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Abstract

To maximize fitness, flying animals should maximize flight speed while minimizing energetic expenditure. Soaring speeds of
large-bodied birds are determined by flight routes and tradeoffs between minimizing time and energetic costs. Large
raptors migrating in eastern North America predominantly glide between thermals that provide lift or soar along slopes or
ridgelines using orographic lift (slope soaring). It is usually assumed that slope soaring is faster than thermal gliding because
forward progress is constant compared to interrupted progress when birds pause to regain altitude in thermals. We tested
this slope-soaring hypothesis using high-frequency GPS-GSM telemetry devices to track golden eagles during northbound
migration. In contrast to expectations, flight speed was slower when slope soaring and eagles also were diverted from their
migratory path, incurring possible energetic costs and reducing speed of progress towards a migratory endpoint. When
gliding between thermals, eagles stayed on track and fast gliding speeds compensated for lack of progress during thermal
soaring. When thermals were not available, eagles minimized migration time, not energy, by choosing energetically
expensive slope soaring instead of waiting for thermals to develop. Sites suited to slope soaring include ridges preferred for
wind-energy generation, thus avian risk of collision with wind turbines is associated with evolutionary trade-offs required to
maximize fitness of time-minimizing migratory raptors.
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Introduction

Movement has dramatic consequences for demography and

thus fitness [1]. Animals that undertake long-distance movements

face trade-offs between minimizing time and minimizing energetic

expenditures [2,3]. Choosing incorrectly in these movements can

have dramatic selective consequences [4,5,6].

Migration by birds progresses primarily through combinations

of two flight types: straight-winged flight modes (soaring or gliding)

and flapping flight. Knowing absolute and relative speeds of

different flight types and modes is important to understand how

energetically-or time-constrained animals move. Understanding

flight speeds is also crucial to evaluating the influence of flight

modes on the evolution of migration routes and wing morphology,

and the complex trade-offs between time and energy when

migrating [2,3]. However, in spite of the importance of evaluating

these processes, most studies that measure instantaneous or

average flight speeds do not distinguish between different modes

of flight [7,8,9,10]. This is likely because comparison of speeds of

different modes of soaring has been technologically difficult or

impossible to achieve, even for large birds (e.g., [11,12]).

Flight strategies used by large birds differ from those of small

birds due to relationships between energetic costs of flight and bird

mass. Although body shape, wing shape, and wing loading also

affect flight energetics [11], energetic demands of flapping flight

generally increase geometrically with body mass (E/M1.17; [13];

Fig. 1). Thus, for birds with high body mass, energetic costs during

flapping flight can be several times their basal metabolic rate

(BMR). In contrast, energy required for soaring and gliding are

proportionally lower, around twice that of BMR [14,15].

Furthermore, BMR increases with body mass (BMR/M0.78;

[16]) at a much slower rate than energetic requirements of

flapping flight; therefore, soaring becomes an increasingly efficient

mode of flight as mass increases [17,18].
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Field observations support flight theory. Heavier species of

harrier (Circus spp.) soared more and used flapping flight less than

lighter harriers during migration [19]. The costs of flapping flight

are dramatically apparent in observations of short-toed eagles

(Circaetus gallicus) that extend migration routes 500–1700 km to

avoid flapping flight over water [20] and griffon vultures (Gyps

fulvus), among the heaviest flighted birds, which died at narrow sea

crossings when forced only to use flapping flight [6].

Soaring is the use of air currents to aid in straight-winged flight

with the two most prevalent modes over land being thermal and

slope soaring [17]. First, thermal soaring is use of heated rising air

to gain altitude. Differential heating of the earth causes surface

layers of air to warm and rise, forming updrafts that can extend

into lower layers of the atmosphere. Thermals develop during

relatively calm conditions but break down with strong winds

[21,22]. Birds gain altitude by circling in these rising air currents

during thermal soaring and they glide between them to make

forward progress during migration [21]. For a given bird, flight

speed during this glide depends on the glide angle, with steeper

angles producing faster travel speeds but more rapid loss of

altitude and potential energy [11]. Optimum glide angles depend

upon a combination of the strength and spatial distribution of

thermal updrafts [11]. Birds can make continuous forward

progress and maintain altitude by gliding through thermals that

are spatially aligned so that circling within thermals is not

required. Such use of so called thermal streets (or straight-line

gliding) should be a faster mode of flight than gliding between

thermals because time is not lost circling in updrafts [11,23].

Second, slope soaring depends upon horizontal winds and

occurs when air is deflected upward by ridges, hills, or other

structures. Such orographic lift develops only when winds are

relatively fast and can be consistent and strong along a ridgeline

allowing gliding in a manner similar to use of thermal streets

[21,29]. As with gliding between thermals, flight speed during

slope soaring is dependent upon the strength of lift produced [21].

One often implicit (and occasionally explicit; [24]) hypothesis

regarding flight speed is that slope soaring offers opportunity for

greater migration speed than does thermal soaring and gliding. We

refer to this as the slope-soaring hypothesis, formulated as follows.

Soaring and gliding speeds are related to speed of vertical lift [11].

If lift is similar among updraft types then slope soaring should be

faster than thermal soaring and gliding because wind provides a

constant (uninterrupted) source of lift over ridges. In contrast,

thermal flight requires interruption of forward progress to gain

altitude while circling within a thermal. Although speed of gliding

between thermals is faster than slope soaring [21,25], falsification

of this hypothesis requires that gliding speeds throughout

migration must be fast enough to compensate for time spent

soaring in thermals.

Weather influences development of thermal and orographic lift

and thus use of respective types of soaring. There are also complex

interactions among wind direction, wind speed, flight direction

and flight speed [21,23] with soaring birds responding to tail,

head, and side winds by drifting with wind, compensating for

wind, or both when choosing flight behavior [17,26]. Therefore,

weather influences on flight speed are dependent upon, and not

separable from, choice of flight mode. Thus, although weather and

flight interact strongly, testing the slope-soaring hypothesis does

not require accounting for weather.

In the central corridor of the Appalachian Mountains of North

America, different lift types have similar strengths, facilitating

hypothesis testing. Along Pennsylvania’s Kittatinny Ridge, for

example, thermal lift of 1–4 m s21 develops at discrete locations

while cross winds produce vertical lift speeds up to 3–4 m s21,

providing soaring opportunities for a broad suite of raptors [21].

In this region, consistent cross winds also allow for development of

wind-energy facilities along ridges used by migrating raptors [27].

For example, eastern golden eagles (Aquila chrysaetos) migrate

through this corridor [28]. This population of eagles is small, likely

numbering less than 2000 individuals, and faces increasing risks of

collision with wind turbines with increasing development of wind-

energy facilities in the Appalachian region [28]. Therefore, the

potential for conservation conflict may be related to eagle’s choices

of flight modes.

We tested the slope-soaring hypothesis by tracking golden eagles

with high-frequency GPS-GSM (global system for mobile

communications) transmitters as the birds migrated through the

central Appalachian Mountains. Golden eagles are an ideal species

to test the soaring hypothesis because they are known to use both

thermal and orographic lift during migration. The Ridge and

Valley Province of the central Appalachian region facilitates such a

test because opportunities for thermal and slope soaring are

plentiful and ridges do not diverge greatly from the general axis of

migration [21]. Support for the slope-soaring hypothesis must

show that flight speed during slope soaring behavior is, on average,

faster than flight speed during the combined phases of thermal

soaring and gliding between thermals. However, the spatial

distribution of thermal or orographic lift may not be perfectly

aligned with the migratory path. Therefore, to incur evolutionary

benefit, progress speed along an idealized-straight path must also

be greater during slope soaring than combined thermal soaring

and gliding. In our test, we compared both ground and progress

speeds of golden eagles during thermal soaring, gliding between

thermals, and slope soaring. To better understand the context for

differences in flight speeds, we also tested for effects of slope of

underlying terrain and altitude above ground level (AGL) on flight

speeds.

Materials and Methods

Eastern golden eagles breed in Québec, Labrador and Ontario,

Canada, and migrate south through the northern and central

Appalachian Mountains, from Maine to Virginia, USA [28].

Figure 1. Energy demands of flight. Energy demands of flapping
flight increase with body mass (E = M1.17; [13]) more rapidly than do
basal metabolic rate (BMR = M0.78; [16]) or energy demands of soaring/
gliding (26 BMR; [14,15]). Schematic shows these relationships,
assuming constant body and wing shape, size and wing loading.
doi:10.1371/journal.pone.0035548.g001

Flight Speed and Migratory Efficiency
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We captured five (three subadult and two adult male) golden

eagles during winters 2009–2010 in Pennsylvania, Virginia and

West Virginia, USA, using cannon or rocket nets baited with

roadkill-deer carcasses. Eagles were outfitted with CTT-1100

GPS-GSM telemetry systems (Cellular Tracking Technologies,

LLC) attached as backpacks with Teflon ribbon [29] and released.

CTT-1100 s collect and save GPS data and transmit them

through the GSM network. We programmed transmitters to

collect data at 30 s intervals while the bird was flying between

latitudes 39.5u and 42.5u north during spring migration. Data

were post-processed and manually classified into flight modes by a

single observer (TAM). Flight modes were identified based upon

patterns of sequential GPS locations (Fig. 2). Closely spaced points

in which an eagle gained altitude were characterized as thermal

soaring. Points between thermals in which eagles lost altitude were

characterized as gliding. Slope soaring was inferred from points

that followed ridgelines and that stayed within a narrow altitudinal

band (observed max AGL = 450 m). Our unit of analysis was the

flight segment, which we defined as discrete series of GPS points

that were the same flight mode and that were separated by less

than 90 s.

For each flight segment, we calculated two flight speeds. First,

ground speed, the speed at which an eagle moved relative to the

ground, was calculated as the average of instantaneous flight

speeds recorded by the telemetry device within a discrete flight

segment. Second, progress speed is flight speed relative to a

functional distance (the progress path) traveled during migration

[30]. One likely measure of the functional distance is the idealized

direct path through latitudes 39.5u and 42.5u north. Thus, we

defined the progress path as the straight-line from an eagles’ first

location to its last location at these latitudes (Fig. 3). We then

identified the start and end points for each flight segment by

drawing horizontal lines from the start and end of the actual

segment traveled to intersect points along the idealized progress

path. The progress speed for a segment was calculated as the

distance between the start and end points on the progress path

divided by the amount of time the eagle traveled along the flight

segment.

We used a step-wise procedure to build linear mixed models

(PROC MIXED, SAS v. 9.2) for flight speed. We used flight

mode, slope, and AGL as explanatory variables to build separate

models for ground and progress speed. We only used flight modes

of gliding and slope-soaring in models because only two levels are

required to differentiate three categorical factors. We used p,0.05

for a factor to enter the model and p,0.10 for a factor to remain

in the model at each step.

Results

We identified 578 distinct flight segments from five golden

eagles. The number of flight segments per eagle ranged from 10 to

78 for gliding (n = 276 segments total; x = 55.2612.06 (6se)), 14 to

71 for thermal soaring (n = 261; x = 52.2611.37), and 1 to 17 for

slope soaring (n = 41; x = 8.262.56). The average recorded

duration of a cycle of thermal soaring and gliding was longer

(340 s) than flight segments of slope soaring (220 s). During spring

migration, eagles used thermal soaring and gliding nine times

more than slope soaring.

Flight speed differed dramatically by flight mode and with AGL

(Table 1, 2; Table S1). Ground and progress speeds of gliding

Figure 2. Altitude and topography of flight types. Flight modes were manually classified based upon flight patterns, changes in flight altitude,
and underlying topography for locations of golden eagles during spring migration 2009–2010. A) Thermal soaring includes points (triangles) that are
closely spaced with increasing altitude. B) Gliding points (circles) connect flight segments of thermal soaring, with points decreasing in altitude. C)
Slope soaring segments include locations (squares) along ridgelines that are close to ground level (less than 200 m). The background map shows
topographic relief with darkened slopes of ridgelines.
doi:10.1371/journal.pone.0035548.g002
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between thermals was fastest, slope soaring was intermediate, and

thermal soaring was slowest (Table 1). Empirical estimates of

average ground speeds closely matched most ground speeds

predicted by the linear model (differences #0.7 m s21; Table 1).

Raw progress speeds for thermal soaring and soaring and gliding

were slightly different (by 2.2 to 3.0 m s21) than those predicted by

our model, although relative relationships among flight modes

were identical in all cases. Ground speed in a glide was 67% faster

than when slope soaring, and thermal soaring and gliding

combined was 32% faster than slope soaring. Differences in

progress speeds between flight modes were more pronounced than

differences between ground speeds. Progress speed for gliding was

138% faster than slope soaring, and thermal soaring combined

with gliding was 31% faster than slope soaring.

Flight speed was influenced by AGL (Table 2). For every

1000 m increase in AGL, ground speed increased by 2 m s21 and

progress speed increased by 5 m s21. As expected, AGL was

greater, on average, for thermal soaring (541 m) and gliding

(846 m) than slope soaring (204 m, Table 3). Slope of the

underlying terrain did not influence ground (F1,367 = 2.78,

p = 0.096) or progress (F1,369 = 0.05, p = 0.826) speeds and was

not added to the final model.

Discussion

Evaluating the trade-off between minimizing time or energy

depends on knowing how different movement choices benefit an

organism. Flight speed of migrants determines how quickly

temporally or energetically constrained individuals reach critical

Figure 3. Progress path and progress distance. The progress path is the straight line that connects the first and last points that a satellite tag
recorded for each golden eagle as it migrated from the 39.5u to the 42.5u north latitude. For each flight segment, the progress distance is the distance
along the progress path defined by the latitudes of the start and end points of the segment. The progress speed is the quotient of the progress
distance for the segment and the time an eagle spent traveling along the actual path of the segment.
doi:10.1371/journal.pone.0035548.g003

Table 1. Mean 6 s.e. ground and progress speeds for flight modes used by five golden eagles migrating through Pennsylvania
during spring migration, 2009–2010.

Speed Mean raw speed (m s21) Mean modeled speed (m s21)

Ground Thermal soaring 10.4560.80 10.2660.82

Slope soaring 10.9060.87 11.4960.95

Thermal soaring & gliding 14.2460.78 14.4860.82

Gliding 18.0761.39 18.0460.82

Progress Thermal soaring 1.8761.54 4.7360.74

Slope soaring 7.3560.96 7.7961.01

Thermal soaring & gliding 9.5961.08 11.7260.74

Gliding 17.3261.44 17.6160.75

Raw speeds are the average of speeds measured for each bird (empirical estimates). Modeled speeds are predictions from linear mixed models (see table 1). N = 5 in all
cases.
doi:10.1371/journal.pone.0035548.t001
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breeding or wintering areas. Therefore, the consequences of the

flight mode that birds choose have important selective relevance to

evaluate and interpret this trade-off.

The slope-soaring hypothesis reflects prevailing thought in flight

theory; however, it is not supported by this analysis. Golden eagles

that soar in and glide between thermals flew faster than when slope

soaring. This was true for both ground and progress speeds and

ran contrary to the predictions of the hypothesis we tested.

Ground speeds were faster in thermal-powered flight because the

extremely high flight speed during gliding more than compensated

for interruptions caused by thermal soaring to gain altitude.

In terms of making progress toward a migratory goal, gliding

between thermals was dramatically faster than slope soaring. The

reasons for this became more obvious when comparing ground

and progress speeds. During thermal soaring, progress speed was

much slower than ground speed because forward progress is offset

by backward progress as birds circle. When gliding between

thermals, ground and progress speeds were nearly equal, meaning

eagles made rapid forward progress along their preferred

migratory pathway (this also served as validation of our choice

of an idealized path). However, when slope soaring, progress speed

was 33% slower than ground speed. This was because eagles were

diverted from their preferred migratory pathway when following

ridgelines to take advantage of orographic lift. Thus, although

slope soaring follows a more constant lift source, it constrains the

birds to a specific topographic feature and is, therefore, less

efficient than gliding between thermals, a behavior in which the

eagle can largely choose its flight direction.

Although birds that soar use multiple flight modes, they are

rarely presented with the opportunity to choose between modes

when migrating. Thermals develop during calm conditions while

orographic lift is available when wind speeds are fast [21,22].

Therefore, the potential trade-off that exists on any given day is

rarely a choice between thermal- and orographically-powered

flight, but instead a choice between not flying or using a less

energetically efficient mode of flight (orographic lift) to reach a

migratory endpoint (breeding or wintering sites). This logic

suggests that birds using orographic lift are more likely to be

evolutionarily constrained by time, for example, a desire to reach

breeding grounds as early as possible, rather than a desire to

conserve energy by waiting for ideal flight conditions (thermals).

Soaring birds trying to minimize energy expenditures should

pause on migration when the energetic costs of suboptimal flight

are greater than energy spent not migrating. Energy expenditures

during soaring and gliding are two times BMR [14,15]; therefore,

birds trying to minimize energetic costs should pause during

migration whenever progress speed of slope soaring is approxi-

mately 50% of progress speed for thermal soaring and gliding

(10.4 m s21). This prediction assumes that eagles only rest when

pausing; however, golden eagles forage while on migration

(authors, unpublished data). When birds use a ‘‘fly and forage’’

migration strategy, energy gained during pauses in migration

provide resources used during future migratory flights [31].

Therefore, an energy-minimization migration strategy would call

for pausing to forage during migration instead of following

ridgelines that would divert a bird from its preferred migratory

pathway.

Soaring birds trying to minimize time spent on migration may

be forced to choose forward progress over energy conservation

during part of migration. If golden eagles minimize energy

expended during migration, they should not use orographic lift

when progress speeds during slope soaring drop below half of the

Table 2. Model parameters 6 s.e. and statistics for effects that influence ground and progress speed (m s21) of golden eagles as
they passed through the central Appalachians during spring migration, 2009–2010.

Speed Intercept* Gliding AGL{ Slope soaring

(m s21) (m) (m s21)

Ground Model coefficients 8.91060.847 7.02060.284 0.00260.001 2.07060.543

F1,368 - 610.75 43.49 14.56

p - ,0.0001 ,0.0001 0.0002

Progress Model coefficients 2.24460.796 11.47160.433 0.00560.001 4.60560.816

F1,369 - 701.51 70.26 31.86

p - ,0.0001 ,0.0001 ,0.0001

*Intercept term includes values for thermal soaring.
{Altitude above ground level.
Variance-covariance matrices for each model are given in Table S1.
doi:10.1371/journal.pone.0035548.t002

Table 3. Means 6 se of predictor variables and time measures for flight modes used by five golden eagles that migrated through
Pennsylvania during spring, 2009–2010.

Flight mode No. flight segments*
Altitude above ground
level (m) Slope (deg) Time per segment (s) Proportion of total time

Thermal soaring 261 541676.5 11.461.05 158629.4 0.41160.045

Slope soaring 41 204629.1 17.361.56 223663.2 0.10260.039

Gliding 276 8466118 10.660.56 187633.1 0.48760.041

*For reference only, n = 5 eagles for all measures.
doi:10.1371/journal.pone.0035548.t003

Flight Speed and Migratory Efficiency
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progress speed of thermal soaring and gliding. However, nearly

half (46%) of the slope-soaring speeds we recorded were slower

than this threshold (5.2 m s21), suggesting that much of the time,

different considerations drive migratory decisions of eagles. It

appears instead that the golden eagles we monitored minimized

migration time by choosing to slope soar at the expense of

expending energy during spring migration. Indeed, there is

selective pressure on many migratory species to arrive early on

breeding grounds to occupy limited high-quality breeding sites, to

commence breeding during short breeding seasons, and to

maximize productivity [4,5]. If this explanation of the rationale

for time vs. energy minimization strategies by eagles is correct, we

would predict that immature eagles, which face no pressure to

arrive early on breeding grounds, would be energy, instead of

time, minimizers. Such birds should therefore wait until later in

the season when thermals predominate [22], flight is more direct,

and thus energetic costs of migration should be lower. Preliminary

observations support this prediction (the authors unpublished

data).

Other factors may also influence flight modes and flight speed.

Of these, weather conditions are among the most important

(although testing our hypothesis does not require an understand of

weather). For example, wind direction influences flight speeds and

flight energetics; ground speed should increase with tailwinds and

decrease with head and side winds [21,23]. Also, sources of lift

change seasonally, with orographic lift predominating during fall

[22]. Our data are likely representative of all wind conditions

experienced by eagles for each flight mode but are limited with

regard to seasonality, suggesting future avenues for continued

exploration of the flight speed problem. Finally, certain flight

modes may provide hunting opportunities during active migration.

Eagles may encounter prey frequently when slope soaring at low

altitudes, or may maximize search efficiency when thermal soaring

over one area. As noted earlier, flight mode, flight speed, and lift

impact demography because of their evolutionary relevance.

There is also applied relevance to understanding flight speed

because the trade-off between these evolutionary choices also

interact to influence risk of eagles colliding with wind turbines.

During windy conditions, orographic lift develops along steep

terrain and extends upward to flatter ridgelines. Eagles use this

resource to subsidize migration, flying at moderate speeds.

Orographic lift begins to degrade quickly (at about 200 m AGL

in normal wind) at the top of ridges [21]; therefore, birds are

restricted to relatively low flight altitudes, which put them in the

rotor-swept zone of modern horizontal-axis turbines. As winds

increase, orographic lift increases, and birds may fly higher and

faster over ridges and avoid turbines [32]. When winds are calm,

thermals develop and eagles soar using thermal lift and gliding. As

thermal lift increases, flight speed and flight AGL increase. As in

the case of slope soaring, risk of collision with wind turbines is

lower at faster flight speeds because as flight altitude increases, risk

decreases.

For soaring birds, risk of collision with wind turbines is therefore

dependent upon flight mode, but moderated by flight speed.

Because annual survival for some species is predominantly

determined by survival on migration [33], and because collision

with turbine blades is an important source of mortality for some

golden eagles [34], consequences of flight mode and flight speed

may be an important determinant of demographic impacts from

wind development to golden eagle populations.

By refuting the slope soaring hypothesis, this work allows us to

better understand the evolutionary tradeoffs underpinning flight

behavior. We also highlight an emerging conflict between soaring

flight and increased risk of mortality from wind-energy develop-

ment, while making specific predictions about the relationship

between that risk and flight mode.

Supporting Information

Table S1 Variance-covariance matrix for linear models
(Table 2) that describe flight speed of golden eagles as
they passed through the central Appalachians during
spring migration, 2009–2010.
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