 4 exposures.

In the best fitting model with titre-dependent boosting, we estimated the titre-dependence

gradient γ to be 0.0898 (median; 95% CI: 0.0788–0.102) applying to all titres below 10.9

(median; 95% CI: 8.62–11.95). γ gives the proportion of full boost that is lost per unit increase

in log titre at the time of exposure (with no suppression from a starting log titre of 0). The full

posterior estimate for the titre-dependent boosting mechanism is shown in S5 Fig. We note

that the inferred titre-dependent boost relationship may be different if the limit of detection of

the HI assay was lower. The top two model variants incorporated one of antigenic seniority or

titre dependent boosting, suggesting that either one significantly improves model fit relative to
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the model variants with neither. The two mechanisms are correlated in these experiments, and

antigenic seniority was not well identified with estimates for τ that did not exclude 0 for mod-

els with both titre-dependent boosting and antigenic seniority. However, all of the top models

with antigenic seniority but no titre-dependent boosting give constrained estimates for τ away

from 0 (S14 Fig).

Discussion

In this study, we used a mathematical model of antibody kinetics to describe boosting and

waning following influenza vaccination or infection in a group of well characterised ferrets.

We fit various subsets of the model with different immunological mechanisms and found that

the two best supported models both included: type-specific antibody boosting; type-specific

biphasic waning; 6 distinct exposure types; and a role for priming in increasing subsequent

vaccine response. Antigenic seniority, antigenic distance-mediated cross reactivity specific to

each exposure type and titre-dependent boosting were also included amongst these top mod-

els, suggesting that these mechanisms may be important in accurately describing observed

antibody titres following multiple exposures. We found quantitative differences in the level of

homologous and cross-reactive antibody boosting between vaccination, infection and adju-

vanted vaccination in this ferret model. A single TIV dose with or without adjuvant elicited

negligible levels of homologous and cross reactive boosting. A second dose of TIV with adju-

vant resulted in significant, broadly reactive antibody boosting, whereas a second dose of TIV

without adjuvant did not elicit significant antibody boosting. The profile of boosting for pri-

mary infection was consistent across experimental groups, and similar in magnitude to sec-

ondary infection. Furthermore, we found that priming infection induced a significantly

broader and stronger boosting profile following subsequent vaccination.

Our work has a number of limitations. The model predicted latent antibody titres were

broadly in line with expected immune dynamics, though there were some exceptions. The

model variant presented in the main text was selected based on the optimal balance between

fewest parameters and accuracy of predicted antibody trajectories with respect to the full set of

observed titres. Other model variants or designs may provide results more in line with biologi-

cal expectations, but would require estimation of more parameters or collection of additional

data. Given the relative sparsity of samples across time, some aspects of the model were poorly

identified or included spurious features for some subsets of the data. In particular, sampling

around the biphasic waning period of the vaccinations and following the final exposure event

was limited, resulting in poor identifiability for some of the waning and timing parameters.

We therefore restricted our reported results to estimates that were consistent across the best

supported model variants (S7–S14 Figs). Experiments of a similar design with fewer exposures

and more frequent sampling would power the model to elucidate these waning phases further

and look for differences in response longevity by exposure type.

Our experimental timeline was much shorter than the typical human exposure timescale of

months to years, with a minimum gap of 14 days between the two vaccine doses and 28 days

between infection and vaccination [18]. No further increase in antibody titre was detected

from 14 days post TIV 1 in group A or post A/Panama/2007/1999 (H3N2) infection in group

E, suggesting that serum antibody titres consistently peaked within 14 days and therefore

before each subsequent exposure. Furthermore, germinal centre (GC) structures and GC-

derived ASCs had likely developed within this time, as it has been shown in other small mam-

mals (mice) that GC B cells are present within 14 days post infection [39, 72, 73].

However, given that GC responses peak after 4 weeks and persist for months in mice, there

may not have been sufficient time for the MBC population, which is a significant contributor
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to post-vaccination ASCs in humans [23], to fully develop. Recruitment of naïve B cells may

also be impacted by both the presence of pre-existing GC structures from primary infection

and the inclusion of IFA [66, 67, 74]. The inferred antibody kinetics of the two TIV doses

might therefore be different if they were further apart. It is possible that the time to peak

response parameter would also differ depending on the relative contributions of memory and

de novo ASCs; however, models that allowed the time to peak parameter to vary were less well

supported based on ELPD, resulted in reduced identifiability of some parameters, and did not

change estimates for identifiable parameters (S1 Supporting Protocol).

We captured the impact of immune memory on subsequent antibody responses in two

ways: antigenic seniority and titre-dependent boosting [26]. Titre-dependent boosting was a

function of only homologous antibody titres, whereas antigenic seniority was assumed to be a

function of all previous exposures regardless of exposure strain, subtype and administration

route. If antigenic seniority is primarily a result of HA reactive antibodies, then it would only

act within a subtype in contrast to our assumed mechanism [32]. However, it is not clear that

immune memory effects do not extend between influenza subtypes [75, 76]. For example,

immune imprinting to a particular subtype has been proposed as an explanation for age-spe-

cific mortality in the 2009 H1N1 pandemic and to explain the age distribution of avian H5N1

and H7N9 cases, though these observations do not necessarily suggest any cross-subtype or

cross-group impact on subsequent antibody responses [30, 77]. It has been proposed that

cross-subtype effects might act through cross-reactive memory T-cell responses that act to

deplete heterosubtypic antigen load, which may in turn lead to lower antibody boosting [24].

HI assays measure only the aggregated activity of polyclonal antibodies targeting multiple

epitopes on the haemagglutinin head, and we were therefore unable to investigate epitope- or

B cell-specific contributions to serum antibody titres [78]. Understanding the immunological

mechanisms of imprinting effects, short-term kinetics due to GC overlap, and the relative con-

tributions of MBC derived and de novo antibody boosting would require data either on epi-

tope-specific antibodies or single-cell assays [23, 39, 79]. Epitope masking, wherein pre-

existing antibodies targeting recognised, but poorly conserved epitopes (ie. the epitopes that

generate cross-reactivity in the HI assay between eg. A/Panama/2007/1999 (H3N2) and A/

Wisconsin/67/2005 (H3N2) antibodies) sterically mask access to previously unseen and con-

served, immunosubdominant epitopes (eg. at the receptor binding site), has been proposed as

a mechanism for the recall bias of subsequent responses [19, 31, 80–82]. A model that captures

the contribution of MBCs and naïve B cells to antibodies targeting a variety of epitopes may

explain how immune imprinting contributes to observed antibody titres, and may include

additional insights such as decreased cross-reactive breadth and magnitude with each repeated

exposure.

Our data included only trivalent vaccination with and without IFA, and estimates of any

boosting parameters are therefore conditional on the presence of three antigens in a single vac-

cination. It would be interesting to compare the inferred homologous and cross-reactive boost

of different vaccination strategies (eg. a three antigen TIV compared to a monovalent vaccine,

or comparison by inoculum dose), and for adjuvants more relevant to human vaccination

such as MF59 [83, 84]. There may also be underlying heterogeneities in antibody response

between and within influenza subtypes as well as between vaccine types [85, 86]. For example,

Live Attenuated Influenza Vaccines (LAIV), as well as newer DNA vaccines may provide dif-

ferent antibody kinetic profiles and may elicit broader antibody responses, or provide different

priming effects [58, 87].

We found evidence for biphasic waning following both primary infection and secondary

vaccination. There was some evidence that the magnitude and duration of waning differed

between exposure types: TIV 1 and 2 and adjuvanted TIV 1 waned very quickly, whereas
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Infection 2 and TIV 2 + adjuvant were more persistent. Heterogeneity in antibody waning

rates between individuals and vaccine types have been shown for other pathogens [60, 88].

Although studies of influenza antibody response duration have been carried out in humans,

quantifying waning rates independent of subsequent exposures that cause repeated boosting

is difficult [2, 61, 89–91]. Our model fit to the single exposure ferrets provides an estimation

of the waning rate of homologous antibodies in the absence of further exposure, but the cut

off of 70 days limits the applicability of this waning rate to a timescale more relevant to

humans. Extrapolating our estimated waning rate following primary infection would suggest

that antibody titres would wane to non-detectable within a few months, whereas antibody

responses against many viruses are known to persist for decades [88, 92]. Longer term stud-

ies investigating the longevity of the antibody response in the absence of repeated exposure

would be useful to quantify a long-term, steady state antibody waning rate [52]. Further

mechanisms such as differential waning rates between cross-reactive and homologous anti-

bodies are likely to be important, but were not identifiable here [21, 59]. Although animal

models are potentially useful, identification of these mechanisms in human populations is

likely possible given long-term, frequent sampling of human sera combined with robust sta-

tistical methods [18, 22].

Our results have implications for comparing different vaccination strategies. Achieving

high HI titres against currently circulating strains is a key endpoint in influenza vaccine trials

due to its correlation with clinical protection [4, 93–95]. However, there are a number of obsta-

cles to achieving these high titres in some populations including antigenic interactions, age

specific responses and antibody waning [11, 96–99]. One approach to improving vaccine effec-

tiveness may therefore to elicit a broader antibody response to compensate for potential strain

mismatch [100]. Adding adjuvants such as MF59 and AS03 has been shown to induce higher

antibody titres that have greater cross-reactive properties [55, 56, 101, 102]. Quantitative com-

parisons of cross reactivity profiles, as we have provided here, could be a useful tool in compar-

ing the effectiveness of different adjuvants, which would provide a measurable benefit to

trade-off against safety and immunogenicity concerns [103, 104].

In addition to modelling boosting suppression due to prior immunity, we considered

potential enhancement via priming infection. “Prime-boosting” has been described previously

as a strategy to induce broadly reactive immune responses that may be rapidly boosted in

advance of exposure to an antigenically novel virus [53, 54, 71]. Models that included a prim-

ing mechanism were ranked systematically higher in our model comparison analysis than

those that did not, suggesting that this phenomena is important in explaining titres arising

from repeated exposures. We found that vaccine responses to A/H1N1 strains were higher and

more broadly reactive in A/H3N2 primed ferrets compared to unprimed ferrets, though our

model did not account for subtype specific interactions and subsequently overestimated post

vaccination A/H1N1 titres in primed ferrets. Although the phylogenetic relationship between

the priming and subsequent boosting strain is likely to be important, heterosubtypic protec-

tion has been shown previously in animal models, potentially via cytotoxic T lymphocyte

responses [45, 47].

Our results suggest that mathematical models of antibody kinetics that explicitly consider

immunological mechanisms and exposure-type specific parameters would be valuable for the

prediction of antibody landscapes in human populations. Human cohort studies tracking

infants from birth as they experience their first few influenza exposures are also now underway

[105]. Combining these studies with single-cell immune profiling and mathematical models of

multiple exposure kinetics will help to elucidate the role of these immunological mechanisms

in building human antibody profiles. Direct inference from long-term observational data in

humans may be difficult, but experimental models, such as the ferret system described here,
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provide an excellent alternative data source for the inference of short-term immunological

mechanisms that may map onto models recovered using human sera [18, 21, 41, 42].

Supporting information

S1 Supporting Protocol. Details of the full model, model comparison analysis, model fit-

ting and additional sensitivity analyses.

(PDF)

S1 Table. Description of model parameters. Summary of parameter definitions and bounds.

All bounds relate to lower and upper bounds of the uniform prior distribution used during

model fitting.

(XLSX)

S2 Table. Description of model mechanisms and their potential formats.

(XLSX)

S3 Table. Description of models with δELPD <20. Table is ranked by ELPD score, such that

the model best supported by ELPD (lowest) is at the top.

(CSV)

S4 Table. Summary of parameter estimates for the two best supported models (lowest

ELPD score).

(XLSX)

S5 Table. csv file containing all posterior distribution estimates for all model variants.

(CSV)

S6 Table. csv file containing convergence diagnostics (including minimum effective sample

size and R̂) and expected log predictive density estimates for all model variants.

(CSV)

S1 Fig. Summary of model mechanisms. A: Cross reactive antibody boosting. The degree of

boosting decreases as the antigenic distance between the exposure and measured strain

increases. Different exposure types may have different gradients; B: Illustrative example of

exposure type specific parameter values. Level of homologous boosting may depend on the

exposure type. Note that this may also apply to other parameters eg. waning rate; C: Joint effect

of exposure boosting and priming infection. Full boosting following a primed exposure is the

sum of contributions of the exposure itself and the effect of priming; D: Antigenic seniority

mechanism. Amount of antibody boosting decreases linearly with the number of prior expo-

sures; E: Titre dependent boosting. Solid black line shows example where 0� γ� 1. Blue

dashed lines show boundary conditions. Note that the realised boost does not change when yi
is above yswitch.
(TIF)

S2 Fig. Observation error matrix. Probability of observing a particular log titre given an

underlying true, latent titre. Note that the true titre is a continuous value, whereas observations

are discrete. Furthermore, truncation of the distribution at the upper and lower limit of the

assay results in an asymmetrical distribution when the true value is at either of these limits.

True values outside of these limits will be observed as a value within the assay limits.

(TIF)

S3 Fig. Antibody trajectories for group E from model variant 64. Equivalent to Fig 4E, but

using a model assuming shared kinetics parameters between post A/H3N2 and A/H1N1
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infection, between both adjuvanted TIVs and between both unadjuvanted TIVs. Solid col-

oured lines and shaded regions show posterior median and 95% credible intervals of latent

titres. Points show observed antibody titres. Bars show 95% prediction intervals on observable

titres. Red dashed lines show time of infection with A/Panama/2007/99 (H3N2) and A/

Fukushima/141/2006 (H1N1) respectively.

(TIF)

S4 Fig. Antibody trajectories for groups C&D from model variant 54. Equivalent to Fig 4C

& 4D, but using a model with titre-dependent boosting. Solid coloured lines and shaded

regions show posterior median and 95% credible intervals of latent titres. Points show

observed antibody titres. Bars show 95% prediction intervals on observable titres. Red dashed

lines show exposures as in Fig 1.

(TIF)

S5 Fig. Posterior estimates for titre dependent boosting relationship from the best sup-

ported model which included titre dependent boosting (not included in the main text

model). Shaded gray regions shows 95% credible intervals (CI) drawn from the multivariate

posterior. Solid black line shows multivariate posterior mean; Dashed gray lines show median

and 95% CI for realised antibody boosting from a titre of 12.

(TIF)

S6 Fig. Re-estimated model parameters from simulated data. Violin plots show estimated

posterior densities with medians and 95% credible intervals marked as horizontal black lines.

Dashed gray lines show bounds on uniform prior. Black dots show true values. (A) Estimates

for homologous boosting parameter, μ. (B) Estimates for homologous boost at the end of the

initial waning period, μ(1 − d). (C) Estimates for duration of initial waning phase, ts. (D) Esti-

mates for proportion of initial boost lost during the initial waning phase, d. (E) Estimates for

long term waning rate, m. Estimates for TIV 1, TIV 1 + adjuvant and Infection 2 excluded due

to lack of identifiability. (F) Estimates for cross reactivity gradient, σ. Note that this value is

fixed at 1 for priming infection (Infection 1), shown by the horizontal dotted line. Values for

TIV 2 and TIV 1 + adjuvant excluded due to lack of identifiability.

(TIF)

S7 Fig. Summary of posterior distribution estimates for homologous boosting parameter,

μ from models with δELPD <20. Points show posterior median; line ranges show 95% credi-

ble intervals. Estimates are stratified by exposure type and ordered in order of increasing

ELPD. Estimates are coloured according to whether or not cross reactivity was assumed to be

a universal parameter or type-specific. Dashed horizontal lines represent uniform prior range.

Model codes on x-axis relate to the first letter of each mechanism as described in S2 Table.

(TIF)

S8 Fig. Summary of posterior distribution estimates for initial waning phase proportion, d
from models with δELPD <20. Points show posterior median; line ranges show 95% credible

intervals. Estimates are stratified by exposure type and ordered in order of increasing ELPD.

Estimates are coloured according to whether or not titre-dependent boosting was included.

Dashed horizontal lines represent uniform prior range. Model codes on x-axis relate to the

first letter of each mechanism as described in S2 Table.

(TIF)

S9 Fig. Summary of posterior distribution estimates for duration of initial waning phase,

ts from models with δELPD <20. Points show posterior median; line ranges show 95% credi-

ble intervals. Estimates are stratified by exposure type and ordered in order of increasing
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ELPD. Estimates are coloured according to whether or not titre-dependent boosting was

included. Dashed horizontal lines represent uniform prior range. Model codes on x-axis relate

to the first letter of each mechanism as described in S2 Table.

(TIF)

S10 Fig. Summary of posterior distribution estimates for long-term waning rate, m from

models with δELPD<20. Points show posterior median; line ranges show 95% credible inter-

vals. Estimates are stratified by exposure type and ordered in order of increasing ELPD. Esti-

mates are coloured according to whether or not waning was assumed to be biphasic or

monophasic. Dashed horizontal lines represent uniform prior range. Model codes on x-axis

relate to the first letter of each mechanism as described in S2 Table.

(TIF)

S11 Fig. Summary of posterior distribution estimates for cross reactivity gradient, σ from

models with δELPD<20. Points show posterior median; line ranges show 95% credible inter-

vals. Estimates are stratified by exposure type and ordered in order of increasing WAIC. Esti-

mates are coloured according to whether or not cross reactivity was assumed to be a universal

parameter or type-specific. Plots are truncated from above at 10 for clarity, but upper prior

bound was 100. Red dashed line shows the fixed value of σ = 1 for priming infection. Blue

dashed line shows value above which a homologous boost of μ = 5 would give an observed

boost of 0 against a strain with an antigenic distance of 1. Model codes on x-axis relate to the

first letter of each mechanism as described in S2 Table.

(TIF)

S12 Fig. Summary of posterior distribution estimates for priming cross reactivity gradient,

β from models with δELPD <20. Points show posterior median; line ranges show 95% credi-

ble intervals. Red dashed line shows the fixed value of σ = 1 for priming infection. Blue dashed

line shows value above which a homologous boost of μ = 5 would give an observed boost of 0

against a strain with an antigenic distance of 1. Estimates are ordered by increasing ELPD.

Model codes on x-axis relate to the first letter of each mechanism as described in S2 Table.

(TIF)

S13 Fig. Summary of posterior distribution estimates for titre dependence gradient, γ and

titre dependent switch point, yswitch from models with δELPD <20. Points show posterior

median; line ranges show 95% credible intervals. Estimates are ordered by increasing ELPD.

Model codes on x-axis relate to the first letter of each mechanism as described in S2 Table.

(TIF)

S14 Fig. Summary of posterior distribution estimates for antigenic seniority parameter, τ
from models with δELPD <20. Points show posterior median; line ranges show 95% credible

intervals. Estimates are ordered by increasing ELPD. Estimates are coloured according to

whether or not titre-dependent boosting was also included in the model. Model codes on x-

axis relate to the first letter of each mechanism as described in S2 Table.

(TIF)
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