
MAGCNSE: predicting lncRNA‑disease 
associations using multi‑view attention graph 
convolutional network and stacking ensemble 
model
Ying Liang1†, Ze‑Qun Zhang1†, Nian‑Nian Liu1, Ya‑Nan Wu1, Chang‑Long Gu2 and Ying‑Long Wang1* 

Abstract 

Background:  Many long non-coding RNAs (lncRNAs) have key roles in different 
human biologic processes and are closely linked to numerous human diseases, accord‑
ing to cumulative evidence. Predicting potential lncRNA-disease associations can help 
to detect disease biomarkers and perform disease analysis and prevention. Establishing 
effective computational methods for lncRNA-disease association prediction is critical.

Results:  In this paper, we propose a novel model named MAGCNSE to predict 
underlying lncRNA-disease associations. We first obtain multiple feature matrices from 
the multi-view similarity graphs of lncRNAs and diseases utilizing graph convolutional 
network. Then, the weights are adaptively assigned to different feature matrices of 
lncRNAs and diseases using the attention mechanism. Next, the final representations of 
lncRNAs and diseases is acquired by further extracting features from the multi-channel 
feature matrices of lncRNAs and diseases using convolutional neural network. Finally, 
we employ a stacking ensemble classifier, consisting of multiple traditional machine 
learning classifiers, to make the final prediction. The results of ablation studies in both 
representation learning methods and classification methods demonstrate the validity 
of each module. Furthermore, we compare the overall performance of MAGCNSE with 
that of six other state-of-the-art models, the results show that it outperforms the other 
methods. Moreover, we verify the effectiveness of using multi-view data of lncRNAs 
and diseases. Case studies further reveal the outstanding ability of MAGCNSE in the 
identification of potential lncRNA-disease associations.

Conclusions:  The experimental results indicate that MAGCNSE is a useful approach for 
predicting potential lncRNA-disease associations.

Keywords:  LncRNA-disease associations, Multi-view, Graph convolutional network, 
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Background
Long non-coding RNAs (lncRNAs) are a type of non-coding RNA with the length 
of more than 200 nucleotides, which cannot encode proteins [1]. The lncRNAs play 
important roles in many human biologic processes, such as oncogenesis, gene regula-
tion, protein translation, expression, tissue development and immune regulation [2]. 
In recent years, cumulative research has proved many lncRNAs to be associated with 
various diseases, including lung cancer [3, 4], breast cancer [5, 6],prostate cancer [7, 
8], gastric cancer [9, 10],colon cancer [11, 12], Alzheimer’s disease [13, 14] and others.

Predicting underlying association between lncRNAs and different diseases has 
extremely important significance and value, since it can help to analyze and pre-
vent diseases, identify disease biomarkers and reveal the mechanism of lncRNA 
levels in diseases. However, many biological experiments suffer from the long time 
and high cost. As a result, a growing number of computational methods have been 
recently developed to identify lncRNA-disease associations (LDAs). These methods 
can roughly be classified into two categories: biological network-based methods and 
machine learning (ML)-based methods.

Biological network-based methods are premised on the notion that functionally 
comparable lncRNAs are frequently linked to the similar diseases. In these methods, 
heterogeneous networks of diseases and lncRNAs are constructed, then LDAs are 
identified via different methods, such as matrix decomposition or random walk, etc. 
For example, SIMCLDA [15] first used principal component analysis (PCA) to select 
features from similarity matrices, then predicted LDAs via inductive matrix comple-
tion. BiWalkLDA [16] fused the data from gene ontology and interaction profiles, then 
utilized the bi-random walks algorithm for prediction. WMFLDA [17] firstly assigned 
weights to the gene, lncRNA and disease association matrices, then decomposed the 
rank of these matrices and employed the optimized matrices and weights for predic-
tion. DMFLDA [18] was a deep matrix factorization model which obtained the latent 
representations through non-linear hidden layers, then used a fully connected layer 
to connect the representations and finally generates the predictions. MHRWR [19] 
firstly constructed a heterogeneous network in accordance with six network relevant 
to lncRNA, gene and disease, then predict LDAs by utilizing a random walk with 
restart. However, the above-mentioned models based on matrix decomposition or 
random walk face difficulty in mining the topological information from nodes in the 
lncRNA-disease network.

ML-based methods generally use feature extraction techniques on lncRNAs and 
diseases to generate their representations, then identify potential LDAs by applying 
ML classifiers. ML-based methods here do not only refer to the traditional ML meth-
ods, but also to deep learning methods. For example, LDAP [20] used the Karcher 
mean of the matrices to integrate different biological data and utilized bagging sup-
port vector machine to predict LDAs. LDAPred [21] predicted LDAs through a dual 
convolutional neural network (CNN) and information flow propagation. iLncRNA-
dis-FB [22] used the lncRNA-disease similarity matrix to generate three-dimensional 
feature blocks and fed them into CNN for prediction. RFLDA [23] extracted features 
using the random forest (RF) variable importance score and then used a RF regression 
model for prediction. SDLDA [24] first utilized a neural network with singular value 
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decomposition to separately obtain the disease and lncRNA representations, then 
calculated Hadamard product of them and predict LDAs using a sigmoid activation 
function.

Although these methods for identifying LDAs have yielded promising results, there 
is still space for improvement. Firstly, for the representation learning methods, more 
advanced deep learning methods could be considered, such as the technique of graph 
convolutional networks (GCNs) for feature extraction, which has recently achieved 
outstanding performance. For example, GAMCLDA [25] used GCN to get the repre-
sentations of diseases and lncRNAs, and the inner product of them was computed to 
reconstruct lncRNA-disease associations. GAERF [26] first created a heterogeneous net-
work by fusing the interaction of lncRNA, miRNA and disease, then a graph autoen-
coder was leveraged to acquire low-dimensional features, finally used a RF classifier 
for LDA prediction. PANDA [27] applied a graph autoencoder for feature extraction 
and utilized a neural network to predict LDAs. In addition, some models in the field 
of LDA prediction use single lncRNA data and disease data, and many models do not 
consider the lncRNA sequence information. The fusion of multisource data has recently 
been extensively embraced in many studies [28–30]. Moreover, the studies of LDAs that 
involve the integration of multi-view data of lncRNAs and diseases do not consider the 
contribution weight of different data. Furthermore, for the final classification methods, 
many studies only use an individual traditional ML classifier, which has its strengths as 
well as weaknesses.

In this study, a novel method named MAGCNSE is proposed to predict LDAs. First, the 
GCN is used to extract features from the similarity graphs of different views of lncRNAs 
and diseases to obtain multiple feature matrices. For views of diseases, MAGCNSE uses 
disease semantic similarity (DSS) and disease Gaussian interaction profile kernel simi-
larity (DGS), and for views of lncRNAs, MAGCNSE uses lncRNA functional similarity 
(LFS), lncRNA sequence similarity (LSS) and lncRNA Gaussian interaction profile kernel 
similarity (LGS). Then, MAGCNSE leverages attention mechanism for adaptively assign-
ing weights to different feature matrices of lncRNAs and diseases. Next, MAGCNSE uses 
the CNN to further extract features from multi-channel feature matrices to acquire the 
final representations of lncRNAs and diseases. The representation learning processes were 
partially inspired by the study [31]. MAGCNSE then concatenates the representations of 
lncRNAs and diseases according to the lncRNA-disease association matrix to form the 
positive and negative lncRNA-disease pairs. Finally, a stacking ensemble classifier, which 
consists of multiple traditional classifiers, is leveraged to identify LDAs. To demonstrate 
the effectiveness of MAGCNSE, we firstly perform ablation studies in both representation 
learning methods and classification methods to demonstrate the validity of each module 
of our model, and we compare GCN with two graph neural network models to illustrate 
the validity of GCN in this study. In addition, we compare MAGCNSE with six state-of-
the-art models on the same datasets of lncRNAs and diseases using 5-fold cross-validation 
(5-CV) to observe the overall performance of the entire model. Furthermore, we test the 
performance of MAGCNSE using multi-view data of lncRNAs and diseases. Finally, we 
implement two types of case studies to validate the performance of MAGCNSE in predict-
ing LDAs for specific diseases. All the results indicate the great capacity of MAGCNSE in 
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identifying LDAs. Compared with previous models in the field of LDA prediction, the main 
innovations and contributions of this study are summarized as follows: 

(1)	 Multi-view data of lncRNAs and diseases were used in this study and MAGCNSE 
incorporated the lncRNA sequence information.

(2)	 MAGCNSE used deep learning methods that synthesize the techniques of GCN, 
attention mechanism and CNN to fuse the multi-view data to learn the low-dimen-
sional representations of lncRNAs and diseases.

(3)	 After getting the positive and negative lncRNA-disease pairs by concatenating the 
representations of lncRNAs and diseases according to the lncRNA-disease associa-
tion matrix, MAGCNSE applied a stacking ensemble model that integrates multi-
ple machine learning classifiers for the prediction task.

(4)	 A series of experiments were performed to demonstrate that MAGCNSE is com-
petitive and reliable in the field of LDA prediction.

Results and discussion
Experimental settings

To evaluate the performance of our model, we used 5-CV for prediction comparison. We 
treated the known 1569 LDAs as positive samples. To eliminate the impact of data imbal-
ance between positive samples and negative samples, many previous studies [32–36] 
randomly selected the same number of negative samples from the unknown LDAs. We fol-
lowed the same strategy and randomly selected 1569 LDAs from all the unknown LDAs to 
be the negative samples. For 5-CV, the dataset was divided into 5 disjoint subsets, among 
which 4 subsets were utilized to train the model and the remaining subset was utilized for 
testing in each round. We used all three views of lncRNAs and two views of diseases in this 
study. To learn the representations, we applied the Adam optimizer and set the learning 
rate to 0.001, and we trained MAGCNSE for 250 epochs. Other important hyperparam-
eters will be discussed in subsequent sections.

Area under the receiver-operating characteristic (ROC) curve (AUC) and area under the 
precision-recall (PR) curve (AUPR) were utilized as two comprehensive performance eval-
uation metrics for performance evaluation of MAGCNSE. Other six evaluation metrics are 
also used, including Accuracy, Sensitivity, Specificity, Precision, F1- score and Matthews 
correlation coefficient (MCC). These metrics are calculated as follows:

(1)Accuracy =
TN + TP

TN + TP + FN + FP

(2)Sensitivity =
TP

TP + FN

(3)Specificity =
TN

TN + FP
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where TP, FN, TN, FP denote the number of true positives, false negatives, true nega-
tives and false positives, respectively.

To reduce the bias caused by random sample splitting, we implemented 5 times 5-CV 
and used the average values of the evaluation metrics.

Effect of parameters

Since the selection of hyperparameters affects the final prediction results, it’s neces-
sary to find the relatively optimal hyperparameters, including the GCN embedding size, 
number of filters in CNN, number of GCN layers and number of base classifiers. The 
embedding size of lncRNAs and diseases in GCN could affect their final representations 
to a large extent, the dimension of the ultimate representations of lncRNAs and diseases 
was decided by the number of CNN filters, the number of GCN layers affects the num-
ber of feature matrices extracted by GCN, the number of base classifiers in the stack-
ing ensemble model determines the input dimension of the LogisticRegression classifier. 
GCN embedding size was chosen from {16,32,64,128,256}, number of filters in CNN 
was chosen from {16,32,64,128,256}, number of GCN layers was chosen from {1,2,3,4,5}, 
number of base classifiers was chosen from {5,10,15,20,25}. We compared the perfor-
mance of MAGCNSE using different values of hyperparameters under 5-CV, such that 
only one of the hyperparameters was changed each time, the results are shown in Fig 1. 
When the AUC value reached the maximum, we selected corresponding value of hyper-
parameters. In this paper, we set the GCN embedding sizes, numbers of filters in CNN 
and numbers of GCN layers to 128, 128, 2, respectively. Specifically, the AUC value was 
slightly influenced by the number of base classifiers. Aiming to reduce complexity and 
the running time of MAGCNSE, we used 5 base classifiers in this paper.

Ablation studies

For the representation learning, to validate the necessity of using multiple GCN layers 
and adding the attention mechanism and CNN, we used 5-CV to compare MAGCNSE 
with the following four variants. (1) MAGCNSE-fgl: uses only the feature matrices gen-
erated by the first GCN layer and ignores the subsequent GCN layers, while the attention 
mechanism and CNN are still applied. (2) MAGCNSE-natt: uses multiple GCN layers 
and applies CNN to fuse them but does not use the attention mechanism; different fea-
ture matrices of lncRNAs and diseases extracted from GCN are given the same weights. 
(3) MAGCNSE-nattcnn: removes both the attention mechanism and CNN and only uses 
multiple GCN layers, then assigns the same weights to them. (4) MAGCNSE-ncnn: the 

(4)Precision =
TP

TP + FP

(5)F1- score =
2× Precision× Recall

Precision+ Recall

(6)MCC =
TP × TN − FP × FN

√
(TP + FN )× (TP + FP)× (TN + FN )× (TN + FP)
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feature matrix generated by multiple GCN layers is still applied, and attention mecha-
nism is also applied, but CNN is not used for fusion.

It can be seen from Fig  2 and Table  1 that MAGCNSE achieved a superior predic-
tion performance to its variants on all evaluation metrics. Compared with MAGCNSE-
fgl, MAGCNSE uses multiple GCN layers rather than one GCN layer, so it gets more 

Fig. 1  Performance of MAGCNSE using different parameters. (a) Comparison of the AUC values under 
different GCN embedding sizes. (b) Comparison of the AUC values under different number of filters in CNN. 
(c) Comparison of the AUC values under different number of GCN layers. (d) Comparison of the AUC values 
under different number of base classifiers

Fig. 2  ROC curves (a) and PR curves (b) of MAGCNSE and its variants

Table 1  Comparison of the evaluation metrics between MAGCNSE and its four variants

The bold number is the highest value of each column and its clarifies the superiority of our model

Method Accuracy Sensitivity Specificity Precision F1- score MCC

MAGCNSE-fgl 0.9029 0.9013 0.9043 0.8984 0.8998 0.8056

MAGCNSE-natt 0.9013 0.9068 0.8959 0.8952 0.901 0.8026

MAGCNSE-nattcnn 0.8885 0.9003 0.8783 0.8647 0.8822 0.7771

MAGCNSE-ncnn 0.9013 0.896 0.907 0.9128 0.9043 0.8025

MAGCNSE 0.9395 0.9192 0.9626 0.9654 0.9417 0.88
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feature matrices. The results support the conclusion that different information may lie 
in the neighbors with different distances in the similarity network, and the performance 
may thus be enhanced by integrating their information. Compared with MAGCNSE-
natt, MAGCNSE assigns weights to different feature matrices of lncRNAs and diseases 
through the attention mechanism. The results indicate the importance of using differ-
ent feature matrices extracted from GCN, which is different when different views are 
applied, and the performance can be improved by importing the attention mechanism. 
Compared with MAGCNSE-ncnn, MAGCNSE uses CNN to fuse data and further 
extract the representations, the results show the effectiveness of CNN in processing 
multi-channel feature matrices. Compared with MAGCNSE-nattcnn, MAGCNSE does 
not only use the attention mechanism, but also employs the CNN. It can be noted that 
MAGCNSE-natt and MAGCNSE-ncnn outperform MAGCNSE-nattcnn, which further 
shows the effectiveness of both the attention mechanism and CNN in this study.

For the classification task, we compared the entire stacking ensemble model with sin-
gle base classifiers and the LogisticRegression classifier under 5-CV.

From Fig 3 and Table 2, we can learn that the stacking ensemble model outperforms 
the six single classifiers on all evaluation metrics. It proves that the stacking ensem-
ble model can achieve more robust performance than single traditional ML classifiers. 
The reason for the improvement in the MAGCNSE performance lies in the ability of 
the stacking ensemble model to average out noise from different single models and thus 

Fig. 3  ROC curves (a) and PR curves (b) of MAGCNSE and traditional ML classifiers

Table 2  Comparison of the evaluation metrics between MAGCNSE and six traditional machine 
learning classifiers

The bold number is the highest value of each column and its clarifies the superiority of our model

Method Accuracy Sensitivity Specificity Precision F1- score MCC

RandonForest 0.8945 0.877 0.9120 0.9089 0.8926 0.7896

ExtraTrees 0.8958 0.8859 0.9057 0.9042 0.8948 0.7921

XGBoost 0.9076 0.9101 0.9050 0.9056 0.9078 0.8153

LightGBM 0.9037 0.9031 0.9044 0.9052 0.9036 0.8085

CatBoost 0.9108 0.9146 0.9070 0.9079 0.9111 0.8218

LogisticRegression 0.8652 0.8470 0.8834 0.8792 0.8627 0.7312

MAGCNSE 0.9395 0.9192 0.9626 0.9654 0.9417 0.88
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enhance the generalizable signal. Each individual classifier may have its weaknesses and 
biases on the datasets, but they can be countered with the strengths of other classifiers 
in the stacking ensemble model [37].

Comparison of GCN and other graph neural network models

Many graph neural network (GNN) models have been recently applied in the field of 
bioinformatics. Hence, we selected two advanced GNN models, graph attention network 
(GAT) [38] and graph sample and aggregate (GraphSAGE) [39] to compare with GCN. 
The difference between GCN and GAT lies in that GCN explicitly assigns non-paramet-
ric weights to the neighbor nodes, while GAT implicitly captures the different weights 
to neighbor nodes via the neural network architecture during the aggregation process. 
GraphSAGE proposes a batch-training algorithm and adopts sampling to obtain a fixed 
number of neighbors for each node, while training GCN usually requires using the whole 
graph data [40]. We used these three GNN models to extract features from the similar-
ity graphs of different views of lncRNAs and diseases, and kept the subsequent modules 
of MAGCNSE unchanged for a fair comparison. Table 3 illustrated that GCN performs 
better than GAT and GraphSAGE for our task, which verifies the effectiveness of GCN 
for feature extraction in this study.

Comparison with other state‑of‑the‑art methods

To evaluate the overall performance of MAGCNSE, we compared it with six recently 
proposed state-of-the-art models: LDNFSGB [33], IPCARF [36], VGAELDA [41], 
RSWF-BLP [42], LDASR [32], GCRFLDA [43]. To be fair, we evaluated all the above-
mentioned methods utilizing 5-CV on the same datasets of lncRNAs and diseases, 
and we used AUC and AUPR value as the evaluation metrics. As shown in Fig  4, the 
LDNFSGB, IPCARF, VGAELDA, RSWF-BLP, LDASR and GCRFLDA models achieved 
AUC values of 0.9573, 0.9505, 0.9325, 0.9654, 0.8908 and 0.9547, respectively, while 
MAGCNSE achieved the highest AUC value of 0.9812, outperforming other models 
by 1.58–9.04% . Besides, the LDNFSGB, IPCARF, VGAELDA, RSWF-BLP, LDASR and 
GCRFLDA models achieved AUPR values of 0.9543, 0.9607, 0.9547, 0.9686, 0.9102 and 
0.9611, respectively, while MAGCNSE achieved the highest AUPR value of 0.9849, out-
performing other models by 1.63–7.47% . The superiority of MAGCNSE over the other 

Table 3  Comparison of the AUC values and AUPR values of MAGCNSE using GCN and other graph 
models

Method GAT​ GraphSAGE GCN

AUC​ 0.9668 0.9713 0.9812
AUPR 0.9713 0.9723 0.9849
Accuracy 0.9045 0.9188 0.9395
Sensitivity 0.8929 0.9231 0.9192

Specificity 0.9156 0.9142 0.9626
Precision 0.9106 0.9202 0.9654
F1- score 0.9016 0.9217 0.9417
MCC 0.8089 0.8374 0.88
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state-of-the-art methods further proves that MAGCNSE is competent and reliable in 
predicting underlying LDAs. The detailed parameters used by the seven methods are 
added into the Additional file 1: Table S1.

Effect of different views

In order to confirm whether the results are better as expected after using multi-view fea-
tures, we applied 5-CV to compare the AUC value and AUPR value of MAGCNSE under 
different views. 

It can be known from Fig 5 that using multi-view features can generally enhance the 
performance of MAGCNSE, and MAGCNSE achieves the best performance when all 
views of lncRNAs and diseases were leveraged in this study. In most cases, as the num-
ber of views increased, the AUC and AUPR values also increased. The possible reason 
could be that different views contain different information, and the node features are 
enriched by fusing different views.

Case studies

In order to further verify the performance of MAGCNSE in predicting the associations 
between lncRNAs and some specific diseases, we conducted two types of case studies. 
Our data were all obtained from LncRNADisease v2.0 [44] (http://​www.​rnanut.​net/​
lncrn​adise​ase/) and used for the model training. The PubMed literature and two external 

Fig. 4  ROC curves (a) and PR curves (b) of MAGCNSE and other state-of-the-art methods

Fig. 5  AUC values and AUPR values of MAGCNSE using different views

http://www.rnanut.net/lncrnadisease/
http://www.rnanut.net/lncrnadisease/
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databases of Lnc2Cancer 3.0 [45] (http://​bio-​bigda​ta.​hrbmu.​edu.​cn/​lnc2c​ancer/) and 
MNDR v3.1 [46] (https://​www.​rna-​socie​ty.​org/​mndr/) were used for verifying the 
results.

In the first type of case studies, we aimed at verifying the performance of MAGCNSE 
for unknown LDAs prediction. For a specific disease, the detailed steps of case studies 
are as follows. Step 1: use all known LDAs as the positive samples, and randomly select 
the same number of negative samples from the unknown LDAs, the negative samples do 
not involve the specific disease. Step 2: select all unknown associations between lncR-
NAs and the specific disease as the testing samples. Step 3: after training MAGCNSE 
using the positive and negative samples, use it to test the lncRNA-disease testing sam-
ples, and record the prediction scores of the testing samples. Step 4: sort the prediction 
scores from the highest to the lowest, and find the top 10 lncRNAs related to that dis-
ease. Step 5: validate the results according to Lnc2Cancer 3.0 and MNDR v3.1. If no evi-
dence is found in the two databases, then refer it to PubMed literature. Here, we selected 
colon cancer and lung cancer as the research subjects.

Colon cancer is one of the most serious cancers that is related to the digestive system 
[47]. Table 4 illustrates that eight of the top 10 lncRNAs were confirmed. For example, 
colon cancer’s epithelial-mesenchymal transition process is affected by AFAP1-AS1 [48]. 
The capacity of colon cancer cells to proliferate and migrate is impaired when PCAT1 
expression is suppressed [49].

Lung cancer is a common cause for death globally, which includes non-small-cell lung 
cancer (NSCLC) and small-cell lung cancer (SCLC) [50]. Table  5 illustrates that eight 
of the top 10 lncRNAs were confirmed. For example, through targeting miR-150-5p/
HMGA2 signaling, lncRNA-ZFAS1 knockdown inhibits NSCLC progression [51]. 
CRNDE acts as an oncogene to sponge miR-338-3p, which plays a crucial regulatory role 
in regulating NSCLC development [52].

To demonstrate whether MAGCNSE is capable of accurately retrieving known 
LDAs for a specific disease, we conducted the second type of case studies. For a spe-
cific disease, the detailed steps are as follows. Step 1: remove all associations related 
the specific disease from the known LDAs to treat it as a new disease, use the remain-
ing known LDAs as the positive samples, and randomly select the same number of 
negative samples from the unknown LDAs, the negative samples do not involve the 

Table 4  The top 10 predicted colon cancer-associated lncRNAs

Rank lncRNA name Evidence

1 CDKN2B-AS1 MNDR v3.1

2 NPTN-IT1 Unconfirmed

3 HOXA11-AS Unconfirmed

4 AFAP1-AS1 Lnc2Cancer 3.0, MNDR v3.1

5 PCAT1 PMID:33277833

6 GAS5 Lnc2Cancer 3.0, MNDR v3.1

7 CRNDE MNDR v3.1

8 CASC2 PMID:32655801

9 SNHG16 Lnc2Cancer 3.0, MNDR v3.1

10 SPRY4-IT1 PMID:28651500

http://bio-bigdata.hrbmu.edu.cn/lnc2cancer/
https://www.rna-society.org/mndr/
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specific disease. Step 2: select the sample pairs between all lncRNAs and the specific 
disease as the testing samples. Step 3: after MAGCNSE is trained using the positive 
and negative samples, use it to test the lncRNA-disease testing samples, and record 
the prediction scores of the testing samples. Step 4: sort the prediction scores from 
the highest to the lowest, and find the top 10 lncRNAs related to that disease. Step 
5: validate the results by referring to LncRNADisease v2.0. If no evidence is found 
in this database, then refer it to Lnc2Cancer 3.0, MNDR v3.1 and PubMed literature. 
Here, cervical cancer was chosen as the research subject.

Cervical cancer is a very prevalent condition in women [53]. Table 6 shows that all 
of the top 10 lncRNAs were confirmed by LncRNADisease v2.0, which means that 
MAGCNSE could retrieve known LDAs for a single disease with a high accuracy. For 
example, knockdown of CCAT2 could trigger the apoptosis of cervical cancer cells 
and CCAT2 have promotive effect on cervical cancer cells’ proliferation and survival 
[54]. Overexpression of HOTAIR is related to cervical cancer progression; thus, it 
could be further investigated for diagnosis and gene therapy [55].

Table 5  The top 10 predicted lung cancer-associated lncRNAs

Rank lncRNA name Evidence

1 ZFAS1 PMID: 31692094

2 LINC-ROR Lnc2Cancer 3.0, MNDR v3.1

3 CRNDE PMID: 30554121

4 HOXA11-AS Lnc2Cancer 3.0, MNDR v3.1

5 CYTOR MNDR v3.1

6 PTENP1 Unconfirmed

7 XIST MNDR v3.1

8 DRAIC PMID: 30544991

9 NEAT1 Lnc2Cancer 3.0, MNDR v3.1

10 NPTN-IT1 Unconfirmed

Table 6  The top 10 predicted cervical cancer-associated lncRNAs

Rank lncRNA name Evidence

1 CCAT2 LncRNADisease v2.0

2 MALAT1 LncRNADisease v2.0

3 H19 LncRNADisease v2.0

4 TUG1 LncRNADisease v2.0

5 CDKN2B-AS1 LncRNADisease v2.0

6 UCA1 LncRNADisease v2.0

7 HOTAIR LncRNADisease v2.0

8 MEG3 LncRNADisease v2.0

9 CCAT1 LncRNADisease v2.0

10 GAS5 LncRNADisease v2.0
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The detailed prediction scores of all predicted lncRNAs with the above-mentioned 
diseases are given in Additional file 1: Table S2, Additional file 1: Table S3 and Addi-
tional file 1: Table S4.

Conclusions
The prediction of potential LDAs can help to detect disease biomarkers and perform 
disease analysis and prevention, using computational methods to efficiently pre-
dict LDAS is of great importance. In this study, we developed a novel model called 
MAGCNSE to identify potential LDAs. MAGCNSE first uses GCN to fuse multi-
view similarity graphs of lncRNAs and diseases and obtain multiple feature matri-
ces. Then, it applies the attention mechanism to adaptively assign the weights to 
different feature matrices. Next, it further extracts features with the use of the CNN 
to get the final representations of lncRNAs and diseases. Finally, it utilizes a stack-
ing ensemble classifier to make the predictions. Compared with previous models 
in the field of LDA prediction, multi-view data of lncRNAs and diseases were used 
in this study, and MAGCNSE used lncRNA sequence similarity, then MAGCNSE 
utilized deep learning methods rather than linear methods for data fusion to learn 
the representations of lncRNAs and diseases, and MAGCNSE employed a stacking 
ensemble model rather than single ML classifiers for the final prediction task. We 
performed experiments on the effect of parameters, ablation studies in both rep-
resentation learning methods and classification methods, experiments comparing 
GCN with two other GNN models, comparison studies with other state-of-the-art 
methods, experiments on the effect of different views and two types of case studies. 
All results demonstrate the outstanding performance of MAGCNSE in predicting 
potential LDAs.

However, there are still some aspects in our study that can be further investigated. 
Firstly, we only use the information of lncRNAs and diseases, there are some other 
biological information such as miRNA, protein and drug could also be considered for 
further research. In addition, the way to select, integrate and extract the features of lncR-
NAs and diseases for by more effective and superior deep learning methods is a long-
term challenge in the future.

Methods
Human lncRNA‑disease associations

In this study, we retrieved known LDAs from LncRNADisease v2.0, which includes 
10564 experimentally validated associations between 6105 lncRNAs and 451 diseases 
among several species. First, we selected only human LDAs and removed duplicated 
records, then filtered out lncRNAs with no sequence information from NONCODE 
v6.0 [56] (http://​www.​nonco​de.​org/) and diseases with no DOID from Disease Ontol-
ogy [57] (https://​disea​se-​ontol​ogy.​org/). Finally, we obtained 1569 human LDAs 
between 489 lncRNAs and 251 diseases. We define an adjacency matrix LD ∈ Rl×d to 
represent LDAs, such that LD(i, j) = 1 if lncRNA li interacts with disease dj , otherwise 
LD(i, j) = 0.

http://www.noncode.org/
https://disease-ontology.org/


Page 13 of 22Liang et al. BMC Bioinformatics          (2022) 23:189 	

Disease semantic similarity

In studies of ncRNA-disease associations, DSS has been extensively used in recent years 
and has been proved to be effective. It is calculated by Wang’s method [58], in which 
the Medical Subject Headings (MeSH) descriptions of diseases is downloaded from 
the National Library of Medicine (https://​www.​nlm.​nih.​gov/), and the directed acyclic 
graphs (DAGs) for diseases can be constructed afterwards. The disease di is defined such 
that DAG(di) = (di,D(di)) , where D(di) represents all ancestor nodes of di and node di 
itself. For each disease t that belongs to D(di) , its contribution to disease di can be com-
puted as follows:

where ξ denotes a contribution factor, it’s generally set to 0.5.
The total contributions of D(di) to disease di can be computed as follows:

Then, the DSS matrix can be computed as follows:

We used the DOSE software package [59] to calculate the DSS. We obtained the unique 
DOID of each disease from Disease Ontology, and then utilized the function doSim of 
the DOSE software and selected the measure method of “Wang” to get the DSS matrix.

LncRNA functional similarity

It has been previously observed that functionally comparable lncRNAs are frequently 
linked with similar diseases. We followed the previous works [60] to calculate LFS in this 
work. Given that lncRNAs li and lj are relevant to p diseases and q diseases, respectively, 
then the LFS can be calculated as:

where D(li) represents the disease set associated with lncRNA li.

LncRNA sequence similarity

Following previous studies [61, 62], we utilized Levenshtein distance [63] to calculate 
LSS. The Levenshtein distance means the minimum cost of converting one string to 
another string through the insertion, deletion, or replacement of a single character. In 
previous studies, the editing cost was set to 2, while the insertion cost and deletion cost 

(7)
{

DSdi(t) = 1 if t = di
DSdi(t) = max

{

ξ × DSdi(t
′) | t ′ ∈ D(di)

}

otherwise

(8)DC(di) =
∑

t∈D(di)
DSdi(t)

(9)DSS(di, dj) =

∑

t∈D(di)∩D(dj) (DSdi(t)+DSdj (t))

DC(di)+ DC(dj)

(10)LFS(li, lj) =

∑

d∈D(lj)
S(d,D(li))+

∑

d∈D(li)
S(d,D(lj))

p+ q

(11)S(dm,D(li)) = max
d∈D(li)

(DSS(dm, d))

https://www.nlm.nih.gov/
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were set to 1, and we followed the same criterion in our study. The LSS is calculated as 
follows:

where dist denotes the minimum cost of converting lncRNA li sequence to lj sequence, 
len is length of lncRNA sequence.

Gaussian interaction profile kernel similarity for lncRNAs and diseases

Based on previous works [58], LGS can be computed as:

where ηl denotes the standardized core bandwidth for lncRNA similarity calculation 
which is generally set to 1, and Nl denotes the number of lncRNAs.

Similarly, for diseases, DGS is computed as follows:

where ηd denotes the standardized core bandwidth for disease similarity calculation, and 
Nd denotes the number of diseases.

Model framework

The main workflow of MAGCNSE is shown in Fig 6, consisting of four steps. (1) Since 
the similarity matrices between lncRNAs and diseases can be regarded as graph struc-
tures, we extracted the features from similarity graphs of different views of lncRNAs 
and diseases via GCN to obtain multiple feature matrices. (2) Attention mechanism was 
applied on the acquired feature matrices of lncRNAs and diseases to adaptively capture 
the importance and assign weights to them. (3) We used the CNN to further extract 
features from multi-channel feature matrices to acquire the final representations of 
lncRNAs and diseases. During the above-mentioned procedures, a temporary matrix 
was calculated in each training epoch, such that each element of it was the correspond-
ing dot product of each lncRNA representation and disease representation. Then, the 
difference between the lncRNA-disease adjacency matrix and temporary matrix was 
obtained, and the Frebious norm of it was later computed. Subsequently, the parameters 
of the model were updated in each training epoch by minimizing the Frebious norm. (4) 
For the positive and negative lncRNA-disease pairs concatenated by the representaion of 

(12)LSS(li, lj) = 1−
dist

len(li)+ len(lj)

(13)LGS(li, lj) = exp(−ηl
∥

∥LD(i, :)− LD(j, :)
∥

∥

2
)

(14)ηl = 1
�





1

Nl

Nl
�

i=1

�LD(i, :)�2




(15)DGS(di, dj) = exp(−ηd
∥

∥LD(:, i)− LD(:, j)
∥

∥

2
)

(16)ηd=1/(
1

Nd

Nd
∑

i=1

�LD(:, i)�2)
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lncRNAs and diseases, the stacking ensemble classifier, consisting of multiple traditional 
ML classifiers was leveraged to perform LDA predictions.

Multi‑view graph convolutional network

Due to its excellent capacity of data processing and suitability for data with a graph 
structure, GCN has been extensively used in bioinformatics and other fields in recent 
years [64]. GCN can aggregate the information of neighbor nodes to obtain the 
dependency relationship between nodes and extract the data features. In our work, 
GCN was applied with the purpose of extracting features of the lncRNA and disease 
similarity matrices under diverse views, as illustrated in Fig 6. Gr

l  and Gs
d denote the 

specific view of the lncRNA and disease, respectively. Given that lncRNA li is denoted 
as xi ∈ R1×p , the neighbors of the lncRNA in view r are represented as {i1, i2, . . . , it} , 
and the related features of the neighbors are represented as 

{

xi1 , xi2 , . . . , xit
}

 . When 
the embedding of a lncRNA node is learned, the similarity with the neighbor nodes 
should be considered. Then, the representation of the i-th lncRNA under view r can 
be calculated by the following formula:

(17)x′i = ReLU









∼
ri,i xi +

t
�

j=1

∼
ri,j xij



Wi





Fig. 6  The flowchart of MAGCNSE. Step 1: extract features from the 3 views of similarity graphs of 
lncRNAs and 2 views of similarity graphs diseases utilizing GCN. Step 2: leverage attention mechanism 
for adaptively assigning weights to different feature matrices of lncRNAs and diseases. Step 3: acquire the 
final representations of lncRNAs and diseases by further extracting features from the multi-channel feature 
matrices of lncRNAs and diseases using the CNN. Step 4: employ a stacking ensemble classifier to make LDA 
predictions



Page 16 of 22Liang et al. BMC Bioinformatics          (2022) 23:189 

where ∼
ri,j denotes the normalized similarity weights between the i-th lncRNA and its 

neighbor ij under view r, while Wi ∈ Rp×Fl denotes the weight parameters that project 
the original feature of the i-th lncRNA into the latent feature.

Given the propagation formula of single lncRNA nodes in view r, the representa-
tions of the lncRNA nodes on the graph Gr

l  can be acquired as follows:

where X (l)
r ∈ RL×Fl denotes the Fl embedding of L lncRNAs in the l-th GCN layer in view 

r. Specifically, the value of the initial embedding X (0)
r  is randomly generated.W (l)

r ∈ RFl×Fl 
denotes the weight parameters, R denotes the similarity matrix of all lncRNAs,

∼
R is the 

normalized similarity weights of lncRNAs in view r, and 
∼
Dr is the diagonal matrix which 

is computed as follows:

Similarly, the representations of the disease nodes on graph Gs
d can be calculated as 

follows:

where Y (l)
s ∈ RT×Fd denotes the Fd embedding of T diseases in the l-th GCN layer in 

view s. Specifically, Y (0)
s  denotes the initial embedding value, which is randomly gener-

ated. W (l)
s ∈ RFd×Fd denotes the weight parameters, 

∼
S denotes the normalized similarity 

weights of diseases in view s, and 
∼
Ds is the corresponding diagonal matrix.

Given the embeddings of lncRNAs and diseases in multiple GCN layers in diverse 
views and that the GCN has l layers, the embeddings of lncRNAs in view r and those of 
diseases in view s can be denoted as follows:

Finally, the features of lncRNAs in R views and the features of diseases in S views 
extracted by the GCN are as follows:

(18)X (l+1)
r = ReLU

(

∼
Dr

− 1
2 ∼
R

∼
Dr

− 1
2

X (l)
r W (l)

r

)

(19)∼
R = I + R

(20)
∼
Dr(i, i) =

∑

j

∼
R(i, j)

(21)Y (l+1)
s = ReLU

(

∼
Ds

− 1
2 ∼
S

∼
Ds

− 1
2

Y (l)
s W (l)

s

)

(22)∼
S = I + S

(23)
{

X (1)
r ,X (2)

r , . . . ,X (l)
r

}

(24)
{

Y (1)
s ,Y (2)

s , . . . ,Y (l)
s

}

(25)
{{

X
(1)
1 ,X

(2)
1 , . . . ,X

(l)
1

}

,
{

X
(1)
2 ,X

(2)
2 , . . . ,X

(l)
2

}

, . . . ,
{

X
(1)
R ,X

(2)
R , . . . ,X

(l)
R

}}
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Attention mechanism

We found the multiple feature matrices under different views to be similar to multiple 
channels of an image, but with potentially different importance. With reference to the study 
[65], we applied the technique of the attention mechanism to adaptively capture the impor-
tance and assign weights to feature matrices of lncRNAs and diseases. First, channel-wise 
statistics were obtained through a global average pooling operation. For lncRNA, we define 
a statistic Z ∈ R1×1×Cl

in , which can be obtained by squeezing the lncRNA feature matrices 
set Xl ∈ RFl×L×Cl

in via the spatial dimensions of Fl × L , where Xl = [x1, x2, . . . , xCl
in
] . The 

k-th element of Z was calculated as:

where xk is the k-th feature matrices of the lncRNA.
Then, the attention weights for the feature matrices of lncRNA can be calculated as 

follows:

where σ and δ represent the Sigmoid function and ReLU function, respectively, 
W1 ∈ R(Cl

in×µ)×Cl
in and W2 ∈ RCl

in×(Cl
in×µ) denote the weight parameters in the first and 

second fully connected layers, respectively. The µ is a hyperparameter, we chose the 
value of µ from {2,3,4,5,6} and kept other parameters in MAGCNSE unchanged to find 
the relatively optimal value of µ in this study. The AUC value and AUPR value of MAGC-
NSE using different values of µ are given in Additional file 1: Table S5, from which we 
can see that MAGCNSE achieves the best performance when the value of µ is 5, so we 
set µ to 5 in this study.

Given the weight of each feature matrix of lncRNA, each normalized feature matrix of 
lncRNA can be obtained as follows:

Therefore, the entire normalized feature matrices of lncRNA can be denoted as 
∼
Xl = [

∼
x1,

∼
x2, . . . ,

∼
xCl

in
] . Analogously, the entire normalized feature matrices of disease 

∼
Yd = [∼y1,

∼
y2, . . . ,

∼
yCd

in
] can be obtained by the same above-mentioned steps.

Convolutional neural network

The normalized multiple channel’s feature matrices of lncRNAs and diseases can be 
regarded as an image of lncRNAs and an image of diseases, respectively. In the bioinformat-
ics field, CNNs have become extensively exploited due to their excellent image processing 
abilities in recent years [66, 67]. Therefore, we utilized the CNN to further extract the 

(26)
{{

Y
(1)
1 ,Y

(2)
1 , . . . ,Y

(l)
1

}

,
{

Y
(1)
2 ,Y

(2)
2 , . . . ,Y

(l)
2

}

, . . . ,
{

Y
(1)
S ,Y

(2)
S , . . . ,Y

(l)
S

}}

(27)zk = Fsq(xk) =
1

Fl × L

Fl
∑

i=1

L
∑

j=1

xk(i, j)

(28)Zatt = Fatten(Z,W
l
in) = σ(W2δ(W1Z))

(29)
∼
xk = Fscale(xk , z

att
k ) = zattk • xk
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features of lncRNAs and diseases. Given that 
∼
Xl = [

∼
x1,

∼
x2, . . . ,

∼
xCl

in
] , the embedding of the 

q-th output channel can be calculated as follows:

where ⊗ means the convolution operation, wl
q ∈ RFl×1 denotes the q-th convolution fil-

ter, while bq denotes the q-th bias.
Then, the final lncRNA representations X ′

l ∈ RCl
out×L can be obtained by stacking the 

embeddings of all channels, it is defined as:

Analogously, the final disease representations Y ′
d can be obtained.

During the above-mentioned procedures, MAGCNSE calculates a temporary matrix 
LD′ in each training epoch, which is defined as:

Each element of LD′ represents the dot product of each corresponding lncRNA rep-
resentation and disease representation. Then, the difference between LD and LD′ 
is obtained, we define the Frebious norm of it as the Loss, which can be computed as 
follows:

The parameters of the model are updated in each training epoch by minimizing the Loss 
term.

(30)Loutq =
Cl
in

∑

i=1

∼
xi ⊗wl

q + bq

(31)X ′
l = stack(Loutq)

(32)LD′ = X
′
l
T • Y

′
d

(33)Loss =
∥

∥LD′ − LD
∥

∥

2

F

Fig. 7  The flowchart of the stacking ensemble classifier
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Stacking ensemble classifier

Fig 7 shows the stacking ensemble framework, containing two layers. The base clas-
sifiers were five classic tree-based classifiers (XGBoost, LightGBM, RandomForest, 
ExtraTrees, CatBoost), which is generally capable of processing unnormalized features 
well [68]. Meanwhile, LogisticRegression was applied as the meta classifier for the 
results of the five above-mentioned base classifiers. For base classifiers, we used a grid 
search approach with 5-CV to identify the optimal hyperparameters. In the following, 
we explain the detailed process of the stacking ensemble.

(1) We use 80% and 20% of the datasets as the training set and testing set, respectively. 
(2) The base classifier was trained via 5-CV using the training set. For each cross-val-
idation, the base classifier calculated the prediction values in the training and testing 
datasets, separately. (3) For base classifiers, MAGCNSE integrated the prediction results 
from the training dataset, which are marked as A1, A2, A3, A4 and A5, they were used 
as the training dataset of the subsequent LogisticRegression algorithm. Besides, MAGC-
NSE calculated the average value of the prediction results on the testing dataset, which 
are marked as B1, B2, B3, B4 and B5, they were used as the testing dataset of the Logis-
ticRegression algorithm. (4) The LogisticRegression classifier searched for the optimal 
hyperparameters by utilizing a grid search with 5-CV on the integrated training dataset, 
then we used the integrated training dataset to train it. (5) Finally, the LogisticRegression 
classifier predicted the testing samples and obtained the final predicted class labels and 
probabilities for each lncRNA-disease pair.

The key hyperparameters of the six traditional classifiers and their optimal value after 
grid search are shown in Table 7.

Abbreviations
lncRNAs: Long non-coding RNAs; LDAs: LncRNA-disease associations; ML: Machine learning; PCA: Principal component 
analysis; CNN: Convolutional neural network; RF: Random forest; GCN: Graph convolutional network; DSS: Disease 
semantic similarity; DGS: Disease Gaussian interaction profile kernel similarity; LFS: LncRNA functional similarity; LSS: 
LncRNA sequence similarity; LGS: LncRNA Gaussian interaction profile kernel similarity; 5-CV: 5-fold cross-validation; ROC: 
Receiver-operating characteristic; AUC​: Area under the ROC curve; PR: Precision-recall; AUPR: Area under the PR curve; 
MCC: Matthews correlation coefficient; GNN: Graph neural network; GAT​: Graph attention network; GraphSAGE: Graph 
sample and aggregate; NSCLC: Non-small-cell lung cancer; SCLC: Small-cell lung cancer; MeSH: Medical subject head‑
ings; DAGs: Directed acyclic graphs..

Table 7  Key hyperparameters of the six traditional classifiers and their optimal value after grid 
search

Method Optimal hyperparameters

RandonForest max_feature=10; min_sample_split=2; n_estimators=2000

ExtraTrees max_feature=10; min_sample_split=2; n_estimators=2000

XGBoost learning_rate=0.05; max_depth=4; gamma=0; n_estimators=1000

LightGBM learning_rate=0.15; max_depth=10; num_leaves=31; n_estimators=200

CatBoost depth=3; iteration=800; learning_rate=0.1; border_count=32; l2_leaf_reg=5

LogisticRegression C=20.0; max_iter=40; penalty=‘l2’
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