
https://doi.org/10.1177/1758834017693195 
https://doi.org/10.1177/1758834017693195

Therapeutic Advances in Medical Oncology

journals.sagepub.com/home/tam 335

Ther Adv Med Oncol

2017, Vol. 9(5) 335 –346

DOI: 10.1177/ 
1758834017693195

© The Author(s), 2017.  
Reprints and permissions:  
http://www.sagepub.co.uk/
journalsPermissions.nav

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 3.0 License  
(http://www.creativecommons.org/licenses/by-nc/3.0/) which permits non-commercial use, reproduction and distribution of the work without further permission 
provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).

Introduction
The estrogen receptor (ER) pathway is directly or 
indirectly activated by estrogen leading to prolif-
eration, differentiation, invasion and cell survival. 
This pathway is considered an addictive onco-
genic pathway in breast cancer cells. In frontline 
therapy, response rates to anti-estrogenic agents 
range from 20 to 40%, with a median duration of 
response of 14 months. In second-line treatment, 
resistance to anti-estrogenic agents is relatively 
high as the response rates are less than 10%, with 
a median progression-free survival of around 4 
months.

There is no clear definition of the resistance to 
hormone therapy (HT). ESO–ESMO guidelines 

define primary endocrine resistance as: relapse 
while on the first 2 years of adjuvant endocrine 
therapy (ET) or progression of disease (PD) 
within the first 6 months of first-line ET for meta-
static breast cancer. Secondary (acquired) resist-
ance is defined as relapse while on adjuvant ET 
but after the first 2 years, or relapse within 12 
months of completing adjuvant ET, or PD 6 
months after initiating ET for metastatic breast 
cancer (MBC).1

The expression of ER is not sufficient to identify 
patients who will respond to anti-estrogenic ther-
apy. Several adaptive mechanisms of escape to 
anti-estrogenic therapy have been identified: an 
increase in concentration of estrogen in the tumor 
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environment, post-translational modifications, 
ligand-independent activation of the receptor via 
ESR1 gene mutation, amplification of the feed-
back loops mediated by transmembrane growth 
factor receptors [human epidermal growth factor 
receptor (HER), fibroblast growth factor receptor 
(FGF-R), insulin growth factor receptor (IGF-
R)], by the RAS/rapidly accelerated fibrosarcoma 
(RAF)/mitogen-activated protein kinase 
(MAPKinase) pathway and the phosphatidylino-
sitol 3-kinase (PI3K)/Akt/mammalian target of 
rapamycin (mTOR) pathway.2 Downstream, 
hormone therapy resistance could be character-
ized by deregulation of the cell cycle involving the 
cyclin D/CDK4/6/Rb pathway.3 Several combi-
nation strategies with HT have failed in advanced 
breast cancer such as that combining EGFR 
inhibitors (gefitinib) and IGFR 1 inhibitors (gani-
tumumab).4,5 Other combinations with a SRC 
(rous sarcoma protein) inhibitor (dasatinib), an 
antiapoptotic inhibitor (bortezomib) or with his-
tone deacetylase inhibitors (HDAC inhibitors) 
have shown discordant or interesting responses 
and need more investigations (Table 1).6–8

We hypothesize that addition is more efficient 
than a substitution strategy for the treatment of 
endocrine-resistant MBC, as shown in the 
HER2+ MBC context.9 We will review rand-
omized phase II and III clinical trials exploiting 
this strategy.

The proof of concept of adaptive 
mechanisms with PI3K/Akt/mTOR inhibitors
The PI3K/Akt/mTOR pathway plays a key role in 
cell signaling, regulating proliferation, survival 
and differentiation.10 The PI3K proteins are 
kinases divided into three classes (I-III) according 
to their structure and substrate specificity.

Aberrant activation of the PI3K/Akt/mTOR 
pathway plays a major role in the mechanisms of 
resistance to HT. It is a prime target for the treat-
ment of ER-positive breast cancers, the aim being 
to prevent and revert resistance to HT.11–13 The 
IGF/IGF-1-IRS pathway (insulin receptor sub-
strate 1) induces activation of PI3K and activates 
mTORC1 with an indirect correlation between 
PI3K and the mTOR1 effector. Inactivation of 
PI3K induces inhibition of S6K1 and 4E-BP, 
and PI3K activation is negatively regulated by 
the tumor suppressor gene PTEN (phosphatase 
and tensin counterpart deleted one chromosome 
ten). The main effector of PI3K is AKT.14,15 
This serine/threonine kinase belongs to the fam-
ily of AGC kinases and exists in three isoforms, 
Akt-1, 2, 3, encoded by three different genes. 
Activated AKT induces the activation of the 
mTOR pathway promoting cell proliferation and 
inducing inhibition of proapoptotic proteins. 
MTOR was identified in the yeast Saccharomyces 
cerevisiae as a therapeutic target of the macrolide 
antibiotic, rapamycin.16 It plays a key role in the 

Table 1. Trials with endocrine therapy resistance (without PI3K/Akt/mTOR or CDK4/6/Rb pathways inhibition).

Reference Target/pathway Results PFS

Paul et al., 2013 Dasatinib Phase IIR First line Let: 9.9 months

(Inhibitor of SRC) n = 120 Let + dasa: 20.1 months

Yardley et al., 2013 Entinostat Phase IIR Second line Exe 2.3 months

(Inhibitor of HDAC) n = 130 Exe + enti: 4.3 months

Trifonidiseur et al., 2016 Gefinitib Phase IIR First line Ana + gef: 35% (at 1 year)

Anti HER1 n = 71 Ana: 32% (at 1 year)

Robertson et al., 2013 Ganitumab Phase IIR Ful ou exe + gan: 3.9 months

Anti IGF1 n = 156 Ful ou exe: 5.7 months

Kaufmann et al., 2009 HER 2 Phase III, First line Ana + trast: 4.8 months 
versus

Trastuzumab n = 207 Ana 2.4 months

Jonhston et al., 2009 HER2 Phase III, First line Lapa + let: 8.3 months

Lapatinib n = 1286 Let: 3 months

Dasa, dasatinib; let, letrozole; exe, exemestane; enti, entinostat; gan, ganitumab; gef, gefitinib; ana, anastrozole; ful, 
fulvestrant; trast, trastuzumab; lapa, lapatinib; SRC, sarcoma; HDAC, histone deacetylase inhibitors; PFS, progression-free 
survival.
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regulation of critical cell processes such as 
growth, proliferation, cytoskeleton organization, 
transcription, protein synthesis, ribosome bio-
genesis and autophagy17,18 (Figure 1).

Hyperactivation of the PI3K/Akt/mTOR pathway 
will induce tumor adaptation to anti-estrogenic 
therapy and can be defined by a mutation of PI3K 
(catalytic domain, or helical), AKT mutation, 
loss of PTEN function (deletion or loss of expres-
sion, epigenetics) or by the regulatory function of 
proteins TSC1/TSC2 (tuberous sclerosis com-
plex) (deletion–mutation) (Figure 2).

Randomized clinical trials with mTOR 
inhibitors
Several clinical studies have been conducted in 
patients with ER + (endocrine receptor) HER2- 
MBC by combining anti-estrogenic [selective 
estrogen receptor modulators (SERM), selective 
estrogen down regulators (SERD)], antiaromatase 

inhibitors (AI) with agents targeting PI3K/Akt/
mTOR such as PI3K inhibitors (panspecific or 
specific to the subunit 110 α or δ), AKT inhibi-
tors, mTOR inhibitors or inhibitors of both 
mTOR and PI3K (dual inhibitor).

The Horizon study, a randomized phase III study, 
compared the combination letrozole 2.5 mg daily/
temsirolimus 30 mg daily (5 days every 2 weeks) to 
letrozole/placebo as first-line therapy in 1112 
AI-naïve patients with ER+ MBC. This study 
didn’t show any difference in terms of PFS between 
the two arms: median PFS 9 months; [hazard ratio 
0.90; 95% confidence interval (CI), 0.76 to 1.07; p 
= 0.25].19

TAMRAD was the first open-label, phase II study 
randomizing postmenopausal women with ER+/
HER2–, AI-resistant MBC to tamoxifen 20 mg/day 
combined with everolimus 10 mg/day (n = 54) or 
tamoxifen 20 mg/day alone (n = 57). Randomization 
was stratified, based on primary and secondary 

Autophagy
Direct inhibition
Indirect inhibition
phophorylation

Figure 1. PI3K/Akt/mTOR signaling pathway.18
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hormone resistance. Everolimus improved the 
clinical benefit rate (CBR) (the primary endpoint), 
and time to progression (TTP).20 In retrospective 
biomarker analyses, a correlation was observed 
between late effectors of mTORC1 activation and 
Akt-independent mTORC1 activation, and an 
inverse correlation was observed between the 
canonical PI3K/Akt/mTOR pathway and everoli-
mus efficacy. These exploratory analyses need to be 
validated in a larger prospective study.21

The BOLERO-2 study was the first phase III 
study demonstrating a benefit in terms of PFS with 
inhibition of one of the activated adaptive path-
ways mediating resistance to HT. This rand-
omized, double-blind phase III trial evaluated 
everolimus (10 mg/day) with exemestane (25  
mg/day) versus placebo with exemestane 25 mg/
day in 764 postmenopausal women with ER+ 
advanced breast cancer with prior exposure to 
nonsteroidal AI. The median number of previous 
treatments was 3. 84% of the patients had previous 
sensitivity to endocrine therapy. With a median 
follow up of 18 months, the experimental arm  
significantly reduced the risk of relapse with an 
hazard ratio of 0.45 (95% CI 0.38–0.54, p < 

0.0001) and a PFS of 7.8 months versus 3.2 months 
in the placebo arm.22 The benefit was consistent 
regardless of the presence of visceral metastases 
and hormone sensitivity.23 Despite clinically and 
statistically significant extension of PFS, this com-
bination did not confer any overall survival bene-
fit.24 Preserving quality of life is an essential 
component of palliative care in the advanced can-
cer setting; quality of life provides essential infor-
mation on disease burden and guides treatment 
decisions. The most common grade 3 or 4 adverse 
events (AEs) were stomatitis (8% in the everoli-
mus arm versus 1% in the exemestane plus placebo 
group), anemia (6% versus <1%), dyspnea (4% 
versus 1%), hyperglycemia (4% versus <1%), 
fatigue (4% versus 1%), and pneumonitis (3% ver-
sus 0%). A post hoc analysis confirmed the clinical 
benefit with no adverse impact on health-related 
quality of life.25

What may explain the differences between 
Horizon, TAMRAD and BOLERO-2?
Unlike BOLERO 2 and TAMRAD, the Horizon 
study is a first-line setting MBC with only 40% of 
the patients having received previous adjuvant 

:

Figure 2. Pathway hyperactivation defined by alterations of the PI3K/AKT/mTOR pathway.

https://journals.sagepub.com/home/tam


P Augereau, A Patsouris et al.

journals.sagepub.com/home/tam 339

endocrine therapy. In Horizon, patients didn’t 
receive any aromatase inhibitor as adjuvant ther-
apy, and likely didn’t have any hyperactivation of 
the PI3K/Akt/mTOR. MTOR inhibitor might be 
less effective without an adaptive mechanism as 
hyperactivation of the PI3K/AKt/mTOR, induced 
by hormone-therapy resistance.

There is a real heterogeneity of responses to these 
drugs and patient outcomes, and biomarker anal-
ysis may help identify patients who will derive the 
greatest benefit from everolimus. In an explora-
tory analysis of BOLERO-2, the benefit of everoli-
mus was maintained regardless of the presence or 
absence of an alteration in PIK3CA, FGFR1, 
CCND1 or their respective pathways. However, 
when the patients were assigned to the subgroups 
on the basis of mutations in PI3KCA exon 20 or 
9, PFS benefit of everolimus appeared to be 
greater in those with exon 9 mutation [hazard 
ratio 0.26, 95% CI (0.12–0.54)] than in those 
with exon 20 mutation [hazard ratio 0.56, CI 
(0.31–1)]. Moreover, these data suggest that 
tumor with low chromosomal instability (CIN) 
might benefit from the addition of everolimus to 
exemestane, with a median PFS gain of 5.5 
months for patients with CIN score below the 
75th percentiles [hazard ratio 0.39, CI 
(0.28–0.54)].26

Recently, recurrent mutations have been identi-
fied in the estrogen receptor. Chandarlapaty and 
colleagues evaluated blood samples from 541 of 
the 724 patients enrolled in BOLERO-2. They 
detected a D538G ESR1 mutation in samples 
from 114 (21.1%) patients, a Y537S ESR1 
mutation in samples from 72 (13.3%) patients, 
and double mutations in samples from 30 
patients. Median overall survival was 32.1 
months for patients with neither a D538G nor 
Y537S ESR1 mutation, 26 months for those 
with only a D538G mutation, 20 months for 
those with only a Y537S mutation, and 15.2 
months for those with double mutations. 
Exploratory analyses showed that adding everoli-
mus to exemestane doubled PFS for patients 
with any ESR1 mutation and for those with a 
D538G mutation, and didn’t increase PFS for 
patients with a Y537S mutation. However, fur-
ther studies are needed before the validation of 
these biomarkers.27

The mechanism of action of everolimus could 
lead to incomplete inhibition of mTORC1-
dependent protein synthesis, limiting its 

efficacy.28 Everolimus sets off a negative feedback 
mechanism leading to increased Akt signaling 
and treatment resistance. AZD2014, a dual 
inhibitor of mTORC1 (rapamycin-sensitive) and 
mTORC2 (rapamycin insensitive) has shown 
superior activity to everolimus both in hormone-
sensitive and -resistant models.29 A randomized 
phase II trial (MANTA) [Clinical Trials.gov 
identifier: NCT02216786] is ongoing for post-
menopausal women with ER+/HER2-negative 
ABC, hormone refractory, comparing AZD2014 
and fulvestrant to fulvestrant alone and to fulves-
trant and everolimus.

Randomized clinical trials with PI3K 
inhibitors
One phase II trial and one phase III trial evalu-
ated a PI3K inhibitor in ER+/HER2-MBC.

Recently, the FERGI trial assessed the addition 
of PI3K inhibition to HT in the second-line set-
ting. In this phase II trial, investigators rand-
omized pictilisib (GDC-0941), a potent oral 
inhibitor of multiple class I PI3K kinase isoforms 
in combination with fulvestrant (n = 89) versus 
fulvestrant with placebo (n = 79) in patients with 
MBC resistant to AI, with or without PIK3CA 
mutation. This study demonstrated a nonsignifi-
cant benefit in PFS in the pictilisib arm compared 
with the placebo arm (6.2 months versus 3.8 
months; hazard ratio, 0.77; 95% CI, 0.50–1.19) 
in the overall population. This improvement was 
independent of PIK3CA mutation status in the 
tumor. Exploratory subgroup analyses suggested 
that patients with centrally confirmed oestrogen 
receptor+/progesterone receptor+ tumors are 
more likely to benefit from the addition of pic-
tilisib to fulvestrant (7.2 months versus 3.7 
months, hazard ratio, 0.46; 95% CI, 0.27–0.78), 
even if the subgroup analyses were limited by the 
sample size.30 The absence of efficacy could be 
explained by the toxicity of pictilisib, with 22% of 
patients discontinuing experimental treatment, 
and the numerous dose reductions. Alternative 
strategies with specific inhibition of subunit α 
PI3K (alpelisib) or mutated PI3K (taselisib) are 
ongoing with a putative improved therapeutic 
index. Another explanation of this failure was put 
forward by Bachelot and colleagues. There are no 
direct correlations between PI3K AKT activation 
and late effectors of mTORC1 activation. The 
PI3K mutation in HER2-negative breast cancer  
is associated with low histological grade, high  
hormone sensitivity, good prognosis, and low 
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mTORC1 activity. And high-grade tumors are 
associated with mTORC1 activation and few 
PI3KCA mutations, a potential target of PI3K 
inhibitor.31–33 The oncogenic action of PI3K 
mutation–PI3K inhibition combined with endo-
crine therapy might be a target only in a subgroup 
of patients with MBC with endocrine resistance.

BELLE-2 is a prospective randomized phase III 
study in 1147 patients with ABC whose disease 
progressed on an AI. This study compared bupar-
lisib [a specific oral inhibitor of the pan-class I 
phosphatidylinositol 3-kinase (PI3K)] with ful-
vestrant with fulvestrant and placebo. The study 
was stratified according to the presence of visceral 
metastasis and activation of the PI3K pathway 
(PI3K mutation, PTEN loss of function) in the 
primary tumor. The primary endpoint was PFS in 
the overall population and in patients with activa-
tion of PI3K. PIK3CA mutation status in blood 
samples was also analyzed in a subset of 587 
patients. In the overall study population, PFS was 
6.9 months in the combination therapy group ver-
sus 5.0 months in the control group (hazard ratio 
0.78, 0.67–0.89). As in the FERGI study, patients 
with activation of the PI3K pathway in their pri-
mary tumor had no improvement in PFS with 
buparlisib added to fulvestrant (hazard ratio = 
0.76; 0.60–0.97). However, this combination 
improved the median PFS in patients with a PI3K 
mutation detected by circulating DNA, with a 
44% reduction in risk for progression (7 months 
versus 3.2 months; hazard ratio = 0.56; 0.39–
0.80). The combination of fulvestrant and bupar-
lisib was associated with serious side effects 
leading to discontinuation of therapy in 13.2%. 
The most common grade 3 and 4 AEs were liver 
dysfunction (ALT: 26 versus 1%, AST: 18 versus 
3%), rash (8 versus 0%), hyperglycemia (15 versus 
0.2%), and mood disorders (4.4% versus 0.4%).34

The discrepant results regarding the PIK3CA sta-
tus and the benefit of PI3K inhibitors can proba-
bly be explained by the fact that the primary 
tumor is not suitable for measuring PI3K activa-
tion which should probably be analyzed in the 
metastatic lesions or in circulating DNA at the 
time of metastatic relapse. In a study of 104 
patients, synchronous genetic heterogeneity and 
changing PI3K mutational status were demon-
strated between primary and metastatic breast 
tumors.35 The analysis of PI3K mutation status 
on the circulating tumor DNA (ctDNA) is more 
feasible, less invasive and more reliable as shown 
by the unpublished results of the BELLE-2 study. 

However, prospective well conducted studies are 
still needed to confirm whether the presence of a 
PIK3CA mutation in circulating tumor DNA can 
predict response to this treatment.

CDK 4/6 inhibition in association to AI in a 
first- or second-line setting?
The mechanisms of resistance to HT often 
include upregulation with or without activation of 
signal transduction pathways that involve cell 
cycle regulation. CDK4/6 phosphorylates and 
inactivates Rb (retinoblastoma) tumor suppressor 
proteins, leading to dissociation of E2F transcrip-
tion factors and transcriptional regulation of 
genes for G1/S transition and cell cycle progres-
sion. Mitogenic signals or growth factor receptor 
signaling pathways converge on the cyclin D/
CDK4 or CDK6 pathways, like ER and PI3K/
Akt/mTOR. The activation leading to Rb phos-
phorylation is associated with resistance to endo-
crine therapy.3,36 Rb dysfunction is associated 
with luminal B-type breast cancer and is predic-
tive of a poor response to endocrine therapies. 
CDK 4/6 inhibitors reverse the endocrine resist-
ance in preclinical studies.37

PALOMA-1, a phase II trial randomized letrozole 
combined with palbociclib (a highly selective, 
orally administered CDK4/6 inhibitor) versus 
letrozole alone in postmenopausal patients with 
ER-positive MBC in the frontline setting. 
Palbociclib was administered at a dose of 125 mg/
day for 3 weeks out of 4. In cohort 1 (n = 66), 
patients were enrolled on the basis of their ER+/
Her2- biomarker status alone, whereas in cohort 2 
(n = 99), they were also required to have cancers 
with amplification of cyclin D1 (CCND1), loss of 
p16 (INK4A or CDKN2A), or both. A third of the 
patients in each group had received previous endo-
crine therapy and half of these individuals had pre-
viously received AI. The final analysis showed a 
doubling of PFS in the overall population from 
10.2 months with letrozole alone to 20.2 months 
with the letrozole–palbociclib combination [risk ratio 
(RR) of 0.488] and a decrease in risk of progression 
of 51% in favor of the combination (p = 0.0004). 
This improvement was observed in all subgroups, 
independent of cyclin D1 amplification or loss of 
p16. The number of death events was small at the 
time of publication, but was not statistically different 
between the palbociclib plus letrozole arm and the 
letrozole alone arm (37.5 versus 33.3; p = 0.42). 
The safety profile of palbociclib is favorable, 
including primarily hematological toxicity with 
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50% of patients presenting with Grade 3 or 4 neu-
tropenia. However, no febrile neutropenia was 
observed. Approximately 40% of patients required 
a dose reduction or a recovery period.38 A pivotal 
phase III study, PALOMA-2, with the same 
design as the PALOMA-1 study was presented at 
ASCO 2016 and confirmed the safety and the clin-
ical benefit of palbociclib with median PFS at 24.8 
months (P+L) versus 14.5 months (PLB+L) [haz-
ard ratio = 0.58 (0.46–0.72), p < 0.000001]. 
Despite immature overall survival (OS) data, the 
FDA has approved palbociclib for ABC patients 
who had not received prior systemic therapy for 
their advanced disease.39

However, fulvestrant could be a new option in a 
first-line setting. Fulvestrant is a selective estro-
gen-receptor degrader that targets the function of 
the hormone receptor currently used in second-
line after AI.40 A randomized open label phase II 
trial, the FIRST trial, compared fulvestrant (500 
mg) with anastrozole in the first-line setting and 
suggested that fulvestrant was superior in TTP.41 
The extension phase III trial with the same design 
FALCON in 462 postmenopausal patients con-
firms statistically significant improvement in PFS 
with fulvestrant versus anastrozole [hazard ratio 
0.797 (95% confidence interval 0.637, 0.999); 
p = 0.0486; median PFS, 16.6 versus 13.8 
months, respectively]. However, a subgroup anal-
ysis showed an even greater impact on PFS in 
patients whose disease had not spread to the liver 
or lungs at baseline (22.3 versus 13.8 months).42 
Quality of life was similar between the two arms 
and the most common AEs were arthralgia (joint 
pain) (16.7% versus 10.3%) and hot flushes 
(11.4% versus 10.3%) for fulvestrant and anastro-
zole, respectively. Fulvestrant could be a first-line 
option for patients requiring a low-toxicity 
approach such as older patients, or those with 
low-volume disease, or those for whom adherence 
to oral treatment is complicated. It should be 
noted that in the FALCON trial, none of the 
patients had prior HT, even for the treatment of 
early breast cancer.

PALOMA-3 is a phase III trial randomizing ful-
vestrant-placebo versus fulvestrant-palbociclib 
among 521 patients with ER+/HER2-metastatic 
breast cancer, previously treated with hormone 
therapy. Premenopausal women could be 
included if they had received treatment with an 
LHRH agonist. The randomization was 2:1, with 
stratification based on the presence of visceral 
metastases, prior sensitivity on HT and 

menopausal status. With a median follow-up of 
8.9 months, the median PFS was 9.5 months for 
the fulvestrant–palbociclib combination versus 
4.6 months for fulvestrant alone (hazard ratio: 
0.46, 95% CI 0.36–0.59, p < 0.0001). The OS 
follow-up is in progress. The safety profile was 
similar to that observed in the PALOMA-1 study, 
with neutropenia and maintained quality of life 
being common to both arms. Neither PI3KCA 
status in ctDNA nor the level of ER level expres-
sion predicts the response to palbociclib.43,44 
These results confirm remarkable efficacy of this 
new therapeutic class, and standard therapy in 
the metastatic setting is changing. Other CDK4/6 
inhibitors are under development such as riboci-
clib or abemaciclib.

Ribociclib has been evaluated in the 
MONALEESA-2 trial. This phase III study ran-
domized 668 postmenopausal women with ER+ 
HER2 ABC, who had not received any prior sys-
temic treatment. Patients received ribociclib (600 
mg/day, 3 weeks on/1 week off) and letrozole (2.5 
mg/day, continuous), or letrozole plus placebo. In 
the ribociclib arm, there was a 44% improvement 
in PFS compared with the placebo arm (hazard 
ratio: 0.556, p = 0.00000329). Median PFS was 
14.7 months in the placebo arm, but was not 
reached in the ribociclib arm at data cut off. AEs 
were similar to those when using palbociclib, with 
59.3% of neutropenia.45

The MONARCH 1 study is the only phase II 
study that evaluated the single-agent activity and 
safety of a CDK 4/6 inhibitor, abemaciclib, in 
patients with refractory metastatic breast cancer 
whose disease had progressed following multiple 
prior treatments, including chemotherapy. With 
a median of three lines of prior therapy for 
advanced disease and at the 8-month interim 
analysis, the confirmed odds risk ratio was 
17.4%, the clinical benefit rate (complete 
response + partial response + stable disease ⩾6 
months) was 42.4%, and median PFS was 5.7 
months. The treatment was well tolerated with 
only 6.8% discontinuations for AEs.46

MONARCH 2, a phase III trial, compared abe-
maciclib plus fulvestrant versus placebo with ful-
vestrant in women with ER+ HER2- ABC. 
Patients had experienced disease progression on 
or within 12 months of receiving endocrine treat-
ment in the neoadjuvant or adjuvant setting or 
while receiving first-line endocrine therapy for 
metastatic disease. The primary endpoint is PFS. 

https://journals.sagepub.com/home/tam


Therapeutic Advances in Medical Oncology 9(5)

342 journals.sagepub.com/home/tam

MONARCH 3 is a phase III trial of abemaciclib 
in combination with AI in patients with HR+, 
HER2- ABC.

Regardless the CDK 4/6 inhibitor, biomarkers 
are needed to optimize endocrine therapy and 
the levels of estrogen (ER) and progesterone 
receptor (PgR) could be one. Low proliferation 
with a low Ki67 level and high eostrogen and 
progesterone receptor expression (progesterone 
receptor) are probably predictive of response to 
endocrine therapy in neoadjuvant BC.47 Low 
PgR and higher Ki67 expression seem to be 
associated with poor prognosis and help to 
strengthen HT. Indeed, in the TEXT and SOFT 
trials, Regan and colleagues showed that the 
combination of exemestane + ovarian function 
suppression (OFS) is more beneficial than 
tamoxifen (tam) alone or tam + OFS in adju-
vant endocrine therapy for women with poor 
prognostic features.48 In patients with newly 
metastatic disease or disease recurring after 
adjuvant tamoxifen, negative or low-level ER 
could be a predictive factor of response to gefi-
tinib (EGFR inhibitor) and tamoxifen.49 No bio-
markers have been found to predict the response 
of CDK4/6 inhibitors. In the PALOMA-2 trial, 
biomarker analyses on cell-cycle-related genes 
using immunohistochemistry for ER, Rb, p16, 
cyclin D1, and Ki-67 revealed no additional 
markers with sensitivity to palbociclib + letro-
zole beyond ER+.50 A recent phase II study 
evaluated if short-term preoperative palbociclib 
treatment is associated with decreased prolifera-
tion and early biomarker changes in patients 
with early breast cancer. Palbociclib decreases 
Ki67 and is dependent on molecular subtypes; it 
is not effective on HER2+ and triple-negative 
breast cancer, and is correlated with changes in 
pRB. Additional analyses are ongoing (CCND1 
amplification, pAKT, pER, PIK3CA, AKT1).51

Given these remarkable results, acquired resist-
ance to CDK4/6 inhibitors will be an emerging 
clinical challenge.

Novel combinations
The interaction between the PI3K/AKT/mTOR 
and cyclin D–CDK4/6–INK4–Rb pathways is 
thought to play a critical role in ER-driven breast 
cancer and preclinical ER+ breast cancer mod-
els. Hyperactivation of PI3K/Akt/mTOR might 
be an adaptive mechanism leading to endocrine 
therapy and CDK4/6 inhibitor resistance, and 

combination strategies are widely evaluated. The 
combination of ribociclib, a CDK4/6 inhibitor 
(LEE011; LEE), alpelisib, an alpha isoform of 
class I PI3K inhibitor (BYL719; BYL), and 
letrozole (LET) has recently shown enhanced 
activity versus each agent alone.52 A phase Ib 
combination of LET, LEE and BYL has shown 
an acceptable safety profile and demonstrates 
preliminary clinical activity in heavily pretreated 
patients with ER+/HER2- ABC. A total of 15 
patients discontinued treatment: 7 (19%) due to 
progression of disease (PD) and 8 (22%) due to 
AEs. The most frequent study drug-related AEs 
(all grades >35%) were: nausea (all grades, 44%; 
G3/4, 6%), hyperglycemia (44%; 17%), neutro-
penia (42%; 22%), and fatigue (36%; 11%). 
Among 27 evaluable patients, 2 (7%) had a par-
tial response (PR), 4 (15%) had unconfirmed 
partial response, 6 (22%) had stable disease 
(SD), 6 (22%) had non-CR (complete response), 
non-PD, and 5 (19%) had PD as best overall 
response. Inhibition of the three pathways pro-
vides sustained downregulation of Ki67, poten-
tially preventing a feedback mechanism and 
hence delaying progression through therapy. 
Future randomized studies will compare LET + 
LEE or BYL with LET + LEE + BYL.53

In summary, practice-changing trials have been 
successfully conducted combining HT with tar-
geted therapies, disrupting the adaptive mecha-
nisms of resistance to HT. This illustrated the 
successful concept of adding therapies. 
Fulvestrant as monotherapy is also an option, but 
recent trials have shown that PFS benefits can be 
achieved from it being combined with an inhibi-
tor of the cyclin D–CDK4/6–INK4–Rb path-
ways.42,43 Fulvestrant, in combination with a 
PI3K inhibitor could be another option, but trials 
are still ongoing. Everolimus + exemestane is also 
an option in a second-line setting in postmeno-
pausal women with ER+ cancer with prior expo-
sure to nonsteroidal anti-inflammatories (letrozole 
or anastrozole), despite the absence of OS 
improvement (Figure 3).22 New and robust bio-
markers are needed to define what is the best 
combination and the best sequence of treatment 
for hormone refractory MBC. To monitor the 
dynamics of tumor genomics over time, reliable 
and reproducible biomarkers for given patients 
are urgently needed. And ctDNA seems to be a 
useful one. There is a real interest in integrating 
liquid biopsies in prospective combination trials, 
but the sensibility and reproducibility of these 
tests are still being evaluated.
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