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Social isolation (SI) mice exhibit behavioral abnormalities such as impairments of sociability- and
attention-like behaviors, offering an animal model of neurodevelopmental disorders such as attention-
deficit/hyperactivity disorder (ADHD). This study aimed to identify the effects of Sansoninto (SST; 酸棗

仁湯 su�an zǎo r�en t�ang) on the psychiatric symptoms related to ADHD using SI mice. Four-week-old mice
were socially isolated during the experimental period, and SST administration (800 or 2400 mg/kg, p.o.)
was started at 2 weeks after starting SI. SST ameliorated SI-induced impairments of sociability- and
attention-like behaviors in a dose-dependent manner, and tended to ameliorate contextual- and
auditory-dependent fear memory deficit. Moreover, the expression level of Egr-1 was down-regulated by
SI stress, and was restored by a high dose of SST. These findings suggest that SST is useful for
improvement of psychiatric disorders such as ADHD.
© 2018 Center for Food and Biomolecules, National Taiwan University. Production and hosting by Elsevier
Taiwan LLC. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

Attention-deficit/hyperactivity disorder (ADHD) is a childhood
neurodevelopmental disorder, characterized by inattention, hy-
peractivity, impulsivity, etc. The symptoms of ADHD usually
disappear with age; however, it is of major concern that about 65%
of ADHD patients do not recover completely, even after reaching
adulthood.1 Although the pathogenesis of ADHD is still unclear, it
has been suggested that it is a functional disorder of the frontal
lobe, in which dopamine acts as a neurotransmitter.2 It has been
reported that ADHD develops by a combination of various genetic
variations in such areas as dopamine transporters3e5 and re-
ceptors,6,7 serotonin 5-HT2A receptors,8 and N-methyl-D-aspartate
glutamate receptor subunits.9 Moreover, the onset of ADHD is also
ivity disorder; Egr-1, early
tion.
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affected by environmental factors, suggesting epigenetic regulation
in the disorder.10

Many animal models are used for the research of ADHD.11e13 We
have previously proposed that social isolation (SI) rearing of rodents
during early weaning may offer a viable model animal because it
induces some behavioral abnormalities that are similar to those in
ADHD patients, such as an increased aggressive response, attention
deficit-like behavior, hyperactivity, and attenuation of the
pentobarbital-induced sleep duration. Moreover, we recently found
that SI stress in mice causes not only impairment of sociability and
spatial attention, but also cognitive deficits in fear conditioning
tests.14,15 Neurochemical studies in our laboratory also demon-
strated that SI stress decreases the expression level of early growth
response 1 (Egr-1), an immediate early gene, which is an important
transcription factor involved in synaptic plasticity,16 in a manner
reversible by tacrine, an acetylcholinesterase inhibitor.15 The down-
regulated expression of Egr-1 has been found in postmortem pre-
frontal cortices of schizophrenic patients.17 Thus, SI mice show
characteristics resembling symptoms of ADHD patients and have
been useful as an environment-dependent model of ADHD.
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Methylphenidate, a dopamine transporter inhibitor, is one of the
major drugs clinically employed for patients with ADHD or
depression, and is considered to ameliorate abnormal behavior in
ADHD patients, partly via reversing the down-regulated function of
dopaminergic systems in the frontal lobe.18 However, since this
drug generally needs to be taken long-term by the patients, it is
likely to cause various side-effects, including hallucination and
insomnia, because of its intrinsic psychostimulant activity. There-
fore, it is important to develop therapeutic agents for ADHD that are
safer and more effective than methylphenidate.

Traditional herbal medicines, including Kampo medicines and
traditional Chinese medicines, have long been used to treat or
relieve the symptoms of many diseases. Moreover, clinical studies
subjecting psychological disorder patients to Kampo medicine
treatment have shown that some traditional herbal medicines
reduce the positive and negative syndrome scale for Schizo-
phrenia,19 as well as reduce the symptoms of inattention, hyper-
activity and impulsivity in children and adolescents.20 These
studies raise the possibility that novel agents effective for psycho-
logical disorders may be found from the traditional herbal rem-
edies. We also have reported that several traditional herbal
medicines or medicinal herbs, such as Butea superba,21,22 Bacopa
monnieri23 and Chotosan (鉤藤散g�ou t�eng sǎn),24 ameliorate
cognitive and emotional deficits in several types of model mice.
Sansoninto (SST;酸棗仁湯 su�an zǎo r�en t�ang) is a traditional herbal
medicine that has been used in China, Taiwan, and Japan for adult
patients with insomnia, depression, and neuropathy. Moreover,
Saito et al. reported that SST reverses several stress-induced de-
creases in pentobarbital sleep of mice.25 These medicinal efficacies
of sansoninto are speculated to be due to the anxiolytic effects of
Zizyphi Semen (酸棗仁 su�an zǎo r�en), a main ingredient of this
Fig. 1. Experimental schedule. Four-week-old male mice were housed in groups (GH) or socially isolated (SI) during an experimental period. The SST administration was started at 2
weeks after starting SI. The sociability test, water-finding test and fear conditioning tests were conducted at ages of 9, 10 and 11 weeks, respectively. After completing the auditory
fear-conditioning test, animals were decapitated for neurochemical studies.
traditional herbal medicine.26,27 However, the underlying mecha-
nism of SST on the amelioration of SI-induced behavioral abnor-
malities has not yet been reported. In this study, we examined the
effects of SST on SI mice by behavioral and neurochemical analysis.
2. Materials and methods

2.1. Preparation and chemical profiling of SST

The medicinal herbs included in SST were purchased from
Tochimoto Tenkaido Co., Ltd. (Osaka, Japan). SST was extracted from
a mixture of 15.0 parts Zizyphi Semen, 4.0 parts Poria (茯苓 fú líng),
3.0 parts Cnidii Rhizoma (川芎 chu�an xi�ong), 3.0 parts Anemarrhenae
Rhizoma (知母 zh�ı mǔ) and 1.0 part Glycyrrhizae radix (甘草 g�an
cǎo). The yield of SST extract was 12.6%.

To identify thechemical constituentsof SST, LCeMSanalyseswere
performed with a Shimadzu LC-IT-TOF mass spectrometer equipped
with an ESI interface. The ESI parameters were as follows: source
voltage, þ4.5 kV; capillary temperature, 200 �C; and nebulizer gas,
1.5 l/min. AWaters Atlantis T3 column (2.1mm� 100mm)was used,
and the column temperature was maintained at 40 �C. The mobile
phase was a binary eluent of (A) 5 mM ammonium acetate solution
and (B) acetonitrile under the following gradient conditions:
0e30 min; linear gradient from 10% to 100% B, and 30e40 min;
isocratic at 100%B. Theflowratewas0.15ml/min.Mass spectrometry
data obtained from the extract have been listed in the MassBank
database28 and stored in the Wakan-Yaku DataBase system (http://
wakankensaku.inm.u-toyama.ac.jp/wiki/LCMS:Sansoninto_INM-
749), Institute of Natural Medicine, University of Toyama.

2.2. Animals

The study was conducted according to the experimental
schedule described in Fig. 1. Four-week old male ICR mice were
obtained from Japan SLC (Shizuoka, Japan). Animals were housed in
groups of 4e5 mice/cage (24 � 17 � 12 cm) or socially isolated (SI)
in the same size cage as previously reported.15 Housing room was
maintained at 24 ± 1 �C with 65% humidity and a 12-h light-dark
cycle (lights on: 07:00e19:00). Food and water were given ad
libitum. All animal research procedures used in this study were in
accordance with the Guiding Principles for the Care and Use of
Animals (NIH Publications No. 80-23, revised in 1996). This study
was also approved by the Institutional Animal Use and Care Com-
mittee of the University of Toyama.
2.3. Drug treatment

SST administration (800 or 2400 mg/kg) at doses approximately
3 and 10 times more than the typical daily doses for human therapy
was started at 2 weeks after starting SI, a period sufficient to induce
behavioral abnormalities in our previous study,14 and performed
during the experimental period. SST was orally administered once
daily, while GH and SI vehicle groups were given water.

2.4. Behavioral analysis

2.4.1. Sociability test
Sociability test was performed at 5 weeks after starting SI

according to Okada et al.15 The equipment was an open field
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(50 cm � 50 cm � 50 cm) with black floor and gray walls. In the
sociability test, a training trial was performed first. Each mouse
was placed in the square arena, where two empty clear cylin-
drical cages (diameter 10 cm and height 12 cm) were placed
diagonally, and allowed to explore the arena freely for 5 min. The
time the mouse spent near (around 2 cm) the two cages was
measured. The box arena and cages were cleaned using 70%
ethanol between trials to prevent mice from reselecting due to
olfactory cues. The test trials were performed 30 min after the
training trials. An unfamiliar mouse (Stranger) was put in one of
the cages, while the other cage remained empty. The total time
spent near the two cages was again measured and analyzed
automatically using the Smart® system (PanLab, S.L., Barcelona,
Spain).

2.4.2. Water-finding test
A water-finding test was performed at 6 weeks after starting SI,

according to Ouchi et al.14 The equipment consisted of an open field
(30 cm � 30 cm � 30 cm high) with a small space
(10 cm � 10 cm � 10 cm) in the middle of one of the walls of the
open field. A drinking nozzle was set on the center of the small
space ceiling and had its end 5 and 7 cm above the floor in the
training and test trials, respectively. The training and test trials
were conducted on day 1 and day 2, respectively. In the training
trial, each mouse was placed in one corner of the open field. The
mice were allowed to explore the equipment for 5 min. Animals
that could not find the drinking nozzle during the 5-min observa-
tion period were excluded from the test trials. The mice were
deprived of water for 24 h after the training trial. In the test trials,
the animals were again placed individually into the equipment, and
the latency for drinking water (drinking latency) was measured for
each animal as an index of attention-related behavior according to
Ouchi et al.14

2.4.3. Fear-conditioning test
The fear conditioning test was performed at 6 weeks after

starting SI in accordance with Okada et al., but with minor
modifications.15 Briefly, the chamber for fear conditioning con-
sisted of a clear acrylic chamber (30 cm � 30 cm � 30 cm) and a
stainless-steel grid floor equipped with an electric shock
generator/scrambler SGS-002®, CS Controller CSS-001®, and Cy-
cle Timer CMT® (Muromachi Kikai. Co. Ltd., Tokyo, Japan). The
equipment was placed in a soundproof observation box (MC-
050/CM, Muromachi Kikai, Co. Ltd., Tokyo, Japan), through which
an auditory tone (Sonalert®, Mallory Sonalert Products Inc.,
Indianapolis, IN, USA) was delivered to the animal. In the
training trial, animals were placed individually into the chamber
and allowed to explore freely for 3 min. They then received an
acoustic tone (2.9 kHz, 20 s, 80 dB) that co-terminated with
electric foot shocks (0.8 mA, 2 s). The tone-foot shock pairing
was repeated five times at 1-min intervals. One minute after the
final foot shock delivery, the mice were returned to their home
cage. Contextual and auditory fear memories were elucidated
24 h and 5 days after the training trial, respectively. In the
contextual memory test, mice were placed in the same chamber
to provide contextual stimuli and allowed to move freely for
6 min. One minute after placing the animal in the chamber,
freezing behavior during a 5-min period was recorded as an
index of contextual-dependent fear memory. For measurement
of the auditory-dependent fear memory, mice were placed in the
chamber for a total of 6 min. After a 3-min habituation period,
the tone was delivered continuously for 3 min. The freezing
behavior during the 3-min period was recorded as auditory-
dependent fear memory. Animal behavior was video-recorded
and analyzed automatically using the Smart® system. Freezing
was defined as the absence of any movement, except for that
related to respiration, and analyzed as a state with a movement
speed no greater than 0.05 cm2/s.14,15
2.5. Western blotting analysis of Egr-1 in cortical and hippocampus
tissues

The expression of Egr-1 was analyzed using western blotting as
previously described.15 Briefly, the prefrontal cortices and hippo-
campi were obtained from each animal group and homogenized in
0.5 ml ice-cold buffer A (10 mM HEPES, 10 mM KCl, 1.5 mM MgCl2,
2 mM dithiothreitol, 1 mM phenylmethylsulfonyl fluoride, 1 mM
EDTA,1mM EGTA, 0.5% Triton X-100,1.2mg/ml aprotinin,10mg/ml
leupeptin, pH 7.5) and centrifuged at 1500 � g at 4 �C for 3 min
(Kubota 3740, Kubota Co., Tokyo, Japan). Supernatant was used in
the experiments. Protein concentrations of the samples were
determined by using a BCATM protein assay kit (Thermo Scientific,
Rockford, IL, USA). Aliquots of protein extracts containing 5 mg
proteins were applied on SDS-polyacrylamide gels (SDS-PAGE) and
electrophoresed. Separated proteins were transferred to poly-
vinylidene difluoride (PVDF) membrane (Immuno-Blot® mem-
brane, Bio-Rad Laboratories, Hercules, CA, USA). Blots were blocked
with 5% skimmilk in 0.1% Tween 20 containing Tris-buffered saline
(TBS-T) and probed with an anti-Egr-1 rabbit polyclonal antibody
(Santa Cruz Biotechnology, CA, USA) with a 1:1000 dilution or anti-
b-actin mouse monoclonal antibody (Abcam, Cambridge, UK) with
a 1:10000 dilution. After washing in TBS-T, the blots were incu-
bated with anti-rabbit or anti-mouse secondary antibodies linked
with horseradish peroxidase (Cell Signaling Technology, MA, USA).
The chemiluminescence was detected by ImmobilonTM Western
Chemiluminescent HRP Substrate (Millipore, Billerica, MA, USA).
Immunoreactive bands were visualized and analyzed with Image-
Quant LAS-4000 and ImageQuant TL® (GE Healthcare Japan, Tokyo,
Japan).
2.6. Statistics

Data are expressed as the mean ± S.E.M. and were analyzed by
unpaired or paired Student's t-test for two groups or one-way
ANOVA followed by the StudenteNewmaneKeuls test for multi-
ple comparisons. Differences of p < 0.05 were considered signifi-
cant. The analysis was conducted using SigmaStat® ver 3.5 (SYSTAT
Software Inc., Richmond, CA, USA).
3. Results

3.1. SI stress impairs sociability and is reversed by SST

We carried out the sociability test to determine the effect of SST
on SI-induced sociability deficit (Fig. 2). In the test trial, GH mice
took significantlymore interest in the stranger cagewith themouse
(t ¼ 3.404, df ¼ 18, p ¼ 0.003). However, there was no difference in
the exploratory time for stranger and empty cages in SI mice
(t¼ �0.455, df ¼ 18, p ¼ 0.0655), suggesting a dysfunction in social
interaction behavior. In low- and high-dose SST-treated SI mice,
exploratory time of the stranger cage was significantly greater than
that of the empty (Low: t ¼ 3.630, df ¼ 18, p ¼ 0.002; High:
t ¼ 4.601, df ¼ 16, p < 0.001).



Fig. 2. The effects of SSTon SI-induced sociability deficit inmice. The test was conducted
at theageof9weeks. In the training trial, animalswereallowedto freelyexplore thearena,
in which two identical empty chambers were placed, and acclimate to the experimental
environment andprocedure for 5min. In the test trial conducted 30min after the training
trial, the time a mouse spent exploring around the stranger and empty chambers was
measured, as described in the text. SST was given orally at doses of 800 (SST1) and 2400
(SST2)mg/kg for3weeksbefore the test. Eachdata column representsmean± S.E.M. of 11
mice. *p < 0.05, **p < 0.01 vs. the time each mouse spent around the empty chamber.
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3.2. SST ameliorated SI stress-induced latent learning performance
deficit in the water-finding test

The effect of SST on SI-induced spatial attention deficit was
examined with a water-finding test (Fig. 3). Compared with the GH
mice, SI mice had significantly increased drinking latency
(p < 0.05). Moreover, the administration of high-dose SST
Fig. 3. The effect of SST on SI-induced attention deficit-like behavior in mice. The test
was conducted at the age of 10 weeks and drinking latency of each animal was
recorded as described in the text. SST was given orally at doses of 800 (SST1) and 2400
(SST2) mg/kg for 4 weeks before the test. Each data column represents the
mean ± S.E.M. of 11 mice. *p < 0.05 compared with GH mice. #p < 0.05 compared with
saline-administered SI group.
(2400 mg/kg, p.o.) significantly reduced the SI-induced increase in
the latency [F(2, 31) ¼ 3.412, p ¼ 0.047], whereas low-dose
(800 mg/kg, p.o.) had no effect. These results indicate that SST
ameliorates the SI-induced spatial attention deficit.

3.3. SST tended to ameliorate the social isolation stress-induced fear
memory deficit in the fear conditioning test

We performed the fear conditioning test in order to determine
the effects of SST on long-term fear memory deficit in SI mice
(Fig. 4). In this test, freezing responses to contextual stimuli are
dependent on the hippocampus, whereas freezing responses to
auditory stimuli are dependent on the amygdala. Freezing times of
SI mice from the contextual and auditory stimuli were significantly
lower than in GH mice (contextual: t ¼ 2.583, df ¼ 22, p ¼ 0.017;
auditory: t ¼ 2.495, df ¼ 21, p ¼ 0.021). On the other hand, SST
slightly increased the freezing time, but not significantly.

3.4. SST reversed the SI-induced down-regulation of Egr-1
expression in the brain

After the behavioral analysis, we confirmed the effect of SI on
Egr-1 expression levels in the hippocampus and frontal cortex
sections. As shown in Fig. 5, SI for 7 weeks significantly reduced the
expression levels of Egr-1 in the hippocampus and frontal cortex
(the frontal cortex: t ¼ 3.963, df ¼ 6, p ¼ 0.007; the hippocampus:
t¼ 2.479, df¼ 6, p¼ 0.048). The administration of high-dose of SST
significantly restored the expression levels of Egr-1 in the brain [the
frontal cortex: F(2,11) ¼ 9.767, p ¼ 0.006; the hippocampus:
F(2,11) ¼ 4.552, p ¼ 0.043].

4. Discussion

In this study, we investigated the effects of SST on SI-induced
behavioral and pharmacological abnormalities in mice, to explore
therapeutic agents for patients with developmental disorders,
including ADHD, using traditional Kampo medicines. The results
demonstrated that SST administration significantly ameliorated def-
icits in sociability, attention deficit-like behavior, and fear memory.
Moreover, the decrease in the expression levels of Egr-1 by SI stress
was restored by SST administration. These findings suggest that SST
may be useful as a therapeutic agent in the treatment of ADHD.

In this study, we found that, when given daily fromweek 2 after
commencement of SI, SST at doses of 800 and 2400 mg/kg/day
ameliorated SI-induced behavioral abnormality, which is likely to
be relevant to symptoms of developmental disorders such as
ADHD. The doses of SST used in the present study were approxi-
mately 3 and 10 times stronger than the daily dose for clinical
treatment of patients, but these doses were close to the dosage of
other herbal medicines and chemical agents which have been
employed in preclinical studies reported by our and other research
groups.29,30 In our experiments, there were no changes in the body
weight and motor ability of mice by SST (data not shown), sug-
gesting that there is no side effect of SST at least in the range of the
dose used in the present study. Considering these clinical features
and dose ranges of SST, our findings provide further experimental
evidence supporting the traditional application of SST for
improvement of psychoneurotic symptoms in patients.

The mechanisms by which SST treatment attenuated SI-induced
deficits in sociability and attention deficit-like behavior are un-
clear; however, several neuronal mechanisms are likely to be



Fig. 4. The effect of SST on SI-induced long-term fear memory deficits in mice. Fear conditioning was conducted at the age of 11 weeks. Contextual (A) and auditory (B) memories
were assessed at 1 and 5 days after fear conditioning. SST was given orally at doses of 800 (SST1) and 2400 (SST2) mg/kg for 5 weeks before the test. Each data column represents
mean ± S.E.M. of 11 mice. *p < 0.05 vs. the GH group.
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involved in the action of SST. In previous studies, we demonstrated
that methylphenidate-induced enhancement of dopaminergic and
cholinergic mechanisms via a muscarinic receptor cascade
ameliorated SI-induced impairments of sociability and attention-
deficit like behavior, respectively.14,15 Taken together with the
present findings, the ameliorative effects of SST on developmental
disorder-like behavioral abnormalities in SI mice are likely to be
mediated, at least in part, by attenuation of dopaminergic and
cholinergic dysfunction caused by SI.

This study cannot exclude the possible involvement of
GABAergic systems in the effects of SST due to several reasons.
First, lines of evidence suggest that impairment of GABAergic
function plays an important role in the pathophysiology of pa-
tients with developmental disorders such as ADHD and ASD via
inducing an imbalance between glutamatergic and GABAergic
signaling31,32 or inducing dysfunction of dopaminergic systems in
the brain.33 Interestingly, dysfunction of GABAergic systems has
been observed in several animal models of ADHD.34,35 In fact,
previous studies showed that SI stress results in a decrease in
brain allopregnanolone (3a, 5a-tetrahydroprogesterone), a posi-
tive allosteric modulator of GABA on GABAA receptors, and
thereby induces dysfunction of GABAergic systems. The changes in
GABAergic function are reportedly involved in elevated aggres-
siveness,36 increased susceptibility to pentetrazol,37 and reduced
response to pentobarbital in SI mice.38,39 Second, it has been re-
ported that some chemical constituents such of Zizyphi Semen, an
important crude drug included in the SST formula, has an
anxiolytic-like effect via modulation of GABAergic neurotrans-
mission in the brain.27 Thus, a speculative explanation for the
effects of SST is that it may enhance the function of GABAergic
systems in the brain, and thereby improve SI-induced behavior
abnormalities. Experiments to test this theory are currently under
progress in this laboratory.

The present study revealed that although the daily administra-
tion of SST tended to ameliorate impairment of contextual and
auditory fear memory induced by SI stress, it significantly reversed
the down-regulated expression of Egr-1 in the hippocampus and
cortex of SI animals. Egr-1, a transcription factor that regulates the
transcription of late-response genes, is known to be implicated in
long-term synaptic plasticity, a molecular biological basis of
learning and memory.40 In fact, evidence indicates that Egr-1 plays
an important role in contextual fear memory reconsolidation in the
hippocampus41 as well as in auditory fear memory consolidation
and reconsolidation in the lateral amygdala.42 We previously re-
ported that SI stress induced deficits in conditioned fear memory
and the down-regulation of Egr-1 expression and that tacrine
attenuated these behavioral and neurochemical alterations via
endogenous acetylcholine-mediated stimulation of muscarinic re-
ceptors.15,16 Considering a close linkage between Egr-1 expression
and fear memory performance probably through cholinergic sys-
tems, the present results suggest that SSTmay have an ameliorative
effect on the SI-induced deficit in conditioned fear memories,
probably at a more appropriate dose range.

There are two hypotheses about the mechanism by which the
administration of SST improves SI-induced Egr-1 down-regulation;
one is that SST restores the expression level of Egr-1 by activating
cholinergic neuronal function, and the other is that SST affects
epigenetic regulation of Egr-1. The former is based on our previous
study that the SI-induced Egr-1 diminution is improved by tacrine,
but not methylphenidate, and the restoring effect of tacrine on the
down-regulation of Egr-1 expression is also reversed by scopol-
amine.15 The latter is based on several observations that SI stress
causes epigenetic changes of neurodevelopmental disorder-related
protein expression. Moreover, Egr-1 also increases by epigenetic
regulation in rat hippocampal neurons.43,44 Moreover, Egr-1 also
increases by epigenetic regulation in rat hippocampal neuron.45

However, it is still unknown how SST regulates the Egr-1 expres-
sion in our present study. Therefore, it should be focused on
elucidating the mechanism of Egr-1 expression by the adminis-
tration of SST in our future study.



Fig. 5. Effects of SST on SI-induced down-regulated Egr-1 protein expression in the cortex and hippocampus of mice. Experiments were conducted after completing the auditory
fear-conditioning test. Each animal was decapitated, and the frontal cortices and hippocampi were dissected for neurochemical studies. Typical photos indicate the expression levels
of Egr-1 (A and B) and b-actin (a loading control; C and D) in the cortex (A and C) and hippocampus (B and D) obtained from group-housed (GH) and socially isolated mice (SI)
treated with vehicle or SST [800 (SST1) and 2400 (SST2) mg/kg]. The densities of these bands were quantified and each data column represents mean ± S.E.M. obtained from four
brain samples. *p < 0.05, **p < 0.01 vs. the GH group. #p < 0.05, ##p < 0.01 vs. the water-treated SI group.
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5. Conclusion

This study indicates that daily administration of SST ameliorates
SI-induced impairments of sociability, attention-like behavior, and
expression of hippocampal Egr-1 relevant to fear memory. These
results suggest that SSTmay be beneficial for the treatment of some
symptoms in patients with developmental disorders such as ADHD.
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