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Abstract: The finite element method (FEM) represents a computer simulation method, originally used
in civil engineering, which dates back to the early 1940s. Applications of FEM have also been used in
numerous medical areas and in orthopedic surgery. Computing technology has improved over the
years and as a result, more complex problems, such as those involving the spine, can be analyzed. The
spine is a complex anatomical structure that maintains the erect posture and supports considerable
loads. Applications of FEM in the spine have contributed to the understanding of bone biomechanics,
both in healthy and abnormal conditions, such as scoliosis, fractures (trauma), degenerative disc
disease and osteoporosis. However, since FEM is only a digital simulation of the real condition, it
will never exactly simulate in vivo results. In particular, when it concerns biomechanics, there are
many features that are difficult to represent in a FEM. More FEM studies and spine research are
required in order to examine interpersonal spine stiffness, young spine biomechanics and model
accuracy. In the future, patient-specific models will be used for better patient evaluations as well as
for better pre- and inter-operative planning.

Keywords: finite element method; orthopedic applications; spine; scoliosis; osteoporosis; fracture

1. Introduction

The finite element method (FEM) represents a computer simulation method developed
for solving problems in civil and aeronautical engineering [1,2]. Applications of FEM have
been used in numerous medical areas [3]. Nowadays, FEM has become a useful tool
in orthopedic surgery, helping surgeons to better understand biomechanics in healthy
and pathological conditions. It has the additional benefit of prediction of the changes
in mechanical stress distribution around the implanted areas, helping prevent future
pathologies due to an incorrect implant position [4].

FEM was first applied in orthopedic biomechanics in the early 1970s to estimate
stresses in the human skeleton. Additionally, during 1980–1990, FEM was used in order to
investigate bone remodeling [5,6]. Computing science and technology have improved over
the years, so that more complicated problems, including those of the spine, can be analyzed
and studied. The first spine model was published in 1957 for pilot ejection studies [6].
Since then, numerous spring-mass models have been created, including dampers for
intervertebral disc representation [4]. The first promising disc model was proposed by
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Orne and Liu in 1970 [3,7]. Figure 1 shows a basic diagram of digital lumbar spine
reconstruction coming from computer tomography imaging. The obtained images were
converted into a stereolithography (STL) file, or a 3-dimensional drawn format, from which
it was then possible to complete the stress analysis by FEM (Figure 1).
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Figure 1. The sequence to achieve 3D lumbar spine images from the computed tomography scan and
the application of the finite element method (FEM)-based stress analysis.

As Figure 2 shows, the number of articles on the application of FEM to the study of
the spine found in a PubMed database search using the keyword “finite element method”
and “spine” has increased five-fold from the 2000s through to 2020.
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The purpose of this literature overview is to emphasize FEM’s contribution to studying
the biomechanics of the spine, as well as to present its various applications. We conducted
a meticulous search for articles listed in the PubMed database, using mesh terms such
as “finite element method or finite element analysis”, “application of FEM” and “spine”,
with a cut-off date of July 2021. Citations in each article were reviewed to retrieve further
references which had not been identified during the initial search. The present literature
overview is limited to papers written in English and published in peer-reviewed journals.
Duplicate as well as irrelevant studies (e.g., papers investigating the use of FEM in dif-
ferent joints) were excluded. In particular, the possibilities and applications of FEM in
scoliosis, vertebral fractures, degenerative disc disease and osteoporosis are mentioned.
Finally, we discuss the objective weaknesses of FEM, as well as its future development
and improvement.

2. Functional Anatomy of the Spine

The spine is an anatomical structure with three-dimensional (3D) movements; it
maintains the erect posture and supports considerable loads. It also modifies its mechanical
characteristics based on the forces applied; hence, it acts as a “viscoelastic structure” [8].
The vertebral body comprises an anterior segment of cylindrical shape and a dorsal part.
Cancellous bone has a highly elastic behavior for a large range of stress rates as the elastic
moduli and its strength depends on its density. The width and depth of vertebral bodies
are inversely proportional due to the rising axial loads [9]. The intervertebral discs consist
of the nucleus pulposus centrally and the annulus fibrosus cyclically. The main role of the
annulus fibrosus is structural support and consists of concentric layers of collagen fibers,
helically wound. This structure results in an equal load distribution within the disc from
concentric axial forces. Eccentrically placed forces provoke the displacement and bulging
of the annulus on the side of the applied load, with an associated opposite displacement of
the nucleus pulposus. The orientation of annular fibrosus fibers varies and differs, resulting
in improved resistance to shearing and rotational loads [9].

Apart from the upper cervical spine, spinal units are connected by many ligaments
with non-linear elastic responses. They are passive stabilizers, providing translational and
tension-band support at the spinal column. The tension-band support is the result of the
ligament’s tensile strength and it acts through the moment arm. The anterior longitudinal
ligament (ALL) and posterior longitudinal ligament (PLL) are the main stabilizers of the
vertebral bodies. The ALL has strong physical properties and its position provides a
moment arm resisting extension. The PLL provides extension of the length of spine, but it
has less strength than the ALL [9].

3. Pathology of the Spine
3.1. Scoliosis

Scoliosis is a pathological lateral curvature of the spine, while vertebral bodies are
in rotation in the transverse plane (Figure 3). Most scoliosis cases are characterized as
idiopathic, while others can be caused by neuromuscular diseases, trauma or congenital
conditions [10]. Scoliosis is defined as a curvature of the spine in the coronal plane of
more than 10◦ [11]. Severe rigid scoliosis may lead to pathological processes, such as early
degeneration, injury of the vertebral column, and incomplete or even complete paralysis of
the lower extremities [12].

3.2. Fracture

Spine trauma is an incident followed by high morbidity and mortality, as well as
with additional severe consequences (Figure 3). The risk of spinal cord injury is greater in
cervical spine than thoracic or lumbar spine trauma. Management of spinal cord injuries
varies from external bracing with activity limitation, to more demanding approaches and
interventions. The management usually differs among trauma centers, but the main goal is
to select the least invasive technique for the stabilization of the injured segment [13].
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Figure 3. Assessment of the plain radiograph features with spine abnormalities in different patients.
(A) Anteroposterior long-cassette radiograph of an adolescent idiopathic scoliosis in a 15-year-old
patient with Risser 3; (B) Lateral plain lumbar spine x-ray reveals a typical wedge-shaped vertebral
deformity (white arrow), indicating a L1 fracture; (C) Lateral lumbar spine plain x-ray reveals moder-
ate disc space narrowing and anterior osteophytes (white arrows), indicating degeneration of the
lumbar disc; (D) Lateral lumbar spine plain x-ray reveals biconcave deformity of their endplates and
loss of more than 30% of the vertebral height (white arrows) in a patient with idiopathic osteoporosis.

3.3. Degenerative Disc Disease

Numerous genetic, biomechanical and anatomical variations are reported to be associ-
ated with degenerative disc disease (Figure 3). Degenerative alterations are sub-categorized
as annular fissures, degeneration and herniation [14]. Degenerative cervical spine issues
may be managed by dividing patient complaints into axial neck pain, myelopathy, radicu-
lopathy or even a combination of these conditions. It is very important to understand the
natural history of these disorders as well as the treatment options that can be taken into
account [15].

3.4. Osteoporosis

Osteoporosis is defined by low bone mass and disorganization of bone architecture,
with the result of compromised bone strength and increased fracture risk (Figure 3). Osteo-
porosis is also considered a silent disease, due to the fact that symptoms are usually absent
until the first fracture takes place, which is the most serious complication of this condition.
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Although vertebral fractures represent the most common osteoporotic fractures, they are
also the most underdiagnosed. Moreover, vertebral fractures are considered risk factors for
future fracture, with a fivefold increased risk of a future vertebral fracture and a twofold to
threefold increased risk of other fractures [16].

4. Application of FEM in the Spine
4.1. Scoliosis

Many types of FEM have been used in order to evaluate the results of scoliosis surgery
with various implants, etiology, progression of biomechanics and bracing biomechanics [17].
Biomechanical simulation of the surgical repair of a scoliotic spine may present useful
information for various techniques regarding the fixation sites and force levels [18]. FEM
could also enhance the knowledge and understanding of scoliosis’s development from a
mechanical standpoint [19,20].

FEM applications regarding the biomechanical analysis of scoliosis are categorized as
follows: (i) studies that contribute to a better understanding of the adolescent idiopathic
scoliosis etiology, (ii) studies improving brace management for moderate scoliosis cases, (iii)
studies ameliorating surgical management regarding severe deformities due to scoliosis,
and (iv) sensitivity analysis improving FEM’s precision.

A study in 2015 used FEM in order to examine the results of neighboring load trans-
fer before and after the surgical fusion of lumbar scoliosis with in vivo CT scans [19].
Intradiscal pressure, ROM and facet joint forces were estimated with the application of
compressive loads (extension, flexion, left lateral bending, right lateral bending, left axial
rotation, right axial rotation). A large effect on kinematics and kinetics was measured at the
fused level [21]. Thus, the surgeon might design the most appropriate pre-surgical strategy
to anticipate mid- and long-term adverse outcomes.

In addition, FEM has been used for the investigation of spinal concave–convex biases
in regard to scoliosis. FEM models evaluated the stress distribution through the vertebral
growth plates, vertebral wedging, and Cobb’s angle progression. Scoliosis progression with
time has also been studied and simulated with the aid of FEM analysis. Despite the fact
that FEM model has not been applied in everyday practice yet, it has displayed the precise
geometry as well as the material properties of the spine used, and has been able to simulate
scoliosis growth and depict non-progressive scoliosis. The Cotrel–Dubousset scoliosis
surgical approach was also simulated by FEM analysis. Spine geometry was derived from
a 3D reconstructive model, while mechanical characteristics were personalized with lateral
bending tests [22].

4.2. Fracture

FEM’s application in complex atlantoaxial fractures has also been investigated clin-
ically, in order to simulate the biomechanics of this injury [23,24]. Researchers studied
and evaluated the development of intracanal fracture fragments in thoracolumbar burst
fractures using a 3D FEM which was considered to be suitable for dynamic analysis [25,26].
Axial loading energy may result in burst vertebral fractures leading to the inability to
mechanically support the anterior, as well as the middle column; this type represents a
third of thoracolumbar fractures. Today, vertebral osteoporotic fractures are increasingly
frequent due to the aging population [27]. Research using FEM models has been done in
order to replicate trauma-related burst fractures of both normal and osteoporotic bones [28].
The main purpose of these models was to recognize the most appropriate fixation type, as
well as to identify the main differences between normal and osteoporotic bones, regarding
the ROM of posterior structure and implants’ stress distribution [29]. Moreover, the models
showed that osteoporotic bone decreases the structure stability and increases stress at both
upper and lower vertebrae, resulting in implant failure [27].

In another study, the authors evaluated the outcomes of FEM analysis in comparison
to the actual compression experiment from cadaveric thoracolumbar junctions, concluding
that bone strength and fracture regions may also be projected [30].
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A study published in 2020 proposed a thorough FEM of the spine to better reproduce
SCI resulting from vertebral fractures [31]. In particular, FEM was used to examine the
strain tolerated by the spinal cord through various parameters, as well as to analyze the
potential involvement of the posterior vertebral body wall. The features of ley fracture pat-
terns associated with SCI were recognized. These can be used for the better comprehension
of injuries from the biomechanical loading of the spinal cord during trauma [31].

Consequently, FEM is suitable for the analysis of compression fractures and other
conditions. FEM spinal models were built from medical imaging, while a strain analysis
was conducted with compression fracture models. These results suggest that spine models
derived from medical images can be used for many types of analysis [29]. For instance, FEM
models have been reported to be used in order to evaluate trauma mechanisms and the
effect of loading rate and ligament mechanical characteristics in lumbar spine injuries [32].
The aim was to measure the impact of sudden speed and ligament characteristics on the
lumbar spine reaction during flexion shearing conditions. The findings suggest that the
sudden velocity exerts an effect on the trauma mechanism as well as the final injury pattern.
Moreover, further anterior displacement and increased incidence of facet fracture was
reported, indicating an increased risk of instability and neurological deficit. These findings,
as an additional use of FEM, might also provide useful information regarding the alarming
effects deriving from trauma [32].

In one recent study, whole spine FEM models, including the rib cage, were created,
and a strain analysis was also conducted through compression fracture models [33]. The
findings indicated that the rib cage inclusion strengthened the thoracic spine stability and
that the thoracolumbar junction was more vulnerable to fractures. Thus, when spinal
disorders and internal fixation are simulated in the future, analysis using spine models
including the rib cage should be considered [34].

Specimen-specific FEMs, extracted from quantitative computed tomography (QCT),
also have the potential to precisely estimate failure loads in the vertebra. Furthermore,
the use of extended finite element modeling (X-FEM) gives the opportunity for a detailed
analysis of crack outset and diffusion in numerous materials. QCT-based finite element
models (QCT/FEM) can visualize vertebral architecture and geometry, as well as BMD
distribution [34]. X-FEM may contribute to crack initiation analysis, without requiring
repetitive adaptive remeshing or modeling of the discontinuity during crack diffusion. As a
result, the QCT/X-FEM model could be adjusted to other loading conditions and could be a
useful tool for future applications in fracture risk prediction in the elderly [34]. In addition,
FEMs could contribute to the comparison of biomechanical features of fixation techniques,
redistributed ROMs, von Mises stress of instrumentations, and intradiscal pressures (IDPs)
of the nearby fragment under displacement loading [35]. FEM was created to investigate
the mechanism of burst fractures under vertical impacting forces. The results provided
information about burst fractures, including the initiation, propagation and termination, as
well as the varieties of IDP, stress, contact force and vertebral bodies before and after burst
fractures [36].

4.3. Degenerative Disc Disease

FEM can be used to examine the following issues relating to degenerative disc dis-
ease: (a) the etiology of intervertebral disc degeneration (IVDD), including biological and
biomechanical pathogenesis, (b) the biology, biochemistry and biomechanics of IVDD, and
(c) the examination of biological and surgical management for IVDD [37–44]. In particular,
in a recent FEM study that ascertained the biomechanical consequences of a degenerated
L4–L5 segment, it was found that abnormal loading and motion in the degenerated models
enhanced degeneration in the neighboring normal segments [45,46]. Moreover, it was
reported that facet joint forces in neighboring healthy segments intensified as the degree
of disc degeneration rose. As a result, it can be concluded that a precise model of degen-
erated facet joints is essential for predicting future changes in facet joint loads following
disc degeneration.
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FEM models have also been performed for the biomechanical investigation of various
methods for managing multilevel myelopathy of the cervical spine [47–51]. For instance,
in a recent study, an intact C2–C7 spine model was generated. Four extra representations
were evolved from the fusion model. The biomechanical characteristics of the plate and
the disc of neighboring levels (C2/3, C6/7) were compared and analyzed. The study
introduced biomechanical evidence about the surgical treatment of cervical myelopathy
and also presented approaches for preventing or minimizing related complications [48].

In another study, FEM was used in order to analyze the biomechanical features of non-
continuous Anterior Cervical Discectomy and Fusion-ACDF with non-continuous Cervical
Disc Arthroplasty-CDA, comparing these two treatment options [38]. FEM models showed
that vibration loading noticeably augments stresses and strains in intervertebral discs of the
human spine when compared to equivalent static loading, which suggests that whole-body
vibration (WBV) sets the lumbar spine at a greater risk of disc degeneration [39].

Another important contribution of FEM is the biomechanically validated prediction
for both healthy and myelopathic spinal cord displacement when compared to in vivo
motions [49,52]. Spinal cord strain was raised during extension in the cervical myelopa-
thy FEM. All surgical methods were reported to affect spinal cord stress and strain [49].
Although surgery for cervical myelopathy is needed, findings show that it may not offer
optimal spinal cord mechanics. This emphasizes the need for future research to evaluate
the progression of post-surgery spinal cord strain and the necessity for an evolution in
medical device technology for the management of cervical myelopathy [49].

The outcomes extracted from FEM are quite reliable, indicating that it can simulate, to
some extent, the molecular, pathological and biomechanical characteristics of degenerated
intervertrebral discs. In regard to traditional research, the calculated results of FEM are
more quantitative and visualized. Additionally, FEM is typically performed to examine
phenomena that can only be explained by traditional technological methods and it can
reproduce the results over different time spans. Furthermore, due to its non-invasive
and repeatability characteristics, FEM is considered to be superior, in some aspects, in
comparison with other common research methods [53,54].

4.4. Osteoporosis

Vertebral body, intervertebral disc, surrounding ligaments and muscles may be sim-
ulated by FEM models and may also be used to describe spine-related biomechanical
particularities, as well as to analyze the stress allocation of the vertebral sections. As far as
osteoporosis is concerned, there are numerous studies that have used FEM models to assess
fracture risk, treatment comparison and biomechanics in the osteoporotic bones [54–64]. In
particular, it is reported that nonlinear CT/FEA had better distinctive ability for vertebral
fractures than lumbar spine BMD by DXA and QCT [55,59]. As a consequence, CT/FEA
may be useful as a substitute for DXA and QCT in depicting osteoporosis-related frac-
tures [55,59]. On top of that, as far as osteoporosis screening is concerned, there were
encouraging findings from another recent study which investigated the feasibility of using
routine clinical multidetector computed tomography (MDCT) scans for administering an
FEA for predicting vertebrae solidity [60,65,66].

As for osteoporosis management, CT/FEA was helpful for investigating the effects of
teriparatide and alendronate medication on the lumbar spine [55,59,67]. Furthermore, a
nonlinear CT/FEA study showed that vertebral compressive force by CT/FEA represented
a considerably better predictor for vertebral fracture than BMD, and could be used to
evaluate the effects of medication significantly earlier than BMD [55,59].

3D FEM models based on CT images have been constructed and have proved that
the technique of tri-cortical pedicle screw-TCPS can be implemented in the osteoporotic
thoracic vertebral body to reinforce the griping strength of screws and decrease the risk of
pedicle screw loosening [56,68]. A 3D FEM of a thoracolumbar spine with an osteoporotic
vertebral compression fracture (OVCF) was applied in order to analyze its biomechanical
alterations with accessible and reliable stress analysis results [57,69].
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Additionally, in a study published in 2019, the impact of osteoporosis on internal
fixation following spinal osteotomy was examined [58]. An FEM model of the spine’s
internal fixation after osteotomy was generated through CT images. Material characteristics
were attributed to both osteoporosis and normal bone groups, and the loads, including axial
compression, flexion, extension and lateral bending, reproduced the various conditions. In
the osteoporosis model, the stress levels of vertebrae were decreased, while the stress levels
of the screw/rod system were increased. The results indicated that the risk of fracture and
internal fixation failure could be higher in osteoporotic spines [58].

5. Future Development

Due to the fact that FEM is only a digital simulation of the real conditions, it will never
exactly simulate in vivo results [70]. Concerning biomechanics, there are many features
that are difficult to represent via FEM [65]. Due to the wide variations in interpersonal
spine stiffness, future studies should include a stiffness factor in the FEM model, aiming to
better replicate patient-specific spine behavior [71]. Moreover, postural control remains an
important challenge. Hence, active simulation of muscles in FEM models would upgrade
the representation of spinal curve correction [22,72]. Model accuracy needs to be further
improved with more clinical data. A sizeable experimental and clinical database of surgical
and non-surgical patients with a variety of deformities, parameters and demographic data
should be selected for FEM’s validation. In addition, models need to be generated by
biomechanical data based on the age of each patient. All FEM models, up to the present,
have performed adult-extracted data on spine biomechanics and material characteristics.
There is inadequate data regarding young spine biomechanics due to the complexity of
acquiring cadaveric specimens [22,73]. Additionally, new material properties should also
be investigated in order to acquire precise dynamic spine responses, so that they can be
used in future applications of FEM [74]. There is a need to standardize continuous QCT and
FEA methodology improvement, and to integrate the proposed interventional thresholds
with further studies [75]. The accuracy of FEA must be better established. Exposure to
radiation should be further reduced by the evolution of the hardware component and by
the development of new dose protocols, so that QCT and other CT-based analysis methods
can gain greater acceptability [56].

With the evolution of software, complex structures can be better analyzed in the
various FEM models and, simultaneously, probabilistic studies can be implemented in
order to examine the response of a structural model to the lack of certainty of a specific input
variable [76–78]. Last but not least, future FEM studies should include both descriptions of
the validation process, and verification and sensitivity studies [22].

6. Conclusions

FEM has become a powerful tool in the field of orthopedics, providing surgeons
with better knowledge and understanding of bone biomechanics, in both healthy and
abnormal conditions. In particular, there is no doubt that FEM can make an important
contribution to orthopedic and spine research, and it represents a highly promising method
for future applications.

A series of different FEM models have been created and numerous applications
have been mentioned in terms of scoliosis, vertebral fractures, degenerative disc disease
and osteoporosis. However, FEM will never exactly replicate in vivo outcomes, as there
are various factors that are difficult, if not impossible, to represent in a model. In the
future, patient-specific models could be used for patient evaluation as well as for pre- and
inter-operative planning. Computers and software with greater potential will allow more
automated FEM generation from CT and MRI data, using feature extraction procedures to
derive the crucial details.
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