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Finding a genetic disease-related gene is not a trivial task. Therefore, computational methods are needed to present clues to the
biomedical community to explore genes that are more likely to be related to a specific disease as biomarker. We present biomarker
identification problem using gene prioritization method called gene prioritization from microarray data based on shortest paths,
extended with structural and biological properties and edge flux using voting scheme (GP-MIDAS-VXEF). The method is based on
finding relevant interactions on protein interaction networks, then scoring the genes using shortest paths and topological analysis,
integrating the results using a voting scheme and a biological boosting. We applied two experiments, one is prostate primary and
normal samples and the other is prostate primary tumor with and without lymph nodes metastasis. We used 137 truly prostate
cancer genes as benchmark. In the first experiment, GP-MIDAS-VXEF outperforms all the other state-of-the-art methods in the
benchmark by retrieving the truest related genes from the candidate set in the top 50 scores found. We applied the same technique
to infer the significant biomarkers in prostate cancer with lymph nodes metastasis which is not established well.

1. Introduction

Genetic diseases have been around for a long time. In the
past they were just not understood or known. Nowadays we
do have a better knowledge of the underlying mechanisms
behind these diseases, for instance now it is understood that
cancer is a mutated genetic disease [1] and many researchers
in molecular genetics have identified a number of key genes
and potential drug targets for various types of cancer [2].
Cancer is extremely complex and heterogeneous and it has
been suggested that 5% to 10% of the human genes probably
contribute to oncogenesis [3]. However, our current under-
standing is still limited, this is due to the very nature of the
genetic mechanisms of life. It is not a trivial task to discover
new genes involved with genetic diseases like cancer, as they
usually do not work alone, but as a part of a mechanism
inside the machinery of the cells. Current research in the

discovery of new cancer related genes consists of several
approaches, one direct approach called in vitro, and another
one called “in-silico”. The in vitro approach is done by the
biomedical community, they perform wet-lab experiments
where they experiment with live tissue, comparing control
and case cells. This approach is very accurate, but it is time
consuming and extremely expensive, and sometimes it is not
successful, since they might be investigating a gene that is
not related with the disease. Here it is where bioinformatics
provides tools to perform these studies in the so-called
in silico environment. The bioinformatics studies are less
accurate than in vitro ones, due to makeup of its source data
that is usually noisy and incomplete [4]. On the other hand
bioinformatics studies offer clues and hints to the biomedical
researchers that help narrow the search for key genes and
key mechanisms involved with a given disease, and it does
it in a much cheaper fashion. Advances in this direction
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Figure 1: General gene prioritization overview.

are essential for identifying new disease genes as biomarker
in complex diseases. To achieve this goal our research is
oriented to a line of bioinformatics investigation called whole
genome “disease gene prioritization” (DGP). This line of
research objective is to find disease-related genes, and to
assign more relevant genes to the disease a higher score in
such a way that higher scores have higher probability of being
related to the disease in question. In general DGP is described
in Figure 1, were it can be seen that DGP methods take as
input training data, that is, information to indicate previous
knowledge about the disease. Along with this data comes the
candidate set, that represents the whole set of genes being
studied, and that are going to be ranked or prioritized by the
method. Finally the disease information is also input to the
DGP method. Once the method has finished processing the
input it will output the set of genes with a score, high scoring
genes are believed to be relevant to the input disease.

In general there are two types of DGP, one of them is data
and text-mining based, and the other is network based. Data
and text-mining-based DGP methods rely on data mining
techniques to mine disease relevant genes from literature or
different bioinformatics sources like sequence information.
Among these methods there are: the eVOC method that
performs candidate gene selection based on the coocurrence
of the disease name in PubMed abstracts using data mining
methods [5], GeneSeeker that is a web-based tool that selects
candidate genes of the disease under study based in gene
expression and phenotypic data of human and mouse [6],
the method proposed by Piro et al. [7] that uses spatial
gene expression profiles and linkage analysis, disease gene
prediction [8], and prospects [9] that use basic sequence
information to classify genes as likely or unlikely to be
involved with the given disease, SUSPECTS [10] an extended
version of PROSPECTS that integrates annotation data from
gene ontology (GO) [11], InterPro [12] and expression data.
Along this line of research is also MedSim [13] that uses GO
enrichment and their own similarities measures [14].

Additionally there are network based methods, these
ones are based on network analysis tools applied on
biological networks. Network methods have the advantage
that there is an increasing availability of human protein
interaction data, along with the maturity of network analysis.
In the case of these kind of methods the training set is usually
a set of genes that are called “seed genes,” these are genes that

have been validated by wet lab experiments. Furthermore
methods in this category can be classified in local and
global methods, local methods use local information to the
seeds, basically classifying by network proximity through
the inspection of the seed genes or higher order neighbors
in other words nodes in the network that are not directly
adjacent to the seed nodes but are easily accessible by them.
Global methods model the flow through the whole network
to provide a score of the connectivity and impact of the
seed genes. Either type, local or global, usually relies on the
assumption that genes that are associated with diseases have
a heavy interaction between each other [22]. The general
idea behind network-based DGP is to assess how much
genes interact together and how close they are to known
diseases, integration of expression data from microarray
into the network would improve its the accuracy, for more
relevant biological information would be used. Among
network-based methods: a method proposed by Chen et al.
applies link-based strategies widely used in social and web
network analysis such as Hits with Priors, PageRank and
K-Step Markov to prioritize disease candidate genes based
on protein interaction networks (PINs) [18]. Some various
network-based approaches that predicted disease genes based
on the protein network have obtained much better perfor-
mance than traditional disease gene prediction approaches
only based on the genome sequence alignment [23]. These
kinds of the researches are associated with the long-held
assumption that genes likely to interact directly or indirectly
with each other are more likely to cause the same or similar
diseases [24]. Wu et al. proposed a novel method, CIPHER
(correlating protein interaction network and phenotype net-
work to predict disease genes) [25] based on the phenotypic
similarity and protein networks and they supposed that the
phenotypic similarity among diseases can extract the disease-
related genes on the network by measuring the direct neigh-
bor (CIPHER-DN), shortest path (CIPHER-SP), or diffusion
kernels. However, the direct neighbor strategy has some limi-
tations to extract those indirect interaction genes and is more
likely to be true for cases where two genes function in the
same protein complex than in a pathway [26]. Shortest path
analysis may yield a higher coverage and more novel predic-
tions that are not so obvious to observe directly from the
protein interaction data. The advantages of CIPHER perform
genome-wide candidate gene prioritization for almost all
human diseases but it does not work well for specific cancer
due to not taking the relevant experimental data. They do
not further select the active interaction relationships among
protein while only a part of the interactions among a set of
proteins may be active. These kinds of methods are inconsis-
tent with previous studies which found that not all protein
interactions occur at a specific condition [27]. More recently,
Vavien is a system that uses the notion of topological profile
to characterize a protein with respect to others [28]. Most of
the aforementioned methods belong to the global or the local
type of methods, integrating various sources of information
to enrich their scoring. Another interesting fact is that as
time passes the line the divides network based methods and
data mining methods become less clear, this is due to the
integration of data and text mining sources to network-based



The Scientific World Journal 3

methods. This is the case of ENDEAVOR that takes a machine
learning approach that builds a model with seed genes, and
then that model is used to rank the candidate set according to
a similarity score using multiple genomic data sources [17].

The accumulation of high-throughput data greatly pro-
motes computational investigation of the expressions of
thousands of genes and uses to manifest the expressions
of genes under particular conditions. However, based on
differential expression of the genes in the microarray data is
likely to be incomplete, because there may be genes that are
not differentially expressed but may be subtly involved in a
pathway. The differential expression analysis only focuses on
the selection of genes and does not pay attention to analyzing
the interactions among them. Ma et al. proposes another
method that performs the gene prioritization by Combining
Gene expression and PIN (CGI) using Markov random
field theory [19], CANDID that uses information from
publications, protein domain descriptions, cross-species
conservation measures, gene expression profiles and PIN to
do a prioritization on the candidate genes that influence
complex human traits [20], GeneRanks uses Google’s PageR-
ank algorithm and expression data to do gene prioritization
[29], Mani et al. proposed a method called interactome
dysregulation enrichment analysis (IDEA) to predict cancer
related genes using interactome and microarray data [21],
Karni et al. attempted to predict the causal gene from
expression profile data and they identified a set of disease-
related genes that could best explain the expression changes
of the disease-related genes in terms of probable pathways
leading from the causal to the affected genes in the network
[30]. A summary table with the aforementioned methods can
be found in Appendix D.

Scientific understanding of the biological mechanisms
of cancer will help with the development of improved
treatments for this disease, researchers around the world
are attacking this issue with different approaches with a
common goal: find a protocol to increase the probability
of recovery from cancer. For this reason, our research is
oriented towards this goal, and we have selected as our test
domain prostate cancer. Motivated by the availability of rich
information about this disease, and the fact that it is the
third most common cause of death from cancer in male
subjects according to the United States of America Library
of Medicine.

In this paper we propose a method called gene prioriti-
zation based on microarray data with shortest paths, using
voting extra scoring and edge flux strategy: (GP-MIDAS-
VXEF), that is, a network-based DGP and a hybrid local and
global method at it. It is based on the premise that disease
relevant genes are on shortest paths involving seed genes like
a local method. However uses the core of NetWalk to obtain
disease relevant interactions making it also a global methods.
Additionally boosting the scores using topological properties
of the nodes that are considered to be “broker genes” as
proposed by [31]. Finally is integrated differential expression
data in the final score to increase biological meaning to the
results.

This paper is organized as follows, following the intro-
duction a brief background on graph theory is introduced,

after which the Materials and Methods will follow where
the source data and details on GP-MIDAS-VXEF will be
presented. Then our results will be presented, finalizing this
paper with the conclusions.

2. Graph Theory Background

A graph is a data structure that represents a set of relation-
ships between elements or objects. Formally a graph G is a
pair defined by G = (V ,E), where V is a set of elements
that represent the nodes or vertices of the graph, the vertices
in most applications hold the name of the attribute being
represented. E is the set of edges, where each edge represents
a relation between two vertices, an edge is defined by E =
{(u, v) | u, v ∈ V}, which may hold additional information
as weight, confidence or distance between nodes, therefore
having E = {(u, v,w) | u, v ∈ V and w ∈ Real}. The edges
may have directions, where (u, v) /= (v,u), in which case the
graph is called directed graph, and when a direction is not
important, the graph is called undirected graph.

2.1. Graph Properties. Among the intrinsic properties of a
graph there are: Nodes, the number of nodes in the network,
formally n = |V |. Edges, the number of edges in the graph,
formally e = |E|. Graph Path, is a sequence of vertices of the
form {v1, v2, v3, . . . , vk} where v1 is the starting node and vk
is the destination node, and (vi, vi+1) ∈ E; the length of the
path is defined by l =∑k−1

i=1 wi where wi ∈ (vi, vi+1,wi), when
all weights are equal to 1 then the length of the path is k−1. A
shortest path from vertex v to u is one of the paths that have
the least accumulated weight from u to v, note that there can
be multiple shortest paths from one node to another.

2.2. Nodes Properties. The most basic node property is the
degree (v) that denotes the number of connections a node
v has; in directed graphs there can be a distinction between
incoming and outgoing connections, called in-degree and
out-degree, respectively. Another property of the nodes is the
Clustering Coefficient, this property measures which nodes in
the network tend to cluster together and shows how close
a node and its immediate neighbors are to become a full
connected graph. Clustering coefficient is formally defined
by (1) where ec(v) is the number of edges in the subgraph
made only of node v and its neighbors, and nc(v) is the
number of nodes of that graph:

cc(v) = 2ec(v)
nc(v)(nc(v)− 1)

. (1)

Many other graph and node properties have been
defined, a good reference for these properties can be found
at [32].

3. Materials and Methods

3.1. Materials. Current public PIN databases provide rich
information and they mostly differ on the way they acquire
or validate their data. For example, HPRD, BIND, MINT,
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and MIPS are manually curated. On the other hand, DIP and
IntAct are based on literature mining and they achieve these
using computational methods that retrieve the interaction
knowledge automatically from published papers. Prieto and
De Las Rivas have shown a limited intersection and overlap
between the six major databases (BioGRID, BIND, MINT,
HPRD, IntAct, DIP) [33]. The information contained in
these databases is partly complementary and the knowledge
of the protein interactions can be increased and improved by
combining multiple databases.

To build more complete protein-protein interaction net-
works, we integrated PIN data warehouse included HPRD,
DIP, BIND, IntAct, MIPS, MINT, and BioGrid databases
(see Appendix C for details on these databases) which has
successfully gathered 54,283 available and nonredundant
human PIN pairs among 10,710 human related proteins into
BioIR database [34]. This integration is a result of the avail-
ability of public protein interaction databases. Prostate can-
cer is a worldwide leading cancer and it is characterized by its
aggressive metastasis. It is considered by the American Can-
cer Society as the second leading cause of cancer death among
men, thus making this disease an important issue to study.
However, up to date there are no reliable biomarkers can reli-
ably associated with them. Understanding the differences in
the biology of metastatic prostate cancer and non-metastatic
primary tumors is essential for developing new prognostic
markers and therapeutic targets. We used microarray data
taken from [35] that consists of 62 primary tumors, 9 lymph
nodes metastasis and 41 normal control samples. We applied
those data into two groups, one is prostate primary tumor
and normal samples and the other is prostate primary tumor
with and without lymph nodes metastasis, respectively. We
assign the weights to the protein networks for the edge flux
step of our method and to boost the score in the final
stage of the scoring phase. According to the genes from
the microarray data, we extracted 8,123 genes and 43,468
protein-protein interactions to identify the prostate-related
genes and subnetworks. These extracted genes are used as
our training set for the prioritization process. The initial seed
genes known to be related to the prostate cancer are extracted
from public OMIM [36] database which stores gene-disease
associations provided by summaries of publications and the
list of the 15 seed genes are shown in Table 1, these genes
are selected from [37] so that we can use a common ground
for comparison. We took the KEGG pathway database [38]
and PGDB database [39] that are manually curated database
for prostate cancer and obtained 137 genes (Target Genes) as
the truly disease-related genes for prostate cancer to compare
the performance with the previous methods: CIPHER,
Endeavour, HITS with priors, PageRank with priors, K-step
Markov, and plain Random Walk with Restarts.

3.2. Methods. GP-MIDAS-VXEF is a hybrid local and global
network based method for disease gene prioritization. The
backbone of the method is based on the PIN, hence it relies
on network analysis tools. The network analysis tools used
along the method rest on the following well-documented
assumptions:

(i) genes that have strong relationship between each
other in the network tend to be closer together [22,
40, 41];

(ii) important genes in the network show high degree and
low clustering coefficient, since these genes are sig-
nificant they are called in published literature “broker
genes” [31].

Although it is network based, it integrates expression data to
find relevant interactions using a random walk with restarts
(RWR) strategy, thus its global nature, after all, the RWR
processes the network in its full extent (EF stage). Subsequen-
tly it does a shortest paths analysis along the networks that
were generated by the EF stage. In each of those analysis
it uses an extension of the basic scoring by incorporating
a score boosting by means of considering the clustering
coefficient of each of the genes in the network, covering the
local nature. The previous two steps combined are called GP-
MIDAS-XEF, GP-MIDAS for the basic shortest paths ana-
lysis, X for the extension using topological features, and
EF for the incorporation of edge flux networks. Once the
prioritization is done over all the EF networks, a set of scores
is available for the voting phase, where the scores are inte-
grated to produce a single-score base (voting stage). Finally,
each gene score is boosted again using the average differen-
tial expression of each gene. Figure 2 presents the general
overview of GP-MIDAS-VXEF and how the input data is
used on each of the stages. Following this introduction to the
method, each of the stages are going to be presented.

3.2.1. Edge Flux Filter. This is the first formal stage of the
prioritization process, where the input PIN is analyzed using
RWR with the purpose of finding relevant interactions to the
specific domain under study. This model is applied using γ =
0.3 as probability of restart, as suggested by [22]. One dis-
advantage about the network based DGP is the use of noisy
source data, therefore some steps are needed to filter out the
source PINs in such a way that more relevant interactions
are used in the core of the method. This is an open issue
of research, nevertheless good results have been achieved
like those of Komurov et al. that proposed a method called
NetWalk [42]. This method is based on the execution of ran-
dom walks on the network to obtain disease relevant inter-
action in the network. The steps that are executed during this
stage are described in Algorithm 1.

Using the available microarray data the first step is
to calculate the pearson correlation Coefficient (PCC) to
determine the coexpressed relationship of the interactions in
the PIN [43]. Two sets of PCC are calculated one for control
sample (PCCN ) and one for the case sample (PCCD). These
Pearson correlation coefficients will be used as weights of the
PIN that is input to the computation of the stochastic matrix

Stochastic Matrixi j

=

⎧
⎪⎪⎨

⎪⎪⎩

0, if there is no edge
(
i, j
)
,

Weight
(
i, j
)

∑
kadji Weight(i, k)

, otherwise,

(2)
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Figure 2: GP-MIDAS-VXEF workflow.

Input: Differential Expression PPI DE PIN, Pearson Correlation Coefficiente Networks (Control and
Case) D PCC PIN and N PCC PIN, Seed Set as Training set of the RWR ρSeedSet, Boundaries
and Step of Filtering ThresholdStart, ThresholdEnd, ThresholdStep

output: Set of filtered networks DE FilteredPPI

(1) Create Stochastic Matrix StochasticMatrix from Case Samples Pearson Correlation Coefficient PCCD

PIN according to (2)
(2) Create Reference Stochastic Matrix StochasticMatrixRef from Control Samples Pearson Correlation Coefficient

PCCN PIN according to (2)
(3) Run RWR with γ = 0.3 using StochasticMatrix save the results in RWR Scores

(4) Run RWR with γ = 0.3 using StochasticMatrixRef save the results in RWR RefScores

(5) Compute raw edge flux value for case sample efi j according to (3)
(6) Compute raw edge flux value for control (reference) sample: efrefi j according to (3)
(7) Compute Normalized Edge Flux according to (4)
(8) for i←ThresholdStart to ThresholdEnd step ThresholdStep do
(9) Create Edge List EdgeList using threshold +i (i → +∞)
(10) Change Weights in EdgeList to weights in DE PIN using only the edges in EdgeList store results in

DE FilteredPPl(+i)

(11) Create Edge List using EdgeList threshold −i (−∞ → −i)
(12) Change Weights in EdgeList to weights in DE PIN using only the edges in EdgeList store results in

DE FilteredPPl(−i)

(13) Create Edge List EdgeList using threshold Ci (−∞ → i∪ i → ∞)
(14) Change Weights in EdgeList to weights in DE PIN using only the edges in EdgeList store results in

DE FilteredPPI(Ci)

(15) return Set of Filtered PPI Networks DE FilteredPPl

Algorithm 1: Overview of NetWalk Phase.

e f i j = RWRScoresi ∗ StochasticMatrixi j , (3)

EFi j = log2

(
e fi j

ref e fi j

)

. (4)

The main difference between Algorithm 1 and the one
presented by [42] is that this method normalizes using
weights from control expression data, and Komurov et al. use
an unweighted network. The purpose of this normalization
serves two purposes to unbias the results from structural bias

that is natural in the RWR method and to unbias interactions
that are similar between control and case samples. Notice
that the resulting networks will no longer possess the EF
values as weights but the weights of differential expression
weights (diff expr(u, v)) that are explained next, this sets the
networks ready for shortest path analysis. Once this stage is
over, the result is a set of networks that will be processed by
the next phase.

To assign the expression weights to the EF-filtered PINA,
the microarray data must be transformed in such a way



6 The Scientific World Journal

Table 1: Seed genes of prostate cancer from omim database.

Gene ID Gene symbol Gene name

367 AR Androgen receptor

675 BRCA2 Breast cancer type 2 susceptibility protein

3732 CD82 CD82 antigen

11200 CHEK2 Serine/threonine-protein kinase Chk2

60528 ELAC2 Zinc phosphodiesterase ELAC protein 2

2048 EPHB2 Ephrin type-B receptor 2 precursor

3092 HIP1 Huntingtin-interacting protein 1

1316 KLF6 Kruppel-like factor 6

8379 MAD1L1 Mitotic spindle assembly checkpoint protein MAD

4481 MSR1 Macrophage scavenger receptor types I and II

4601 MXI1 MAX-interacting protein 1

7834 PCAP Predisposing for prostate cancer

5728 PTEN/PTENP1 Phosphatidylinositol-3,4,5-trisphosphate 3-phosphatase, and dual-specificity protein phosphatase PTEN

6041 RNASEL 2–5A-dependent ribonuclease

5513 HPC1 Hereditary prostate cancer 1

Table 2: Target genes found across methods.

Method Target genes

CIPHER
ATM, BRCA1, CAV1, CCND1, CDKN1A, CDKN1B, EGFR, EGR1, ESR1, ESR2, HIF1A,
HRAS, MME, MSH2, MYC, NCOA3, NCOA4, PGR, RB1, RNF14, SMARCA4, TP53

ENDEAVOUR

ACPP, ANXA7, APC, ARMET, ATM, BCL2, BMP6, BRCA1, BTRC, CAV1, CCND1, CD44,
CDH1, CDH13, CDKN1A, CDKN1B, CDKN2A, CTCF, CTNNA1, CTNNB1, CYP1B1,
DAPK1, EDNRB, EGFR, EGR1, ERBB2, ERCC5, ESR1, ESR2, FAF1, FHIT, GGT1, GSTP1,
HIF1A, HOXA13, HRAS, IGFBP3, IL12A, IL8, KLK10, KLK2, KLK3, MAP2K4, MME,
MSH2, MYC, NAT1, NCOA3, NCOA4, NEFL, PGK1, PGR, PLAU, POLB, PTPN13, RARB,
RASSF1, RB1, RNF14, SLC2A2, SMARCA4, SOX2, STMN1, TCEB1, TMEPAI, TNF, TP53,
TYR, VDR

ToppNet (K-Step Markov, HITS with
Priors, PageRank with Priors

ACPP, ANXA7, APC, ATM, BCL2, BMP6, BRCA1, BTRC, CAV1, CCND1, CD44, CDH1,
CDH13, CDKN1A, CDKN1B, CDKN2A, CTCF, CTNNA1, CTNNB1, CYP1B1, DAPK1,
EDNRB, EGFR, EGR1, ERBB2, ERCC5, ESR1, ESR2, FAF1, FHIT, GGT1, GSTP1, HIF1A,
HOXA13, HRAS, IGFBP3, IL12A, IL8, KLK10, KLK2, KLK3, MAP2K4, MC1R, MME,
MSH2, MYC, NAT1, NCOA3, NCOA4, NEFL, NME1, PGK1, PGR, PLAU, POLB, PTPN13,
RARB, RASSF1, RB1, RNF14, SLC2A2, SMARCA4, SOX2, STMN1, TCEB1, TNF, TP53,
TYR, VDR

GP-MIDAS-VXEF

ACPP, ANXA7, APC, ARMET, ATM, BCL2, BMP6, BRCA1, BTRC, CAV1, CCND1, CD44,
CDH1, CDH13, CDKN1A, CDKN1B, CDKN2A, CTCF, CTNNA1, CTNNB1, CYP1B1,
DAPK1, EDNRB, EGFR, EGR1, EIF3S3, ERBB2, ERCC5, ESR1, ESR2, FAF1, FHIT, GGT1,
GSTP1, HIF1A, HOXA13, HRAS, IGFBP3, IL12A, IL8, KLK10, KLK2, KLK3, MAP2K4,
MC1R, MME, MSH2, MYC, NAT1, NCOA3, NCOA4, NEFL, NME1, PGK1, PGR, PLAU,
POLB, PTPN13, RARB, RASSF1, RB1, RNF14, SLC2A2, SMARCA4, SOX2, STMN1,
TCEB1, TMEPAI, TNF, TP53, TYR, VDR, VEGF

that can be used to represent weights in the PIN, and that
large weights indicate less interaction than small weights.
This transformation has two steps, initially the values are
updated using a sample of control expression microarray
data, the effect of this operation is that values that are very
similar between normal and cancer samples should have less
impact on our analysis. To accomplish this we subtract the
value from the cancer microarray data to the value of the
control expression data as shown in (5), where there are N
samples of control tissue and M samples of case tissue. The
next step is to transform the values, the rationale behind this

transformation is that expression values may be negative for
underexpressed genes, and if these values are used as they are,
our network may have negative weights, thus making short-
est paths analysis more difficult. Equation (6) shows how the
expression values are transformed:

Expression Valuei

=
∣
∣
∣
∣
∣
∣

∑N
n=1

(
control exprn,i

)

N
−
∑M

m=1

(
case exprm,i

)

M

∣
∣
∣
∣
∣
∣
.

(5)
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Transformed Expression Valuei

= − ln

(∣
∣Expression Valuei

∣
∣−min

max−min

)

.
(6)

Considering that the sign of the value in the microarray data
represents over- or under-expression, and the fact that we
want to make a representation of distance, for this is what we
want in our quantitative analysis, we use the absolute value of
the microarray data, then these results are normalized, using
the max and min values found, by doing these two steps we
get values in the range [0, 1], where values closer to 1 mean
that they are more expressed (either over expressed or under
expressed). Finally we compute the negative of the natural
logarithm on the previous results, this is to make smaller
numbers (less expression level) become large distances,
and bigger numbers (higher expression level) become short
distances. The result of this step is a transformation of the
gene expression, where more expressed genes have smaller
value, and less expressed genes have higher values, in the next
step we convert this values into distances between genes, thus
more expressed genes relationships will become shorter dis-
tances than less expressed genes relationships. In the case the
|Expression Valuei| = min we just set the whole result to be a
big value, since in(0) is not defined. The result of this process
is diff expr(u, v), that represents the differential expres-
sion as a distance between nodes u and v in the PIN. Once
the microarray expression data is transformed, it is ready
to be integrated as weights into the PIN. Since we need the
network to become a weighted one, where these weights are
related to the specific interactions in disease-related network,
we use the transformed values of the microarray data. How-
ever the microarray data provides transformed expression
values for the genes, not for the relationship between genes.
To overcome this issue, we combine the values of the two
interacting genes together. For instance if we have micro-
array values {(SEPW1, 4.097), (BRCA1, 1.395), (AKT1,
2.006), (BACH1, 2.823), (AHNAK, 3.597)} and we have the
following edges in our graph {(AKT1, AHNAK), (BACH1,
BRCA1), (BRCA1, AKT1)}, then the first edge weight would
be the addition of the transformed expression values of each
of the vertices 2.006 + 3.597 = 5.603 providing the weight
of the first edge. The resulting weighted edges of this in-
stance would be {(AKT1, AHNAK, 5.603), (BACH1, BRCA1,
4.218), (BRCA1, AKT1, 3.401)}, this process results in all
the relations in diff expr(u, v) where (u, v) ∈ Interactions of
PIN .

3.2.2. Shortest Paths and Structural Prioritization: GP-
MIDAS-XEF. At this phase each of the networks created by
the NetWalk stage is going to be used as input of the GP-
MIDAS-XEF. GP-MIDAS will do its prioritization based on
the shortest paths, and then by boosting each gene score
using the clustering coefficient of the gene in the specific
network.

Scoring of Genes with Shortest Paths. For this analysis all the
shortest paths are computed, that is, for each pair of genes
in the network the shortest paths are computed. As each of

Table 3: Top 50 Genes.

Rank
Using prostate and normal

tissue
Using prostate and metastatis

tissue

1 CAV1 CAV1

2 TP53 MAGEA11

3 MAGEA11 CALM1

4 CALM1 CALR

5 EGFR TP53

6 UBE2I FHL2

7 CALR EGFR

8 SMAD3 APP

9 FHL2 JUN

10 HDAC1 SMAD3

11 APP SMAD2

12 MYC ESR1

13 JUN RB1

14 ESR1 HIPK3

15 GNB2L1 BRCA1

16 HIPK3 SMAD1

17 SMAD2 GNB2L1

18 APPBP2 XRCC6

19 CDC2 UBE2I

20 BRCA1 HDAC1

21 RB1 CDC2

22 SMAD1 AES

23 PXN STAT3

24 XRCC6 IL6ST

25 IL6ST APPBP2

26 STAT3 PCAF

27 DLG1 REPS2

28 AES FLNA

29 TRAF6 RAF1

30 FLNA MYC

31 TRIM29 MAPK1

32 PCAF TRAF6

33 REPS2 CCND1

34 AKT1 SMARCA4

35 PRKCA HLA-B

36 RAF1 TRAF2

37 HLA-B RANBP9

38 TRAF2 PIAS4

39 SMARCA4 GSK3B

40 MAPK1 TRIM29

41 CHGB FOS

42 RANBP9 IDE

43 CCND1 SRC

44 GSK3B PXN

45 HSPA1A SLC25A4

46 BCL2 SP1
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Table 3: Continued.

Rank
Using prostate and normal

tissue
Using prostate and metastatis

tissue

47 VCL NR5A1

48 RAI17 YWHAG

49 TGFBR1 AKT1

50 SELENBP1 CCNE1

them is computed, the path is verified to check if any of the
seed genes is on the resulting path, if so, these paths are added
to the list of paths PathList to be considered in the scoring.
Finally a score is computed for each gene.

Compute the Score Function. Having all the paths stored in
PathList we can compute the denominator denom using (7):

denom =
n∑

i=1

1
li

, (7)

where li is the total length of the ith shortest path. Once the
denominator is ready, we proceed to compute the score. For
each gene g on the network we compute the score according
to (8):

Score(Genei) =
PathList∑

Genei ∈ Path j

1/l j
denom

. (8)

The motivation behind (8) is that a gene that appears in
more shortest paths or more times in the paths list is going to
achieve higher score, the highest being 1 if the gene appears
in all the found paths.

Extending the Score of Genes. Cai et al. have demonstrated
that disease genes in the network show particularly high
degree and low clustering coefficient, defined in (1), they
called this special genes broker genes [31]. Based on this idea,
each of the previously computed scores are updated using
(9). The boosting is computed from locally computed clus-
tering coefficient of the node, and it affects that node alone:

Score(Genei)

= Score(Genei)∗
(

2− Clustering Coefficient(Genei)

)
.

(9)

By doing this boosting, genes with low clustering coefficient
will have higher boosting, and high clustering coefficient will
have lower boosting. The consequence is that disease-related
genes are expected to have increased scores, a result that was
achieved as will be demonstrated in the results section.

3.2.3. Voting Phase. Since we are getting a set of thresholds
T in the edge flux filtering phase to produce |T| different co-
expressed networks. Those networks are built using the edges
that have the values that result from the steps 8 to 14 in
Algorithm 1, in other words the values on the ends of the two

tails of the edge flux distribution. Second, we compute a score
on each gene g of those networks and have a matrix of ranked
genes where each row represents the position of the gene,
as expressed in (10), where Si is the score achieved by GP-
MIDAS-XEF with threshold i. For all the tested ranked lists,
we used rank aggregation to re-rank the genes. Borda count
has been extensively studied which is originally a voting
method based on positional-scoring rankings [44, 45]. We
generate a weight vector w as follows: The top 1 ranked re-
ceive weight 1, top 2 ranked receive weight 1/2, by the same
way to the weight 1/k for each last ranked (where k denotes
the number of the genes in the network). This ranking is de-
noted in (11). Finally ScoreMatrix is summarized to provide
a single score, this is done using (12) where posi(g) denotes
the position of gene g in the ith network:

Score Matrix = EF− Phase Results Matrix

= 〈S1, S2, . . . , S|T|
〉

,
(10)

Score Matrixi, j = 1
j

, (11)

Voting Score
(

Geneg
)
=
|T|∑

i=1

(
Score Matrixi,posi(g)

)
. (12)

The rationale behind this equation is that a gene that
appears more times in a higher position would get higher
weight those genes that appear in lower positions. Finally, the
final score of the genes is sum up the weights of the position
of the genes from different coexpressed networks. The newly
rank denotes the largest score wins higher positions from
different network topology.

3.2.4. Biological Boosting. Before the voting phase we focus
more on the gene prioritization based on the edge score in
the network, however each gene in the candidate set will
have a corresponding average differential expression (ADE)
as defined by (5), where the average of the control expres-
sion and case expression samples are calculated and then
substracted from each other. The rationale behind this
computation is that larger values will indicate larger differ-
ence between disease tissue and normal tissue, and on the
contrary values closer to zero will represent genes that their
expression level does not change much between control and
case samples. These values will serve in the last stage of the
prioritization where the biological score boosting takes place,
thus more boosting for higher differential expression and less
boosting for lower differential expression.

Once the ADE is ready, the final stage of the prioritization
takes in the single-score list from the Voting phase, this
scores are boosted one last time using a normalized absolute
differential expression (ADE) as was computed previously.
The ADE values are normalized to ensure that the range of
values are [0, 1], numbers closer to 1 will represent numbers
with higher difference between control and case samples, as
opposed to values closer to zero. Equation (13) shows how
the boosting is done. Notice that ADE in the boosting process
uses only the gene specific expression data as a value to
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Table 4: Top 50 genes overlap.

Set Total genes Genes in set

Overlapped genes 41

HDAC1 IL6ST SMAD1 RB1 TRAF2 RAF1 BRCA1 APP CDC2 EGFR AKT1 FLNA AES
SMAD2 REPS2 GSK3B SMARCA4 GNB2L1 STAT3 UBE2I TRAF6 MAPK1 MYC
CAV1 JUN CCND1 RANBP9 HLA-B PCAF FHL2 TP53 TRIM29 CALR APPBP2
SMAD3 CALM1 MAGEA11 HIPK3 ESR1 PXN XRCC6

Genes in metastasis analysis 9 PIAS4 FOS YWHAG SLC25A4 SP1 SRC IDE CCNE1 NR5A1

Genes in nonmetastasis analysis 9 DLG1 VCL TGFBR1 CHGB SELENBP1 BCL2 PRKCA RAI17 HSPA1A

Table 5: Available biological networks sites.

Name Acronym URL

Human Protein Reference Database HPRD http://www.hprd.org/

Biomolecular Interaction Network Database BIND http://bond.unleashedinformatics.com/

Biological General Repository for Interaction Datasets BioGRID http://thebiogrid.org/

Database of Interacting Proteins DIP http://dip.doe-mbi.ucla.edu/

IntAct Molecular Interaction Database IntAct http://www.ebi.ac.uk/intact/

The MIPS Mammalian Protein-Protein Interaction Database MIPS http://mips.helmholtz-muenchen.de/proj/ppi/

Molecular Interaction Database MINT http://mint.bio.uniroma2.it/mint/

Kyoto Encyclopedia of Genes and Genomes KEGG http://www.genome.jp/kegg/

National Center for Biotechnology Information NCBI http://www.ncbi.nlm.nih.gov/
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Figure 3: ROC curves comparing the performance of GP-MIDAS-
VXEF with existent state-of-the-art network-based prioritization
methods.

express how much important a node is in this analysis, unlike
the diff expr(u, v) that represented weights in the network:

Final Score(Genei)

= Voting Score(Genei)∗ (1 + Normalized ADEi).
(13)

4. Results and Discussion

4.1. Performance. The method was tested using Prostate
Cancer as the domain for the experiments, as it is explained
in the Materials section previously. The method is compared
to HITS with Priors, K-step Markov and PageRank with
Priors all from the ToppNet suite [18]; other methods in the
benchmark are ENDEAVOR [17], CIPHER [25] and plain
Random Walk with Restarts [46] using Pearson Correlation
Coefficient for weights of the network. These methods were
selected because they belong to the Network Based DGP
methods class, and they do not integrate data and text mining
capabilities in their prioritization. Seed Genes (Training Set)
is not considered in the benchmark in any of the methods,
therefore our method does include them in our benchmark.
It is worth to mention that all 13 seed genes are recovered in
the top 20 rank of the method. Another reason for the selec-
tion of these methods is their public availability, Vavien [28]
is not considered because it can only handle 50 candidate
genes, and the methods in the benchmark handle any
amount of candidate genes.

Figure 3 shows a precision-recall diagram were it is evid-
ent that our method has the best results among the rest of
the methods in the benchmark. In Figure 4 absolute count
of found genes per rank is presented. Additionally there is
a number “Average Position” that represent the average po-
sition of the known cancer-related genes in the rank on the
top of each bar. The figure clearly shows that GP-MIDAS-
VXEF outperforms the other methods in the benchmark, and
to resolve ties average position in the rank is also shown. For
instance in the Top 40 ranks there is a tie between K-Step
Markov and GP-MIDAS-VXEF, where both methods find 9
known cancer related gens. However GP-MIDAS-VXEF has

http://www.hprd.org/
http://bond.unleashedinformatics.com/
http://thebiogrid.org/
http://dip.doe-mbi.ucla.edu/
http://www.ebi.ac.uk/intact/
http://mips.helmholtz-muenchen.de/proj/ppi/
http://mint.bio.uniroma2.it/mint/
http://www.genome.jp/kegg/
http://www.ncbi.nlm.nih.gov/
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Table 6: Data and Text Mining Gene Prioritization Methods.

Method Brief description Reported results

Gene seeker

Gathers gene expression and phenotypic data from
human and mouse from nine databases. Relies on the
assumption that disease genes are likely to be expressed
in tissues affected by that disease [6]

Offers a web-service to find disease-related genes to the
input genetic localisation and phenotypic/expression
terms

eVOC
Co-occurrence of disease name on PubMed Abstracts.
It selects the disease genes according to expression
profiles [5]

It was tested on 417 candidate genes, using 17 known
disease genes. It successfully retrieved 15 of the 17
known disease genes and shrunk the candidate set by
63.3%

DPG Basic Sequence Information [8].
They concluded that disease proteins tend to be long,
conserved, phylogenetically extended, and without
close paralogues.

Prospectr Basic Sequence Information [10].
It achieved an enrichment of list of disease genes
twofold 77% of the time, fivefold 37% of the time and
twentyfold 11% of the time

Suspects Extension of prospectr, incorporates GO [9, 15].
On average the target gene was on the top 31.23% of
the resulting ranking list.

MedSim GO enrichment and functional comparison [13].
It accomplished a performance of up to 0.90 in their
ROC curve.

Limitations

Generally imposed by the source data which carries little knowledge about the disease. For instance GO terms
include brief description of the corresponding biological function of the genes but only 60% of all human genes
have associated
GO terms, and they may be inconsistent due to differences in curators’ judgement [16]

Table 7: Network based gene prioritization methods.

Method Brief description

Endeavor Machine learning: using initial known disease genes; then multiple genomic data sources to rank [17]

HITS with priors
Page rank
K-Step markov

310 cm prioritization based on networks using social and web networks analysis [18]

CGI Combination of protein interaction network and gene expression using markov random field theory [19]

CANDID
Uses publications, protein domain descriptions, cross species conservation measures, gene expression profiles
and Protein Interaction Networks [20]

IDEA Uses the interactome and microarray data [21]

Limitations

Most of these approaches include additional interactions predicted from coexpression, pathway, functional or
literature data, but still fail to incorporate weights expressing the confidence on the evidence of the interactions.
Another issue is that previous methods start with the given PIN without filtering its edges, to keep more
relevant interactions to the disease

GP-MIDAS-VXEF

Our proposed method, integrates protein interaction network with normal and disease microarray data, using
this integration we apply all-pairs shortest paths to find the significant networks and calculate the score for the
genes. Additionally our method filters interactions, in such way the most relevant interactions are left for
analysis

an AP score of 13 which is less than the value of K-Step
Markov with 22.11.

Additionally a Venn diagram is presented in Figure 5
where it is shown that most of the genes are found
using ToppGene and GP-MIDAS-VXEF methods, where GP-
MIDAS-VXEF outperforms all by finding two target genes
that no other method finds. Furthermore, there are 22 over-
lapping genes showing that our method is consistent with
previously found results. Appendix A shows a list of target
genes found by major methods.

4.2. Results Comparing Prostate Cancer and Normal Samples.
We used the mean and variance to calculate the top 5% area
as lower limits of the 95th percentile confidence interval with
two tails in the distribution of the edge flux score which is
shown in Figure 6. We present the two networks induced by
top 50 genes from two kind of experiments which is shown in
Figures 7 and 8. In Figure 7, we discovered that overexpressed
gene androgen receptor (AR) being annotated in KEGG
database as oncogene in the prostate cancer pathways
also support the disease-related proteins in prostate cancer
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Figure 5: Venn diagram shows how the set of target genes is found
amongst the different methods tested.

growth [23, 47]. BRCA1 and BRCA2 proteins play important
role in DNA repair in both S and G2 checkpoint phase of the
cell cycle and the results denote prostate cancer are strongly
related to the tumor suppress genes (TP53, BRCA1, MYC,
and PTEN) which have effect on the regulation of the cell
cycle or promote apoptosis. Epidermal growth factor recep-
tor (EGFR) family is also expressed in prostate cancer cells
and their stimulation by EGF activates the mitogen-activated
protein kinase (MAPK) and phosphatidylinositol-3 kinase
(PI3K)/AKT pathways [48]. Those signal pathways stimulate
cell cycle progression or survival which associated with cyclin
D1 (CCND1) transcription and translation and the level of
the BCL2. We found gene CALM1 that are associated with
androgen receptor processes and interleukin 6 (IL 6) type of
cytokine signaling pathways and their interactions with p38
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Figure 6: Edge flux values distribution.

MAPK may be the important factors related to the prostate
cancer. Overexpression of MYC occurred frequently in most
human prostate tumor databases revealed modules of human
genes [49]. MXI1 protein associated with MYC which has
also been suggested to play a role in prostate cancer [50–
52]. Additionally we compare to previous results found in
[53] that is focused on the construction of the regulato-
ry network with emphasis in transcription factors. Transcrip-
tion factors STAT3, MYC, and JUN are overlapped in both
studies, providing some evidence to support the relationship
of this genes to the prostate cancer. However our list does not
overlap more since this study is not focussed in transcription
factors only as in [53].

4.3. Results Comparing Prostate Cancer and Lymph Node
Metastasis. In Figure 8, Raf-1 kinase inhibitor protein
(RKIP) was identified as the first physiologic inhibitor of
the Raf/mitogen-activated protein kinase kinase/extracellular
signal-regulated kinase (ERK) pathway [54]. Recently, RKIP
has been recognized as a strong candidate for a metastasis
suppressor gene in our experiments and we investigated
RKIP expression is altered in clinical human lymph node
metastases. Studies in cell cultures and animal models have
suggested RKIP were found to be reduced or absent in
metastatic variants of established cell lines derived from pro-
state cancer [54]. Androgen receptor coregulator, Filamin A
(FlnA) is corresponded to hormone-dependence in prostate
cancer and may be related to increased metastatic capacity
[55]. We sought to determine FlnA expression across prostate
cancer progression in human prostate cancer corresponded
with metastatic potential. Histone deacetylase-1 (HDAC1) is
association with SP1 was much weaker in lymph node meta-
static than in nonmetastatic prostate cancer [56]. Our experi-
mental data suggests induction of signalling activity via
EGFR in prostate tumor cells and may provide a rationale
for the use of EGFR inhibition in systemic prevention or
treatment of lymph node metastatic [57]. In particular
our experiments observed a properly designed inhibitor of
nuclear receptor subfamily 5 (NR5A1) may be predicted to
have therapeutic utility in the treatment of metastatic lymph
node through suppression of androgen receptor. Previous
studies have been studies that cyclin d1 (CCND1) is a
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mediator of prostate tumour cell proliferation and extend to
lymph node metastasis [58]. V-src sarcoma viral oncogene
homolog (SRC) has been specifically implicated in tumor
growth and progression and resulting in both tumor growth
and development of lymph node metastases [59]. This shows
that targeting SRC family kinases may inhibit growth and
lymph node metastases of prostate cancer. Not all biomarker
genes found in lymph node metastasis (See Appendix B for
details) can be explained at this moment. However our in-
vestigation shows that the molecular effects of lymph node
metastasis related to AKT/GSK-3/AR signaling network
along with the data presented above, that it may provide a
biomarker indicative of prostate cancer with lymph node me-
tastasis.

5. Conclusions

In this paper we present a method called GP-MIDAS-VXEF
in which is successfully integrates several current state of the
art acomplishments to achieve improved performance in the
identification of disease-related genes. Through experimen-
tation using Prostate Cancer as the domain, it has been
shown that for the first top 50 genes GP-MIDAS-VXEF out-
performs other methods, thus presenting an alternative in
the gene prioritization field, that is, in terms of finding rank-
ing known disease genes among the candidate gene set. The
reason for our results are attributed to: the filtering phase
where we obtain more relevant interactions, the combination
of global and local network prioritization, using all-pairs
shortest paths to find relevant routes for the seed genes, and
for the particular boosting techniques that add structural and
biological meaning to the results.

Appendices

A. List of Target Genes Found across Methods

Table 2 presents the list of target genes that were found in
major gene prioritization methods. Notice that EIF3S3 and
VEGF are found only in GP-MIDAS-VXEF.

B. Top 50 Genes from Prostate Cancer
and Lymph Node Metastasis Extracted by
Our Methods

Table 3 presents the list of biomarkers found using our meth-
ods. Additionally Table 4 shows the genes that are overlapped
between the metastasis and nonmetastasis prioritization re-
sults, this is also shown graphically in Figure 9.

C. Public Domain Protein
Interaction Databases

Table 5 presents a list of publicly available biological net-
works databases.

D. Disease Gene Prioritization Methods

Tables 6 and 7 show a summary on different disease gene pri-
oritization methods.
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