
Submitted 3 February 2016
Accepted 22 June 2016
Published 28 July 2016

Corresponding authors
Prapat Suriyaphol,
prapat.sur@mahidol.ac.th
Dumrong Mairiang,
dumrong.mai@biotec.or.th

Academic editor
Folker Meyer

Additional Information and
Declarations can be found on
page 12

DOI 10.7717/peerj.2248

Copyright
2016 Pinthong et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

A simple grid implementation with
Berkeley Open Infrastructure for
Network Computing using BLAST
as a model
Watthanai Pinthong1, Panya Muangruen2, Prapat Suriyaphol3 and
Dumrong Mairiang4,5

1Department of Anatomy, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
2 Siriraj Information Technology Department, Faculty of Medicine Siriraj Hospital, Mahidol University,
Bangkok, Thailand

3Division of Bioinformatics and Data Management for Research, Department of Research and Development,
Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand

4Medical Biotechnology Research Laboratory, The National Center for Genetic Engineering
and Biotechnology, National Science and Technology Development Agency, Pathumthani, Thailand

5Division of Dengue Hemorrhagic Fever Research, Department of Research and Development,
Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand

ABSTRACT
Development of high-throughput technologies, such as Next-generation sequencing,
allows thousands of experiments to be performed simultaneously while reducing
resource requirement. Consequently, a massive amount of experiment data is now
rapidly generated. Nevertheless, the data are not readily usable or meaningful until they
are further analysed and interpreted. Due to the size of the data, a high performance
computer (HPC) is required for the analysis and interpretation. However, the HPC
is expensive and difficult to access. Other means were developed to allow researchers
to acquire the power of HPC without a need to purchase and maintain one such as
cloud computing services and grid computing system. In this study, we implemented
grid computing in a computer training center environment using Berkeley Open
Infrastructure for Network Computing (BOINC) as a job distributor and data manager
combining all desktop computers to virtualize the HPC. Fifty desktop computers were
used for setting up a grid system during the off-hours. In order to test the performance
of the grid system, we adapted the Basic Local Alignment Search Tools (BLAST) to
the BOINC system. Sequencing results from Illumina platform were aligned to the
human genome database by BLAST on the grid system. The result and processing time
were compared to those from a single desktop computer and HPC. The estimated
durations of BLAST analysis for 4 million sequence reads on a desktop PC, HPC and
the grid system were 568, 24 and 5 days, respectively. Thus, the grid implementation of
BLAST by BOINC is an efficient alternative to the HPC for sequence alignment. The
grid implementation by BOINC also helped tap unused computing resources during
the off-hours and could be easily modified for other available bioinformatics software.

Subjects Bioinformatics, Computational Science
Keywords Basic Local Alignment Search Tools (BLAST), Grid computing, Data-intensive
methods, Berkeley Open Infrastructure for Network Computing (BOINC), Next-generation
sequencing (NGS)

How to cite this article Pinthong et al. (2016), A simple grid implementation with Berkeley Open Infrastructure for Network Computing
using BLAST as a model. PeerJ 4:e2248; DOI 10.7717/peerj.2248

https://peerj.com
mailto:prapat.sur@mahidol.ac.th
mailto:dumrong.mai@biotec.or.th
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.2248
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.7717/peerj.2248


INTRODUCTION
Massive data are now affordably, easily and frequently generated by genomic and proteomic
assays such as massively parallel sequencing and high-throughput mass spectrometry. Up
to 1 trillion bases can be sequenced in one 6-day run by Illumina HiSeq 2500 (Rhoads & Au,
2015)whilemass spectrometry can now completely analyse a proteome andquantify protein
concentrations in an entire organism (Ahrne et al., 2015). Breakthroughs in genomic and
proteomic data generation lead to development and emergence of several disciplines. In
precision medicine, clinicians can diagnose and tailor a treatment for a disease based
on the patient profile derived from ‘‘omics’’ data (Chen & Snyder, 2012). Furthermore,
metagenomics, a study of genetic materials in samples directly collected from particular
environments, is now greatly advanced by high-throughput assays, and now becomes
applicable to forensic sciences (Fierer et al., 2010) and pathogen discovery (Chiu, 2013).
However, genomic and proteomic data are not readily usable ormeaningful without proper
analysis and interpretation which become the bottleneck of genomic and proteomic studies
due to tremendous computational resource requirement (Scholz, Lo & Chain, 2012; Berger,
Peng & Singh, 2013; Neuhauser et al., 2013).

To overcome the bottleneck of data analysis, high performance computing (HPC) is
now commonly used in large-scale bioinformatics tasks including sequence alignment
(Orobitg et al., 2015), simulation (Zhang, Wong & Lightstone, 2014) and machine learning
(D’Angelo & Rampone, 2014). The physical architecture of HPC consists of numerous
processing units, large shared memory and huge data storage cooperatively functioning
to obtain high performance usually measured as floating-point operations per second
(FLOPS) (Subramaniam & Feng, 2012). However, physical HPC is costly and requires
extensive maintenance. Cloud computing services, such as Amazon EC2, is now an
alternative to purchase a physical HPC for scientific computing (Juve et al., 2009). Several
bioinformatics applications and frameworks are now designed to utilize cloud computing
and/or grid computing such as CloVR (Angiuoli et al., 2011a), Galaxy (Blankenberg et
al., 2010), Tavaxy (Abouelhoda, Issa & Ghanem, 2012) and CloudBurst (Schatz, 2009).
Bioinformatics analyses usually involve repetitive computing intensive tasks that can be
split into several smaller and less computing intensive tasks (Carvalho et al., 2005). Thus,
massive parallelization on HPC or cloud computing was usually employed for large-scale
bioinformatics analyses. MapReduce framework, such as Apache Hadoop (White, 2012), is
usually employed for massive parallelization in which input data are split and mapped to
worker nodes while output data from worker nodes were merged or reduced at the head
node (Dean & Ghemawat, 2008). Recently, Apache Spark has become another framework
for parallelization and cluster computing (Zaharia et al., 2010). Nevertheless, both physical
HPC and cloud computing are still too costly for some research groups and require
personnel with advanced computing skills to manage the systems.

There are also large public grid systems such as Open Science Grid (Pordes et al., 2007)
that were used for bioinformatics data analysis including BLAST analysis (Hayashi et
al., 2014). However, large inter-institutional grid systems may not always be suitable
under certain circumstances. For example, limited bandwidth and firewalls can hinder the

Pinthong et al. (2016), PeerJ, DOI 10.7717/peerj.2248 2/15

https://peerj.com
http://dx.doi.org/10.7717/peerj.2248


data transfer to and from remotely located grid systems. In addition, clinical data must
be carefully protected so transferring them to the public grid system may risk privacy
violation. Also, if a grid system requires a dedicated server with routine maintenance, it
will not be affordable for a small research group. A local grid system, which could be easily
assembled, disassembled and then reassembled, will benefit a research group that could
intermittently access abundant, but not individually powerful, computing resources such
as a computer training center.

Berkeley Open Infrastructure for Network Computing (BOINC) is a middleware that
helps manage volunteer and grid computing (Anderson, 2004). One of the best known
BOINC-based projects is SETI@home whose purpose is to search for signs of extra
terrestrial intelligence from radio telescope data (Anderson et al., 2002). SETI@home
project recruits home computers to help analyse small chunks of data during the idle time.
Data are sent and received through the internet creating a large distributed computing
system. BOINC also supports an implementation of grid computing on local desktop
computers (Balaton et al., 2007). Academic and research institutes usually own several
desktop computers, which are idle during the off-hours. These unused computer resources
can be tapped by implementing grid computing with BOINC. The BOINC-based grid
computing could inexpensively provide adequate computing power required by many
bioinformatics analyses.

Sequence alignment is one of the basic analyses for genomic and proteomic data and
arranges DNA, RNA or protein sequences against one another or sequence databases to
detect similarities or differences in order to infer functional, structural, or evolutionary
relationships (Baxevanis & Ouellette, 2001). Basic Local Alignment Search Tools (BLAST)
(Altschul et al., 1990) is a program widely used for sequence alignment. However, BLAST
is not optimized for analysing massive data generated by high-throughput assays, and
using BLAST for high-throughput data may lead to impractical runtimes (Li, Ruan &
Durbin, 2008; Borozan, Watt & Ferretti, 2013). Thus, other sequence alignment programs
have been developed such as BWA (Li & Durbin, 2009) and Bowtie (Langmead et al., 2009)
to handle short sequences generated by high-throughput assays. As these methods are
mostly specialized to only handle short sequences, several methods have been applied to
improve the performance of BLAST in order to handle large data such as using parallel
processing (Darling, Carey & Feng, 2003), grid computing (Carvalho et al., 2005) and cloud
computing (Angiuoli et al., 2011b).

This study did not, however, aim to develop a novel method to increase the speed of
sequence alignment. We aimed to use BLAST as a model for grid implementation because
it is one of the most commonly used bioinformatics tools (Carvalho et al., 2005) with
good documentation. Furthermore, BLAST can be performed in parallel without the need
to communicate among worker nodes during processing (Mathog, 2003). There was a
study by Pellicer et al. (2008), that had applied BOINC to BLAST to increase the alignment
speed. Our study aimed to confirm that the grid implementation with BOINC proposed
by Pellicer et al., functioned well with actual next-generation sequencing data. In addition,
we aimed to document instructions on how to set up BOINC grid system. The BLAST
model for grid computing using BOINC is the first step to evaluate and design a simple

Pinthong et al. (2016), PeerJ, DOI 10.7717/peerj.2248 3/15

https://peerj.com
http://dx.doi.org/10.7717/peerj.2248


grid implementation, which will help research groups with limited computing resources
tap into idle computers in their organizations for large-scale bioinformatics analyses.

MATERIALS AND METHODS
Sequences and databases
To test sequence alignment with BLAST, human DNA sequencing data (genome ID:
NA12878) was downloaded from the Genome in the Bottle Consortium (ftp://ftp-
trace.ncbi.nlm.nih.gov/giab/ftp/data/NA12878/NIST_NA12878_HG001_HiSeq_300x)
(Zook et al., 2014). NA12878 data were from Illumina HiSeq2500 sequencing platform
with about 300× total coverage of 150 × 150 bp. The data contained 4 million sequence
reads in fastq format.However, fastq formatwas not compatiblewith the BLASTprogram so
the data were converted to fasta format using seqIO command of Biopython (version 1.65)
(Cock et al., 2009) (https://github.com/dummai/BoincBlastTest/blob/master/PyScripts/
convertFastqToFaQual.py). Since it would take an impractical amount of time to perform
BLAST analysis on all 4 million sequence reads, the data were split into smaller chunks
including read 1 only, read 1–10, read 1–100, read 1–1,000, read 1–10,000 and read
1–100,000. For task distribution by BOINC, the whole data were split into 40,000
smaller files each containing 100 reads with Chunk 1 containing read 1 to read 100,
Chunk 2 containing read 101 to read 200 and so forth using a Python script (https:
//github.com/biopython/biopython.github.io/blob/master/wiki/Split_large_file.md).
NA12878 data were aligned to the human genome, Genome Reference Consortium
Human Reference 38 (hg38), downloaded from UCSC Genome Bioinformatics
(http://hgdownload.cse.ucsc.edu/goldenPath/hg38/bigZips/) (Rosenbloom et al., 2015).
The human genome (hg38) were formatted with the makeblastdb command of BLAST
program.

BLAST analysis
NCBI BLAST+ (version 2.2.30) for Microsoft R© Windows 32-bit and for Linux/GNU 32-
bit were downloaded from the National Center for Biotechnology Information repository
(ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/2.2.30/) (Camacho et al., 2009). blastn
command of NCBI BLAST+ was used to align NA12878 sequences against hg38. The
output format was set to tabular with comment lines (-outfmt 7) and filtering with dust
was turned off (-dust no). Finally, any hit that was enveloped by at least 20 higher-scoring
hits was deleted (-culling_limit 20). The same blastn command linewith the aforementioned
settings was used for sequence alignment on all platforms. Read 1 only, read 1–10, read
1–100 and read 1–1,000 were used for BLAST analysis on a desktop computer. Read
1–10,000 and read 1–100,000 were additionally used for BLAST analysis on a HPC. All
sequence alignments, except for read 1–100,000 set on HPC, were conducted in triplicate
to derive an average processing time.

Computers for BLAST analysis
The specification of the computer used for BLAST analysis was Intel R© CoreTM i7-4500U
CPU @2.40 GHz with 8.00 GB of RAM. To simulate resources used per one workunit

Pinthong et al. (2016), PeerJ, DOI 10.7717/peerj.2248 4/15

https://peerj.com
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/NA12878/NIST_NA12878_HG001_HiSeq_300x
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/NA12878/NIST_NA12878_HG001_HiSeq_300x
https://github.com/dummai/BoincBlastTest/blob/master/PyScripts/convertFastqToFaQual.py
https://github.com/dummai/BoincBlastTest/blob/master/PyScripts/convertFastqToFaQual.py
https://github.com/biopython/biopython.github.io/blob/master/wiki/Split_large_file.md
https://github.com/biopython/biopython.github.io/blob/master/wiki/Split_large_file.md
http://hgdownload.cse.ucsc.edu/goldenPath/hg38/bigZips/
ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/2.2.30/
http://dx.doi.org/10.7717/peerj.2248


on BOINC grid system, hardware virtualization was required to allocate one processing
unit and 1.00 GB of RAM. The virtualization was done by using Oracle R© VM VirtualBox
(version 5.0.8). The operating system for virtualization was Microsoft R© Windows 7
(32-bit).

HPC for BLAST analysis
The specification of the HPC used for BLAST analysis was Cisco R© UCS Blade Server
B200M2 × 2 Units with CPU 2 × 6 cores (2.4 GHz, 12 cores in total) and 96 GB of RAM.
TheHPC could use up to 24 processing threads simultaneously. The operating system of the
HPC was Ubuntu Server Linux/GNU (version 14.04 TLS). BLAST analysis was restricted
to run on 12 processing threads by adding ‘-num_threads 12’ to the blastn command line.

Computer training center for grid implementation
A computer training room with 49 desktop computers was used for grid system
implementation. The room was accessible from 5 pm to 8 am, after its regular operating
hours. The specification of each computer was Intel R© CoreTM i5 CPU 660 @3.47 GHz
with 4.00 GB of RAM. The operating system of all computers was Microsoft R© Windows 7
(32-bit). Every computer was connected to local area network. One computer was assigned
as a hostmachine for the BOINCproject server. This computer hadOracle R© VMVirtualBox
(version 5.0.8) installed to virtualize hardware for the project server. The virtual machine
image of the BOINCproject server (versionApril 12, 2014 onDebian Linux/GNUversion 7)
was downloaded from BOINC webpage (https://boinc.berkeley.edu/dl/debian-7-boinc-
server-140412.7z). One processing unit and 512 MB of RAM were allocated for the project
server. Other computers were assigned as client machines with BOINCManager (version
7.4.42; https://boinc.berkeley.edu/dl/boinc_7.4.42_windows_intelx86.exe) installed.

Grid implementation by BOINC
Documentation for grid implementation by BOINC are available at https://github.
com/dummai/BoincBlastTest. BLAST program must be adapted to BOINC system
for distributed computing. Thus, BOINC wrapper program (version 26014 for
Microsoft R© Windows 32-bit; https://boinc.berkeley.edu/dl/wrapper_26014_windows_
intelx86.zip) along with an XML script (https://github.com/dummai/BoincBlastTest/tree/
master/xml) were applied to the batach file containing a command line of blastn program
and time recording commands (https://github.com/dummai/BoincBlastTest/blob/master/
bat/blastn_windows_intelx86_0.bat). An XML script was used as a template for how to
send clients input data including the hg38 database and each chunk of sequencing reads
(https://github.com/dummai/BoincBlastTest/blob/master/xml/blastn_wu). Another XML
script was used as a template for how to return BLAST analysis result back from the
clients (https://github.com/dummai/BoincBlastTest/blob/master/xml/blastn_re). Python
scripts were used to create bash shell scripts for staging input files (https://github.com/
dummai/BoincBlastTest/blob/master/PyScripts/stage_file.py) and creating workunits
(WUs; https://github.com/dummai/BoincBlastTest/blob/master/PyScripts/create_wu.py).
One WU is a job package containing input data, application and instruction to be sent
and processed at the client machines. Since this is a grid computing system, an option to

Pinthong et al. (2016), PeerJ, DOI 10.7717/peerj.2248 5/15

https://peerj.com
https://boinc.berkeley.edu/dl/debian-7-boinc-server-140412.7z
https://boinc.berkeley.edu/dl/debian-7-boinc-server-140412.7z
https://boinc.berkeley.edu/dl/boinc_7.4.42_windows_intelx86.exe
https://github.com/dummai/BoincBlastTest
https://github.com/dummai/BoincBlastTest
https://boinc.berkeley.edu/dl/wrapper_26014_windows_intelx86.zip
https://boinc.berkeley.edu/dl/wrapper_26014_windows_intelx86.zip
https://github.com/dummai/BoincBlastTest/tree/master/xml
https://github.com/dummai/BoincBlastTest/tree/master/xml
https://github.com/dummai/BoincBlastTest/blob/master/bat/blastn_windows_intelx86_0.bat
https://github.com/dummai/BoincBlastTest/blob/master/bat/blastn_windows_intelx86_0.bat
https://github.com/dummai/BoincBlastTest/blob/master/xml/blastn_wu
https://github.com/dummai/BoincBlastTest/blob/master/xml/blastn_re
https://github.com/dummai/BoincBlastTest/blob/master/PyScripts/stage_file.py
https://github.com/dummai/BoincBlastTest/blob/master/PyScripts/stage_file.py
https://github.com/dummai/BoincBlastTest/blob/master/PyScripts/create_wu.py
http://dx.doi.org/10.7717/peerj.2248


create redundant WUs for results verification required in BOINC volunteer system was
turned off. Due to limited time allocation for accessing the training center, only 5,000
files containing 500,000 sequence reads were tested during one overnight run. The overall
processing time was calculated from the difference between the time the first WU was sent
and the time the last result received. In addition, the time points at which each WU was
sent out, started processing, finished processing and retrieved back were recorded. Since a
lagging process on a single machine could delay the overall processing time, a time limit
of one hour was set to terminate a process taking longer than one hour and resend to
other machine. To ensure that the grid implementation did not affect the results of BLAST
analysis, the sequence alignment results of read 1–1,000 from the desktop computer and
BOINC grid were compared.

RESULTS AND DISCUSSION
Sequence alignment without grid implementation
Sequence alignment with BLAST program could be performed on a web-based application
at NCBI webpage (http://blast.ncbi.nlm.nih.gov/Blast.cgi). However, this is not a suitable
option for analysing a large number of query sequences due to its dependence on network
connection for query submission and result download. In addition, NCBI does not
provide computer resources for all large-scale analyses submitted through the web-based
application. Thus, standalone BLAST is provided by NCBI for running sequence alignment
locally on a computer or HPC. In this study, standalone BLAST was chosen to benchmark
analysis time of a desktop computer and HPC against that of BOINC grid system.

From a preliminary run of BOINC grid system, we found that one client machine could
process up to four WUs simultaneously (data not shown). This was later confirmed when
full grid implementation by BOINC was tested (Fig. 5). To benchmark the processing
time of a single computer against BOINC grid system, we restricted computing resources
for running standalone BLAST on the computer by hardware virtualization to the same
resources used for processing one WU in BOINC grid system, which included one central
processing unit and 1.00 GB of RAM. Additionally, the computing resources restriction
helped estimate the time required for processing oneWUwith various number of sequence
reads on BOINC grid system. Thus, an optimal number of sequence reads per WU could
be selected. One, ten, 100 and 1,000 sequence reads were aligned against the human
genome (Fig. 1). The average processing time for sequence alignment of 1,000 reads was
204.17 min which was too long for processing one WU. An error at the end of processing
a WU with 1,000 reads would result in a loss of three and a half hours of processing
time. Thus, WU’s with 100 reads was used for analysis on BOINC grid, which would take
approximately 20 min per WU. Simple linear regression analysis was used to predicted
the analysis time for all 4 million reads. Based on an estimated 12.28 s to analyse a single
read, it would take approximately 568 days to complete the sequence alignment with a
linear approach. However, multiprocessing and multithreading capabilities of the current
personal computer would significantly reduce the overall processing time depending on its
central processing unit and shared memory.

Pinthong et al. (2016), PeerJ, DOI 10.7717/peerj.2248 6/15

https://peerj.com
http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://dx.doi.org/10.7717/peerj.2248


Figure 1 Processing time of BLAST sequence alignment by number of reads analyzed on a single per-
sonal computer.One, 10, 100 and 1,000 reads were analyzed in triplicate. The times shown were average
processing times of triplicate runs.

Currently, HPC is used in several bioinformatics analyses (D’Angelo & Rampone, 2014;
Orobitg et al., 2015; Zhang, Wong & Lightstone, 2014). HPC can manage large datasets and
handle intensive computation while significantly reduce the processing time. However,
HPC is expensive and requires extensive maintenance. In this study, HPC was used for
benchmarking the time used for sequence alignment against that of the alignment on
BOINC grid. Twelve threads of HPC were simultaneously used for BLAST program. From
the initial dataset of 4 million reads, one, ten, 100, 1,000, 10,000 and 100,000 sequence reads
were aligned against the human genome (Fig. 2). The sequence alignment of 100,000 reads
took about 880 min. Simple linear regression analysis was used to predict the relationship
between number of reads and total analysis time on the HPC. An estimated 0.53 s per read
meant it would take approximately 24 days to complete the sequence alignment for all 4
million reads. The HPC used in the study was a small model, however, a larger HPC might
be able to complete the same sequence alignment within a few days.

Sequence alignment with grid implementation by BOINC
BOINC helps manage distribution of a large number of tasks to client machines on
volunteer or grid system. In addition, BOINC has a system to validate the results returned
by the clients. However, the BOINC project administrator is required to prepare input
data for task distribution as well as plan methods to consolidate result files into a single
final result. In this study, 4 million sequence reads were split into 40,000 files with each file
containing 100 sequence reads. The number of files was decided to minimize the number
of files while keeping total runtime at a reasonable level (Fig. 1). The human genome
database was also sent to client machines along with a sequence file. However, a ‘‘sticky’’
option of BOINC ensured that the database was transferred to the same client only once
and remained in the machine for other rounds of sequence alignment.

Pinthong et al. (2016), PeerJ, DOI 10.7717/peerj.2248 7/15

https://peerj.com
http://dx.doi.org/10.7717/peerj.2248


Figure 2 Processing time of BLAST sequence alignment by number of reads analyzed on HPC.One,
10, 100, 1,000 and 10,000 reads were analyzed in triplicate. The times shown were average processing times
of triplicate runs. Only one run for BLAST analysis was performed for 100,000 reads due to an extensive
processing time.

In this study, BOINC grid system was tested in one overnight session. One session was
expected to be sufficient for sequence alignment of 500,000 reads. Consequently, Chunk
1 to Chunk 5,000 of data, which contained read 1 to read 500,000 were used during this
session. The time between when the first file was sent to the client and the time the last
result file was received by the project server was 846 min or about 14 h. The cumulative
elapsed time from each WU was 90,400 min meaning the grid system reduced the real
processing time by a factor of 107. The average processing time of theWUs was 18min with
a range of 5–48min (Fig. 3). The client machines showed a bimodal distribution in running
time, with one group having an average processing time per WU at about 16–18 min while
a minority group had a longer processing time per WU at more than 23 min (Fig. 4A).
To measure whether data transfer speed via the local area network significantly affected
the processing time at each client machines, the runtime of each blast analysis were also
recorded at the client machines. The difference between the processing time recorded at
the server and that at the client machine was the time used for data transfer. The average
data transfer time was 41 s with a range of 16–219 s (Fig. 4B). The delay caused by data
transfer speed was small compared to the actual times used for BLAST analysis. Thus,
data transfer speed did not affect the processing time observed in the client machines.
It was impossible to directly measure the times used for sending or receiving data since
the clocks of the project server and client machines were not synchronized. During the
overnight session, an average number ofWUs processed by each client was 104 with a range
of 92–140 WUs (Fig. 4C) resulting in an average of 10,400 processed reads. A minority
of client machines had processed 130 WUs or more (Fig. 4C). Interestingly, the minority
of client machines with longer average processing times and the client machines with
more WUs processed were exactly the same machines. When the number of WUs being
processed at a particular time was tracked, we found that the slow group simultaneously

Pinthong et al. (2016), PeerJ, DOI 10.7717/peerj.2248 8/15

https://peerj.com
http://dx.doi.org/10.7717/peerj.2248


Figure 3 Histogram of sequence alignment times for eachWU. Five thousand WUs were distributed
through a BOINC grid system with 50 client machines in one 14-hour-long session. Each WU contained
100 sequence reads of the total 500,000 reads.

processed 4 WUs most of the time while the fast groups only simultaneously processed
2 WUs most of the time. The machine with the longest average processing time and the
one with the shortest processing time were selected for tracking the number of WUs being
processed in Fig. 5. We suspected that the configuration of hardware (other than CPU
and RAM) and/or software (background application) of these two groups were different.
BOINC grid system is designed to cope with clients with heterogeneous configurations and
specifications so the difference in the ability to process WUs in parallel would not cause a
major problem.

The sequence alignment of read 1–1,000 fromBOINCgrid (https://github.com/dummai/
BoincBlastTest/blob/master/raw/BOINC_1000reads_BLASTresults.txt) were compared to
the results from the single computer (https://github.com/dummai/BoincBlastTest/blob/
master/raw/singlePC_1000reads_BLASTresuls.txt). The results were identical. Thus, the
BOINC grid system helped increase the speed of sequence alignment greatly and did not
affect the final results. Using the same BOINC grid setup, it would take 8 overnight sessions
or one 5-day-long session to finish the sequence alignment of 4 million reads. The BOINC
grid is highly scalable and when more clients join the grid the overall processing speed of
the grid would proportionally increase.

There are other middleware or systems for grid implementation including Condor
(Epema et al., 1996), Univa Grid Engine (http://www.univa.com/products/) and
PBS/Torque (http://www.adaptivecomputing.com/products/open-source/torque/). We
did not select Univa Grid Engine because it is proprietary. PBS/Torque system is not
compatible with a computer training center withmachines running onMicrosoftWindows.
Condor, now known as HTCondor, is a comparable alternative to BOINC for grid
implementation in a computer training center environment. Condor has an advantage
over BOINC as the modification of an application to be distributed is not required if the
application has binary compatibility (Søttrup & Pedersen, 2005). However, Condor is not
suitable with volunteer computing that requires validation strategy whereas BOINC utilizes

Pinthong et al. (2016), PeerJ, DOI 10.7717/peerj.2248 9/15

https://peerj.com
https://github.com/dummai/BoincBlastTest/blob/master/raw/BOINC_1000reads_BLASTresults.txt
https://github.com/dummai/BoincBlastTest/blob/master/raw/BOINC_1000reads_BLASTresults.txt
https://github.com/dummai/BoincBlastTest/blob/master/raw/singlePC_1000reads_BLASTresuls.txt
https://github.com/dummai/BoincBlastTest/blob/master/raw/singlePC_1000reads_BLASTresuls.txt
http://www.univa.com/products/
http://www.adaptivecomputing.com/products/open-source/torque/
http://dx.doi.org/10.7717/peerj.2248


Figure 4 Histograms of the performance of client machines during one 14-hour-long session of
BLAST analysis through BOINC grid system. Average processing time per WU of each client machine
was measured (A). Time used for data transfer of each WU was recorded (B). Finally, the total number of
WUs each client machine handled during the sessions was recorded (C).

Pinthong et al. (2016), PeerJ, DOI 10.7717/peerj.2248 10/15

https://peerj.com
http://dx.doi.org/10.7717/peerj.2248


Figure 5 Number ofWUs under processing at a particular time. Two machines with the longest (Slow,
blue line) and the shortest (Fast, red line) average processing time per WU were tracked for the number
of WUs under processing in parallel during the overnight session. Small peaks happened as the transfer of
completed WUs and new WUs were overlapping.

homogenous redundancy to do so (Søttrup & Pedersen, 2005). In this study, BOINC was
selected because there were more projects similar to this study available as reference and
instructions of the initial installation and configuration were available.

BOINCgrid system still has some limitations. Inmetagenomics analyses, sequencing data
might be aligned against the nucleotide collection database (nr database). The nr nucleotide
database is large and it would be difficult to distribute the database to each client. A strategy
for splitting nr database and merging alignment results would be necessary. BOINC grid
does not allow clients to directly contact one another. Thus, some applications that require
client communication would not be suitable for grid implementation with BOINC. On the
other hand, the BOINC grid system allows clients with various operating systems as long
as they are compatible to the application used in the grid system. The wrapper program
for BOINC provides convenient methods to adapt applications for grid implementation.

We created a series of documentation for setting up of BOINC grid system to help other
research groups with limited computing resources tap unused computer in their institutes
(https://github.com/dummai/BoincBlastTest).

Pinthong et al. (2016), PeerJ, DOI 10.7717/peerj.2248 11/15

https://peerj.com
https://github.com/dummai/BoincBlastTest
http://dx.doi.org/10.7717/peerj.2248


CONCLUSIONS
Many academic and research institutes have under-utilized computing resources in the
form of computer training centers. In this study, we showed a way to potentially tap
these unused resources by grid implementation with BOINC. We tested the grid system
using BLAST analysis as a model. The results showed that the grid system greatly increase
the speed of BLAST analysis without affecting the quality of the results. Thus, the grid
implementation with BOINC would be an economically alternative to HPC for any
research groups with limited resources.

ACKNOWLEDGEMENTS
We would like to thank Associate Professor Thawornchai Limjindaporn for his valuable
advice on this project and Dr. Harald Grove for very helpful English editing.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The authors received no funding for this work.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Watthanai Pinthong performed the experiments, analyzed the data, contributed
reagents/materials/analysis tools, wrote the paper, prepared figures and/or tables,
reviewed drafts of the paper.
• Panya Muangruen performed the experiments, contributed reagents/materials/analysis
tools, reviewed drafts of the paper.
• Prapat Suriyaphol conceived and designed the experiments, contributed reagents/mate-
rials/analysis tools, reviewed drafts of the paper.
• Dumrong Mairiang conceived and designed the experiments, performed the
experiments, analyzed the data, contributed reagents/materials/analysis tools, wrote
the paper, prepared figures and/or tables, reviewed drafts of the paper.

Data Availability
The following information was supplied regarding data availability:

Codes have been deposited in GitHub: https://github.com/dummai/BoincBlastTest.

REFERENCES
AbouelhodaM, Issa SA, GhanemM. 2012. Tavaxy: integrating Taverna and Galaxy

workflows with cloud computing support. BMC Bioinformatics 13:77
DOI 10.1186/1471-2105-13-77.

Pinthong et al. (2016), PeerJ, DOI 10.7717/peerj.2248 12/15

https://peerj.com
https://github.com/dummai/BoincBlastTest
http://dx.doi.org/10.1186/1471-2105-13-77
http://dx.doi.org/10.7717/peerj.2248


Ahrne E, Martinez-Segura A, Syed AP, Vina-Vilaseca A, Gruber AJ, Marguerat S,
Schmidt A. 2015. Exploiting the multiplexing capabilities of tandem mass tags for
high-throughput estimation of cellular protein abundances by mass spectrometry.
Methods 85:100–107 DOI 10.1016/j.ymeth.2015.04.032.

Altschul SF, GishW,MillerW,Myers EW, Lipman DJ. 1990. Basic local alignment
search tool. Journal of Molecular Biology 215:403–410
DOI 10.1016/S0022-2836(05)80360-2.

Anderson DP. 2004. Boinc: a system for public-resource computing and storage. In: Grid
computing, 2004 proceedings fifth IEEE/ACM international workshop on. Piscataway:
IEEE, 4–10.

Anderson DP, Cobb J, Korpela E, LebofskyM,Werthimer D. 2002. SETI@ home: an
experiment in public-resource computing. Communications of the ACM 45:56–61.

Angiuoli SV, Matalka M, Gussman A, Galens K, Vangala M, Riley DR, Arze C,White
JR,White O, FrickeWF. 2011a. CloVR: a virtual machine for automated and
portable sequence analysis from the desktop using cloud computing. BMC Bioin-
formatics 12:356 DOI 10.1186/1471-2105-12-356.

Angiuoli SV,White JR, Matalka M,White O, FrickeWF. 2011b. Resources and costs for
microbial sequence analysis evaluated using virtual machines and cloud computing.
PLoS ONE 6:e26624 DOI 10.1371/journal.pone.0026624.

Balaton Z, Gombás G, Kacsuk P, Kornafeld A, Kovács J, Marosi AC, Vida G, Pod-
horszki N, Kiss T. 2007. Sztaki desktop grid: a modular and scalable way of building
large computing grids. In: Parallel and distributed processing symposium, 2007 IPDPS
2007 IEEE international . Piscataway: IEEE, 1–8.

Baxevanis AD, Ouellette BFF. 2001. Bioinformatics : a practical guide to the analysis of
genes and proteins. In:Methods of biochemical analysis v 43. Second edition. New
York: Wiley-Interscience, p. xviii, 470 p., 413 p. of plates.

Berger B, Peng J, SinghM. 2013. Computational solutions for omics data. Nature
Reviews Genetics 14:333–346 DOI 10.1038/nrg3433.

Blankenberg D, Von Kuster G, Coraor N, Ananda G, Lazarus R, ManganM,
Nekrutenko A, Taylor J. 2010. Galaxy: a web-based genome analysis tool for exper-
imentalists. Current Protocols in Molecular Biology 10:11–21, Chapter 19:Unit 19
DOI 10.1002/0471142727.mb1910s89.

Borozan I, Watt SN, Ferretti V. 2013. Evaluation of alignment algorithms for discovery
and identification of pathogens using RNA-Seq. PLoS ONE 8:e76935
DOI 10.1371/journal.pone.0076935.

Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL.
2009. BLAST+: architecture and applications. BMC Bioinformatics 10:421
DOI 10.1186/1471-2105-10-421.

Carvalho PC, Gloria RV, DeMiranda AB, DegraveWM. 2005. Squid–a simple bioinfor-
matics grid. BMC Bioinformatics 6:197 DOI 10.1186/1471-2105-6-197.

Chen R, Snyder M. 2012. Systems biology: personalized medicine for the future? Current
Opinion in Pharmacology 12:623–628 DOI 10.1016/j.coph.2012.07.011.

Pinthong et al. (2016), PeerJ, DOI 10.7717/peerj.2248 13/15

https://peerj.com
http://dx.doi.org/10.1016/j.ymeth.2015.04.032
http://dx.doi.org/10.1016/S0022-2836(05)80360-2
http://dx.doi.org/10.1186/1471-2105-12-356
http://dx.doi.org/10.1371/journal.pone.0026624
http://dx.doi.org/10.1038/nrg3433
http://dx.doi.org/10.1002/0471142727.mb1910s89
http://dx.doi.org/10.1002/0471142727.mb1910s89
http://dx.doi.org/10.1371/journal.pone.0076935
http://dx.doi.org/10.1186/1471-2105-10-421
http://dx.doi.org/10.1186/1471-2105-6-197
http://dx.doi.org/10.1016/j.coph.2012.07.011
http://dx.doi.org/10.7717/peerj.2248


Chiu CY. 2013. Viral pathogen discovery. Current Opinion in Microbiology 16:468–478
DOI 10.1016/j.mib.2013.05.001.

Cock PJ, Antao T, Chang JT, Chapman BA, Cox CJ, Dalke A, Friedberg I, Hamelryck
T, Kauff F, Wilczynski B, De HoonMJ. 2009. Biopython: freely available Python
tools for computational molecular biology and bioinformatics. Bioinformatics
25:1422–1423 DOI 10.1093/bioinformatics/btp163.

D’Angelo G, Rampone S. 2014. Towards a HPC-oriented parallel implementation
of a learning algorithm for bioinformatics applications. BMC Bioinformatics
15(Suppl 5):S2 DOI 10.1186/1471-2105-15-S5-S2.

Darling A, Carey L, FengW-C. 2003. The design, implementation, and evaluation of
mpiBLAST. Proceedings of ClusterWorld 2003:13–15.

Dean J, Ghemawat S. 2008.MapReduce: simplified data processing on large clusters.
Communications of the ACM 51:107–113.

Epema DHJ, LivnyM, Van Dantzig R, Evers X, Pruyne J. 1996. A worldwide flock of
Condors: load sharing among workstation clusters. Future Generation Computer
Systems 12:53–65 DOI 10.1016/0167-739X(95)00035-Q.

Fierer N, Lauber CL, Zhou N, McDonald D, Costello EK, Knight R. 2010. Forensic
identification using skin bacterial communities. Proceedings of the National Academy
of Sciences of the United States of America 107:6477–6481
DOI 10.1073/pnas.1000162107.

Hayashi S, Gesing S, Quick R, Teige S, Ganote C,Wu L, Prout E. 2014. Galaxy based
BLAST submission to distributed national high throughput computing resources.
In: Proceedings of Science, PoS(ISGC2014)025.

Juve G, Deelman E, Vahi K, Mehta G, Berriman B, Berman BP, Maechling P. 2009.
Scientific workflow applications on Amazon EC2. In: E-science workshops, 2009 5th
IEEE international conference on. Piscataway: IEEE, 59–66.

Langmead B, Trapnell C, PopM, Salzberg SL. 2009. Ultrafast and memory-efficient
alignment of short DNA sequences to the human genome. Genome Biology 10:1–10
DOI 10.1186/gb-2009-10-3-r25.

Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows–Wheeler
transform. Bioinformatics 25:1754–1760 DOI 10.1093/bioinformatics/btp324.

Li H, Ruan J, Durbin R. 2008.Mapping short DNA sequencing reads and calling variants
using mapping quality scores. Genome Research 18:1851–1858
DOI 10.1101/gr.078212.108.

Mathog DR. 2003. Parallel BLAST on split databases. Bioinformatics 19:1865–1866
DOI 10.1093/bioinformatics/btg250.

Neuhauser N, Nagaraj N, McHardy P, Zanivan S, Scheltema R, Cox J, MannM. 2013.
High performance computational analysis of large-scale proteome data sets to assess
incremental contribution to coverage of the human genome. Journal of Proteome
Research 12:2858–2868 DOI 10.1021/pr400181q.

Orobitg M, Guirado F, Cores F, Llados J, Notredame C. 2015.High performance
computing improvements on bioinformatics consistency-based multiple sequence
alignment tools. Parallel Computing 42:18–34 DOI 10.1016/j.parco.2014.09.010.

Pinthong et al. (2016), PeerJ, DOI 10.7717/peerj.2248 14/15

https://peerj.com
http://dx.doi.org/10.1016/j.mib.2013.05.001
http://dx.doi.org/10.1016/j.mib.2013.05.001
http://dx.doi.org/10.1093/bioinformatics/btp163
http://dx.doi.org/10.1186/1471-2105-15-S5-S2
http://dx.doi.org/10.1016/0167-739X(95)00035-Q
http://dx.doi.org/10.1073/pnas.1000162107
http://dx.doi.org/10.1186/gb-2009-10-3-r25
http://dx.doi.org/10.1186/gb-2009-10-3-r25
http://dx.doi.org/10.1093/bioinformatics/btp324
http://dx.doi.org/10.1101/gr.078212.108
http://dx.doi.org/10.1093/bioinformatics/btg250
http://dx.doi.org/10.1093/bioinformatics/btg250
http://dx.doi.org/10.1021/pr400181q
http://dx.doi.org/10.1016/j.parco.2014.09.010
http://dx.doi.org/10.7717/peerj.2248


Pellicer S, Chen G, Chan KC, Pan Y. 2008. Distributed sequence alignment applications
for the public computing architecture. IEEE Transactions on Nanobioscience 7:35–43
DOI 10.1109/TNB.2008.2000148.

Pordes R, Petravick D, Kramer B, Olson D, LivnyM, Roy A, Avery P, Blackburn K,We-
naus T,Würthwein F, Foster I, Gardner R,Wilde M, Blatecky A, McGee J, Quick
R. 2007. The open science grid. Journal of Physics: Conference Series 78:012057
DOI 10.1088/1742-6596/78/1/012057.

Rhoads A, Au KF. 2015. PacBio sequencing and its applications. Genomics Proteomics
Bioinformatics 13:278–289 DOI 10.1016/j.gpb.2015.08.002.

RosenbloomKR, Armstrong J, Barber GP, Casper J, Clawson H, DiekhansM, Dreszer
TR, Fujita PA, Guruvadoo L, Haeussler M, Harte RA, Heitner S, Hickey G,
Hinrichs AS, Hubley R, Karolchik D, Learned K, Lee BT, Li CH, Miga KH, Nguyen
N, Paten B, Raney BJ, Smit AF, Speir ML, Zweig AS, Haussler D, Kuhn RM, Kent
WJ. 2015. The UCSC Genome Browser database: 2015 update. Nucleic Acids Research
43:D670–D681 DOI 10.1093/nar/gku1177.

Schatz MC. 2009. CloudBurst: highly sensitive read mapping with MapReduce. Bioinfor-
matics 25:1363–1369 DOI 10.1093/bioinformatics/btp236.

Scholz MB, Lo CC, Chain PS. 2012. Next generation sequencing and bioinformatic
bottlenecks: the current state of metagenomic data analysis. Current Opinion in
Biotechnology 23:9–15 DOI 10.1016/j.copbio.2011.11.013.

Søttrup CU, Pedersen JG. 2005. Developing distributed computing solutions combining
grid computing and public computing. MSc Thesis, University of Copenhagen.

Subramaniam B, FengW-C. 2012. The green index: a metric for evaluating system-
wide energy efficiency in hpc systems. In: Parallel and distributed processing sym-
posium workshops and PhD forum (IPDPSW), 2012 IEEE 26th international . IEEE,
1007–1013.

White T. 2012.Hadoop: the definitive guide. Sebastopol: O’Reilly Media, Inc.
Zaharia M, ChowdhuryM, Franklin MJ, Shenker S, Stoica I. 2010. Spark: cluster

computing with working sets. In: Proceedings of the 2nd USENIX conference on Hot
topics in cloud computing . Boston: USENIX Association, 10–10.

Zhang X,Wong SE, Lightstone FC. 2014. Toward fully automated high performance
computing drug discovery: a massively parallel virtual screening pipeline for docking
and molecular mechanics/generalized Born surface area rescoring to improve
enrichment. Journal of Chemical Information and Modeling 54:324–337
DOI 10.1021/ci4005145.

Zook JM, Chapman B,Wang J, Mittelman D, Hofmann O, HideW, Salit M. 2014.
Integrating human sequence data sets provides a resource of benchmark SNP and
indel genotype calls. Nature Biotechnology 32:246–251 DOI 10.1038/nbt.2835.

Pinthong et al. (2016), PeerJ, DOI 10.7717/peerj.2248 15/15

https://peerj.com
http://dx.doi.org/10.1109/TNB.2008.2000148
http://dx.doi.org/10.1109/TNB.2008.2000148
http://dx.doi.org/10.1088/1742-6596/78/1/012057
http://dx.doi.org/10.1088/1742-6596/78/1/012057
http://dx.doi.org/10.1016/j.gpb.2015.08.002
http://dx.doi.org/10.1093/nar/gku1177
http://dx.doi.org/10.1093/bioinformatics/btp236
http://dx.doi.org/10.1016/j.copbio.2011.11.013
http://dx.doi.org/10.1021/ci4005145
http://dx.doi.org/10.1038/nbt.2835
http://dx.doi.org/10.7717/peerj.2248

