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INTRODUCTION

Microbiomes— the microbial communities associated 
with macroorganisms— are highly diverse, dynamic over 
time and variable across host species (David et al., 2014; 
Huttenhower et al., 2012; Muegge et al., 2011). Strong ef-
fects of microbiomes on both animal and plant host phe-
notype have generated optimism about their potential 
to mediate host health (Raaijmakers & Mazzola, 2016; 
Sonnenburg & Backhed, 2016) and acclimatisation to 

perturbations (Jez et al., 2016; Mueller & Sachs, 2015). 
While the ecology of microbiomes within an individual 
host has been considered (Christian et al., 2015; Costello 
et al., 2012; Coyte et al., 2015; Joshi et al., 2018), the inte-
gration of microbiomes into basic aspects of host ecol-
ogy, particularly within a multi- species context, remains 
a conceptual challenge (Morar & Bohannan, 2019).

Microbiomes have many potential effects on their 
hosts, ranging from negative effects of pathogenesis, to 
beneficial effects through pathogen suppression, digestion 
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Abstract

Microbiomes have profound effects on host fitness, yet we struggle to understand 

the implications for host ecology. Microbiome influence on host ecology has been 

investigated using two independent frameworks. Classical ecological theory pow-

erfully represents mechanistic interactions predicting environmental dependence 

of microbiome effects on host ecology, but these models are notoriously difficult to 

evaluate empirically. Alternatively, host– microbiome feedback theory represents 

impacts of microbiome dynamics on host fitness as simple net effects that are eas-

ily amenable to experimental evaluation. The feedback framework enabled rapid 

progress in understanding microbiomes’ impacts on plant ecology, and can also be 

applied to animal hosts. We conceptually integrate these two frameworks by deriv-

ing expressions for net feedback in terms of mechanistic model parameters. This 

generates a precise mapping between net feedback theory and classic population 

modelling, thereby merging mechanistic understanding with experimental trac-

tability, a necessary step for building a predictive understanding of microbiome 

influence on host ecology.
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and nutrient uptake (Backhed et al., 2005; Friesen et al., 
2011; Huttenhower et al., 2012). Given the breadth and 
magnitude of these effects, it is extremely difficult to as-
sess the microbiome's net impact by studying the effects 
of individual taxa on host ecology. Effects of individual 
microbes on their hosts can depend upon the presence 
and density of other components of the microbiome, gen-
erating non- additive impacts on host fitness (Gerardo & 
Parker, 2014). The diversity of microbes within the micro-
biome combined with multiple sources of non- linearities 
means that some strategy for simplification is needed for 
practical study (Crawford et al., 2005).

Microbiome effects on host ecology have thus been 
investigated theoretically and empirically through two 
complementary, but largely independent, avenues. First, 
the effects of functional components, such as pathogens 
and mutualists, on plant and animal host ecology have 
been studied through the lens of classical population 
ecology (Hite et al., 2015; Jiang et al., 2020; Mordecai, 
2013a; Umbanhowar & McCann, 2005). This approach 
allows detailed understanding of the transient and long- 
term effects of individual classes of microbes, but quickly 
becomes intractable with the inclusion of realistic micro-
biome diversity (Jiang et al., 2020). Second, investigations 
of the net feedback between microbiomes and host com-
munities have become common for plant hosts (Bennett 
et al., 2017; Bever et al., 2012; van der Putten et al., 1993, 
2013; Teste et al., 2017). This framework evaluates the net 
effect of the microbiome dynamics on host community 
structure and can be parameterised with straightforward 
experimentation (Bever et al., 1997). The feedback frame-
work has been used to make strong statements on the 
effects of microbes on plant community structure (Bever 
et al., 2015), and could be constructively applied to ani-
mal hosts (Box 1) (Christian et al., 2015). Moreover, the 
simple modelling structure allows generalisation across 
multiple host species, allowing analytical prediction of 
coexistence and relative abundances of hosts (Eppinga 
et al., 2018; Mack et al., 2019). This simplicity, of course, 
comes at the expense of mechanistic detail.

Work from both of these approaches supports an ar-
gument that microbiomes play a major role in structuring 
host communities (Bever et al., 2015), but the lack of inte-
gration between them has impeded our ability to link spe-
cific mechanisms to total microbiome impacts at the host 
community level. The conceptual and theoretical unifica-
tion of classical population dynamics theory with micro-
biome feedback theory could thus position the field for 
both empirical and theoretical advance. Here, we begin 
by outlining the theoretical and experimental microbiome 
feedback approach for assessing the net effect of microbial 
dynamics on host population and community dynamics. 
We compare the basic application of the feedback frame-
work to the more standard approach of modelling popu-
lations of individual classes of microbial pathogens and 
mutualists. We then illustrate the benefits of connecting 
classical population dynamic models with the microbiome 

Box 1 Microbiome feedback experimental 
framework adapted to animals

The microbiome feedback experimental approach 
involves two steps. A common microbiome inoc-
ulum is distributed to replicate mesocosms and 
different host species or genotypes are grown 
with this microbiome for a period of time. This 
microbiome training step allows host- specific dif-
ferences in microbial fitness to generate differen-
tiated microbiome compositions. Differentiation 
of the microbiome can be confirmed using 
morphological or environmental sequencing 
methods. The second step is to assay the fitness 
consequences of this potential differentiation on 
each of the host species or genotypes using a full 
factorial test experiment. Fitness estimates from 
this experiment can be used to estimate Is (Bever 
et al., 1997). This approach was first applied to 
plant– soil microbiome interactions (Bever, 1994) 
and has since become a commonly used experi-
mental approach in plant ecology to evaluate mi-
crobiome mediation of plant– plant interactions. 
This same approach could be used to test micro-
biome mediation of interactions of animal host 
species or genotypes.

We illustrate this approach for the study of 
interactions of zooplankton in Figure 2. In this 
case, the zooplankton species are grown on a 
common algal mix (small green circles) with a 
common inoculum of microbiome (other shapes) 
which could be acquired, for example, from a 
lake in which the zooplankton species co- occur. 
This training stage may involve regular replace-
ment of a portion of the water volume with the 
algal mix to sustain the zooplankton popula-
tions while the microbiome may differentiate on 
host species. The fitness consequences of host- 
specific microbiome differentiation are evaluated 
by using the microbiomes from the training ex-
periment as inocula in a separate test experiment 
(bottom panel) in which the algal food source is 
kept constant across all treatments. With aquatic 
animal hosts, the differentiated microbiomes 
could be applied repeatedly during the test ex-
periment, potentially allowing assessment of the 
entire life cycle of the host in a relatively constant 
microbiome environment. This is a distinct ad-
vantage over the application of this approach to 
the study of plant– soil microbiome interactions, 
as soil microbiome can only be introduced at the 
beginning of the growth experiment. The poten-
tial for reversal of microbiome composition dur-
ing the growth assay for plants constrains test 
experiments to short- term growth assays.
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feedback framework to understand the role of microbial 
communities on host community ecology.

N ET M ICROBIOM E FEEDBACKS IN 
HOST COM M U N ITIES

The net feedback framework starts from the premise that 
the composition of microbiomes changes with host spe-
cies or genotypic identity (Bever et al., 1997, 2012). These 
microbiome responses may be driven by host– symbiont 
compatibilities, trade- offs in overcoming host defences 
(Christian et al., 2015) and differential allocation by hosts 
(Vogelsang & Bever, 2009). Ensuing microbe– microbe 
competition or microbial trophic interactions have the 
potential to further differentiate the microbiomes of dif-
ferent host types. As new host individuals are likely to 
be colonised from other hosts with which they interact, 
the microbiome composition is also a function of closely 
interacting (e.g. neighbouring) hosts (Miller et al., 2018). 
In these ways, the composition of the microbiome is a 
function of host population and community diversity.

The feedback occurs when host diversity is in turn af-
fected by microbiome composition through host- specific 
responses to microbial changes (e.g. Koziol & Bever, 
2016). Changes in the microbiome composition can di-
rectly alter the fitness of conspecifics (in a community) 
or genetically similar individuals (in a population), as 
represented by α11 and α22 in Figure 1a, and can alter the 
fitness of competing host types (α12 and α21).

The net microbiome feedback is the final outcome, 
summarising how changes in the host population or 
community will ultimately change host diversity as a 
result of these host– microbiome interactions. The long- 
term influence of microbiomes on host populations and 
communities will be determined by the sign of the net 
feedback (Bever et al., 1997). Should host- driven changes 

in the microbiome decrease the relative fitness of con-
specifics or genetically similar individuals, this negative 
microbiome feedback can promote species or genetic 
diversity. Alternatively, when host- specific changes in 
microbiome composition increase relative fitness of 
conspecifics or genetically similar individuals, this pos-
itive microbiome feedback can lead to monomorphism 
within the host community or population. Importantly, 
the sign of the effect of microbes on hosts (beneficial vs. 
detrimental) need not match the sign of the net feedback 
(Bever, 1999). For example, a mutualistic microbiome 
of one host type can nonetheless generate a negative net 
feedback if its mutualistic effect on the competing host 
type is even more strongly beneficial.

The basis for this result is a straightforward model 
(Bever et al., 1997) in which the presence of host type i pro-
motes growth of its associated microbiome, collectively 
called Mi, that is characterised by the presences of partic-
ular microbial species in particular relative abundances. 
The variable Mi thus represents the microbiome of host 
species (or host genotype) i, and its magnitude represents 
the density of this particular microbiome in the environ-
ment. We note that Mi  =  0 means the absence of influ-
ence of host i on the microbiomes, rather than an absence 
(density of 0) of individual microbes, and this difference in 
definition of the microbiome state variable is a critical dif-
ference between feedback models and classical theory in 
community ecology. With Ni representing the population 
density of host type i, out of n different host types,

(1a)dMi

dt
=

viNi∑n

j=1
Nj

Mi ,

(1b)
dNi

dt
=

n�
j=1

G(i)jMj∑n

k=1
Mk

Ni ,

F I G U R E  1  Two different representations of a two- host– microbiome community. (a) The plant– microbiome feedback framework, in 
which the net effect on host type i of host j's microbiome is represented as αij. The density of host type i is Ni and the density of its microbiome 
is Mi. Each host type promotes the growth of its own microbiome at a rate proportional to its frequency in the host community (labels for 
the constants of proportionality, vi, are omitted for clarity of presentation). (b) A more standard population ecology representation, in which 
the components of the microbiome are categorised as mutualists (Nm) or pathogens (Ne). The response of host type i to mutualists is μi, and to 
pathogens is εi
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(Bever et al., 1997), where G(i)j is the fitness of host 
type i when exposed to host j's microbiome. The first 
equation states that host i's microbiome grows propor-
tionately to the frequency of host type i relative to all 
other host types present, at proportional rate vi. The sec-
ond equation states that the per capita population growth 
rate of host i is the sum of its marginal fitness on each of 
the microbiomes present, weighted by the frequency of 
each microbiome. Considering a two- host system with 
G(1)1 = α11, G(1)2 = α12, G(2)1 = α21 and G(2)2 = α22 gives 
us the example illustrated in Figure 1a.

If this host– microbiome system is in a compositional 
equilibrium state of coexistence (both hosts and both 
microbes present and at constant frequencies), inter-  and 
intraspecific feedbacks determine that all hosts have 
equal relative fitness (Eppinga et al., 2018) (Appendix A),

where we note that host fitness at equilibrium only de-
pends on microbiome community structure. Whether this 
equilibrium state is stable can then be determined by an 
interaction matrix (e.g. Novak et al., 2016), A, which spec-
ifies the effects on each host of per capita changes in each 
microbiome,

where Mk
* indicates the density of host k's microbiome 

at compositional equilibrium and αij is the G(i)j evaluated 
at this equilibrium. As noted above, the feedback frame-
work is focused on compositional changes in the microbi-
ome, rather than changes in absolute densities, meaning 
that 

∑n

k=1
M∗

k
 can be considered constant. Under this as-

sumption, the possibility for stable, long- term coexistence 
depends on the relative magnitude of the inter-  and intra-
specific feedbacks (Bever et al., 1997), and can be directly 
calculated from the interaction matrix (Eppinga et al., 2018). 
In a system with n different host types, the net microbiome 
feedback is summarised by the interaction coefficient,

where Ak is the interaction matrix A with the kth column 
replaced by a vector of ones (Eppinga et al., 2018). For ex-
ample, in the two- host system in Figure 1a, scaled such 

that 
∑n

k=1
M∗

k
= 1, A =

[
�11 �12

�21 �22

]
, so A1 =

[
1 �12

1 �22

]
 and 

A2 =

[
�11 1

�21 1

]
. Then, applying Equation (4),

which is equivalent to the result presented in Bever et al. 
(1997), where Is was obtained through linear stability anal-
ysis. This stability analysis of Equation (1) revealed that 
Is is an important quantity governing host coexistence. 
When Is is positive, the change in microbial composition 
increases the relative performance of the locally abundant 
host type generating a positive feedback. The result may 
be a loss of local diversity, as the system fixes on one of 
several alternative states dominated by the initially abun-
dant host type and its microbiome. Conversely, compet-
ing host types can coexist through net negative feedback 
when the change in microbial composition decreases the 
relative performance of the locally abundant host. A neg-
ative Is indicates net negative feedback, and Is < 0 is a nec-
essary (by describing stabilising mechanisms), though not 
sufficient (by omitting equalising mechanisms and higher 
order destabilising processes), condition for host– host 
coexistence (Bever et al., 1997; Eppinga et al., 2018). This 
simple condition for coexistence generally holds true with 
extension of the model to local- scale interaction and dis-
persal (Molofsky et al., 2002), though the conditions for 
extinction from positive feedback are modified (Molofsky 
& Bever, 2002). The Is < 0 condition for coexistence also 
generally holds true, at least qualitatively, with addition of 
negative density dependence and variation in interspecific 
competition (Bever, 2003; Revilla et al., 2013).

Significance

The finding that the dynamics of competing host spe-
cies depend on the sign and magnitude of the net micro-
biome feedback coefficient has important conceptual 
and empirical implications. Conceptually, the result 
identifies the paths through which negative intraspecific 
host– microbiome interactions (α11, α22 < 0) can lead to 
positive net host community- level feedbacks (Is > 0), and 
vice versa (α11, α22 > 0 leading to Is < 0). Empirically, the 
dependence of pairwise host dynamics on Is provides an 
experimental approach to evaluating the role of the mi-
crobiome in host ecology. The net feedback coefficient 
can be estimated from full factorial experiments measur-
ing the response of different host species to microbiomes 
trained by each of these respective host species (Bever 
et al., 1997). Specifically, a common initial microbial 
community is allowed to differentiate on multiple host 
types and then the fitness of these host types are evalu-
ated when inoculated with each of the differentiated mi-
crobiomes (Bever, 1994) (Figure 2, Box 1). Net feedback 
coefficients can then be estimated using a priori con-
trasts within the interaction term of a single standard 
ANOVA model (Bever, 1994; Mangan et al., 2010).

Net feedback theory has been applied extensively 
to plant– soil microbiome interactions. Observed feed-
backs are mostly negative, consistent with the idea that 
microbial dynamics contribute to plant coexistence 

(2)Fi =

n�
j=1

G (i)jMj∑n

k=1
Mk

= F̂ for i = 1, 2, . . , n,

(3)A =

⎡
⎢⎢⎢⎢⎢⎢⎣

�F1

�M1

⋯

⋯ ⋯

⋯

�F1

�Mn

⋯ ⋯

⋯ ⋯

�Fn
�M1

⋯

⋯ ⋯

⋯

�Fn
�Mn

⎤
⎥⎥⎥⎥⎥⎥⎦

=
1∑n

k=1
M∗

k

⎡⎢⎢⎢⎢⎣

�11 ⋯

⋯ ⋯

⋯ �1n

⋯ ⋯

⋯ ⋯

�n1 ⋯

⋯ ⋯

⋯ �nn

⎤⎥⎥⎥⎥⎦
,

(4)Is = (−1)n
n∑

k=1

Ak,

(5)Is = �11 − �21 − �12 + �22,
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F I G U R E  2  Depiction of an experimental protocol testing microbiome feedback on two species of zooplankton. In the training step, a 
common inoculum of microbiome (represented by the red, yellow, blue and purple shapes) is grown with two zooplankton species in media 
with an algal food source (small green circles). The fitness consequences of host- specific microbiome differentiation are evaluated by using 
the microbiomes from the training experiment as inocula in a separate test experiment (bottom panel) in which the algal food source is kept 
constant across all treatments. Feedback is measured as the differential response of zooplankton to their conspecific versus heterospecific 
microbiome, as described in Equation 5
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(Bever, 1994; Crawford et al., 2019; Mangan et al., 2010; 
Peterman et al., 2008). While changes in abundance of 
many microbial groups act to generate feedbacks, in-
cluding changes in the composition of mutualists (Bever, 
2002), accumulation of host- specific pathogens is likely 
the most important mechanism generating negative feed-
backs (Crawford et al., 2019).

While plant ecologists have embraced this frame-
work, where, in addition to the many studies of soil 
microbiomes, it has also been applied to foliar microbi-
omes (Whitaker et al., 2017), we are unaware of its appli-
cation to animal microbiomes. At least for animals that 
are easy to grow and manipulate in the lab, there is no 
reason this same approach cannot be successfully em-
ployed to understand the population and community- 
level effects of horizontally (i.e. within- generation) 
transferred animal microbiomes (Box 1). In fact, inver-
tebrate microbiome feedback experiments may yield 
even more information than plant– soil feedback ex-
periments when chemostats or similar approaches can 
be used to maintain a fixed microbiome environment 
during the testing phase. In vertebrate hosts, the host 
immune system will have a primary role in determining 
host- specific differentiation and impact of the microbi-
ome. However, for both the gut and skin microbiomes, 
environmental and host– host transmission is common, 
both of which will have density dependence consistent 
with the feedback model. Vectored or sexual transmis-
sion may differ, with corresponding differences in the 
microbial impact on host– host interactions (Rudolf & 
Antonovics, 2005). Experiments must adapt to the par-
ticular biology of the hosts and microbes to yield infor-
mative results.

BRIDGING FEEDBACK TH EORY 
W ITH CLASSICA L POPU LATION 
ECOLOGY TH EORY

While the net feedback framework divides up the micro-
bial community into microbiomes characteristic of each 
host type, a more standard population and community 
ecology approach would be to divide the microbial com-
munity into functional groups, such as ‘mutualists’ or 
‘pathogens’ (Jiang et al., 2020). This approach maintains 
closer links between the mechanisms through which mi-
crobiomes influence their hosts and the effects on host 
dynamics and diversity, but application of the models to 
evaluating microbiome influence on coexistence in any 
particular system is difficult because the direct connec-
tion to the net feedback coefficient, Is, is lost. Therefore, 
to link Is to explicit ecological mechanisms, rather than 
just the net effects of each microbiome on each host, we 
convert the feedback model, Equation (1), into a classical 
host– pathogen– mutualist population model and then 
derive Is for this new model.

Each host type's microbiome contains a characteris-
tic mix of microbial taxa. The number of functionally 
distinct microbial groups that need to be considered sep-
arately, as well as the potential of interactions between 
host effects on these groups, may increase with an in-
creasing number of hosts and the phylogenetic distance 
between them (Crawford et al., 2019; Rinella & Reinhart, 
2018). For simplicity in this proof- of- concept example, 
however, we assume that all influential members of the 
microbiome can be assigned to the mutualist or pathogen 
functional group, and that hosts independently stimulate 
the growth of these two groups. If the microbiome asso-
ciated with host type i (Mi) is made up of a proportion 
γi mutualists (and thus 1– γi pathogens), the population 
density of mutualists is,

and the density of pathogens (‘natural enemies’) is,

If, as in feedback theory, the effect of each microbial 
type on hosts is proportional to its frequency, then we 
can define new parameters μi and εi, representing the 
effect on host type i of a unit increase in the frequency 
of mutualists and pathogens, respectively (Figure 1b). 
Then, host i's population growth rate is,

When host type i is very common, the frequency of 
mutualists in the environment will be close to γi and the 
frequency of pathogens will be close to 1– γi, give or take 
small deviations due to the influence of less common 
host types. In a more evenly mixed host community, the 
frequency of each microbial group will represent a bal-
ance between each of the host type's γ values. We show 
how this balance comes about in a two- host example 
below.

In a system with two host types, with densities Ni, 
i  =  1,2, host dynamics are given by Equation (7a). We 
can derive expressions for the microbiome dynamics by 
recognising that Equation (6) imply dNm

dt
=
∑n

i=1
� i

dMi

dt
 and 

dNe

dt
=
∑n

i=1
(1−� i)

dMi

dt
. Obtaining dMi

dt
 from Eqn (1a) and 

rewriting in terms of our new variables Nm and Ne gives,

(6a)Nm =

n∑
i=1

� iMi ,

(6b)Ne =

n∑
i=1

(1−� i)Mi .

(7a)
dNi

dt
=

�iNm + �iNe

Nm +Ne

Ni , i = 1, ⋯ , n.

(7b)
dNm

dt
=

2∑

i=1

j≠ i

� iviNi

Ni +Nj

(
� i
(
Nm +Ne

)
−Nm

� j − � i

)
,
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We recall that in the feedback framework the coeffi-
cients �ij indicate the marginal fitness effect on host type 
i, as induced by the microbiome cultivated by host type 
j. We can now relate these coefficients mechanistically to 
the classical host– pathogen– mutualist population model. 
From Equation (6), it follows that host type j cultivates den-
sities of Nm= � jMj and Ne =

(
1−� j

)
Mj of mutualists and 

pathogens, respectively. From Equation (7a) it then follows 
that these densities exert effects � j�iMj and 

(
1 − � j

)
�iMj 

on host type i. This shows that the term G(i)jMj = �ijMj 
in Equation (1) of the feedback framework corresponds 
to a term 

(
� j�i +

(
1 − � j

)
�i
)
Mj in the classical host– 

pathogen– mutualist population model. Hence, if we define

the model in Equation (7) is exactly equivalent to the two- 
host version of Equation (1), just with the microbial com-
munity expressed in terms of functional groups rather 
than host- associated microbiomes. This equivalence al-
lows us to derive an equivalent expression for the net feed-
back in terms of our new parameters,

Although the second line in Equation (9) is more mathe-
matically compact, the final line provides the most straight-
forward interpretation. The first parenthetical expression, 
(γ1– γ2), is the differential ability of host type 1 to promote 
growth of the mutualist, relative to host type 2. It will be 
negative if host 1 is a worse mutualist host. The second par-
enthetical expression, (μ1– μ2), is the difference in respon-
siveness to mutualists between the two host types. It will be 
positive if host 1’s population growth is more strongly ben-
efited by mutualists than is host 2’s growth. Therefore, the 
entire first product, (γ1– γ2) (μ1– μ2), will be negative if there is 
a negative relationship between a species’ ability to host the 
mutualist and its responsiveness to mutualism.

The second product in Equation (9) is made up of 
similar parts: first, the differential ability of the two host 
types to promote pathogen growth ((1– γ1)– (1– γ2)), fol-
lowed by the differential effect of the pathogen on each 
type of host (|ε1|– |ε2|). Note that because εi represents the 
effect of pathogens, it should be negative. Therefore, the 
absolute value signs make the last parenthetical expres-
sion positive if host type 1 is more susceptible to patho-
gens. The entire second product in Equation (9) is thus 

positive if the same host is both a better host to, and is 
more strongly harmed by, pathogens.

Taken together, Is is guaranteed to be negative— 
indicating a net negative feedback— when the species 
that is a worse host to the mutualist (if this is host 1, e.g. 
γ1 < γ2) and a better host to the pathogen (1– γ1 > 1– γ2) is 
also most responsive to both microbial groups (μ1 > μ2, 
indicating a stronger benefit from mutualists, and 
|ε1| > |ε2|, indicating greater susceptibility to pathogens. 
This analysis makes rigorous the mechanisms underly-
ing the result in Bever et al. (1997).

A convenient way to remember this result is that a net 
negative feedback results when there is a negative cor-
relation between ‘hostiness’ (a species’ relative ability 
to host a particular microbiome functional group) and 
‘happiness’ (a larger gain (mutualists) or smaller loss 
(pathogens) from interacting with that functional group). 
Examples of positive and negative hostiness- happiness 
relationships have been documented for both mutualists 
and pathogens (Figure 3), illustrating a diversity of net 
microbiome effects in nature. While pathogen- driven 
net negative hostiness– happiness relationships were the 
most common type seen in plant– soil systems (Crawford 
et al., 2019), whether this is generally true across taxa and 
across different types of (eco)systems is an open question.

The examples in Figure 3 come from studies on a sin-
gle microbial functional group (just pathogens, or just 
mutualists). Measuring microbial effect on, and response 
to, each host becomes much more complicated when mul-
tiple microbial types coexist. Indeed, this is the problem 
for which feedback theory provides the workaround, by 
allowing Is to be estimated without knowledge of the in-
dividual �ij values. Just as with feedback theory, breaking 
an empirical estimate of Is into its components— here, the 
‘happiness’ and ‘hostiness’ terms in Equation (9)— requires 
additional, non- trivial work. The proportion of the mi-
crobiome that is mutualistic (γi) may for some systems be 
estimable from sequencing approaches, for example, and 
the individual microbial effects (�i and �i) may be measur-
able where the microbiome can be sorted into functional 
groups (e.g. by size or through differential biocides) during 
the test phase of the feedback experiment. Even rough es-
timates of any of these quantities can be combined with 
the Is measured from a standard feedback experiment to 
constrain the range of possibilities for the remaining terms 
in Equation (9), and thus the range of viable hypotheses 
for which feedbacks are structuring the community.

A DVA NCING M ICROBIOM E 
TH EORY: TH E UTILITY OF LOOP 
A NA LYSIS FOR COM PLEX HOST– 
M ICROBIOM E INTERACTIONS

The results discussed so far have been extended to mod-
els that add host– host resource competition and host self- 
limitation (Bever, 2003; Revilla et al., 2013). The general 

(7c)
dNe

dt
=

2∑

i=1

j≠ i

(
1 − � i

)
viNi

Ni +Nj

(
� j
(
Nm +Ne

)
−Nm

� j − � i

)
.

(8)�ij = � j�i +
(
1 − � j

)
�i for i, j = 1, 2,

(9)

Is=�11−�21−�12+�22

= (�1−�2)(�1−�2+�2−�2)

= (�1−�2)
⏟⏞⏟⏞⏟

(m hosting ability)

(�1−�2)
⏟⏞⏟⏞⏟

(response to m)

− ((1−�1)− (1−�2))
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

(e hosting ability)

(|�1|− |�2|)
⏟⏞⏞⏞⏟⏞⏞⏞⏟
(response to e)
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feature that there is an analogue to Is that describes net 
feedback and provides information on expected host di-
versity extends to these more complex cases.

Loop analysis (Levins, 1974; Puccia & Levins, 1991) 
provides a convenient means to gain insight into the feed-
backs structuring more complicated models, at a some-
what aggregated level. In this context, a loop refers to a 
configuration in which each component of the commu-
nity exerts an effect on a component and receives an effect 
from a component. For example, the net feedback gener-
ated in a two- host system with host density dependence 
(Figure 4a) is determined by the sum of four different 
feedback loops (Figure 4b; see Box 2 for a mathematical 
description). Two of these loops (loops 1 and 4) involve 
the direct feedback between one host and its microbiome 
(Figure 4b). Following the convention of loop analysis, 
in which each loop involves exactly one effect imposed 
on and imposed by each variable, this direct feedback is 

multiplied by the strength of intraspecific competition ex-
perienced by the host not involved in the direct feedback 
(Figure 4b; Puccia & Levins, 1991). The other two feed-
back loops (loops 2 and 3) involve an indirect feedback, in 
which one focal host manipulates the composition of the 
microbiome, which affects the density of the competing 
host, and this change in competitor density feeds back to 
the focal host via interspecific competition (Figure 4b). If 
the two hosts did not differ in terms of intra-  and inter-
specific competition strength, the net feedback generated 
in the system would exactly equal Is (Box 2).

This approach can be generalised to any density- 
dependent interactions between and within the hosts, 
and within mutualists and pathogens. Without specify-
ing the functions for relative fitness (
F1 =

1

N1

dN1

dt
,F2 =

1

N2

dN2

dt
,Fm =

1

Nm

dNm

dt
,Fe =

1

Ne

dNe

dt

)
, we 

can write the interaction matrix as,

F I G U R E  3  Examples of positive and negative ‘hostiness- happiness’ relationships between hosts and their pathogens or mutualists. (a) From 
Zeller and Koella (2017): Aedes aegypti mosquito lineages with different evolutionary histories (different colours) and their microsporidian 
parasite Vavraia culicis show evidence of a negative feedback. Lineages that can host higher parasite loads (more hosty) have lower tolerance to 
infection (less happy). Tolerance was measured as the slope of the longevity– parasite load relationship. (b) From Thompkins et al. (2000, 2001): 
differential impacts of the parasitic nematode Heterakis gallinarum promotes competitive exclusion of grey partridges (Perdix perdix, green) by 
ring- necked pheasants (Phasianus colchicus, blue). Pheasants have better body condition when infected relative to control (more happy), yet they 
host many more worms per year (more hosty). (c) From Bever (2002): Plantago lanceolata (brown) benefits more (more happy) from arbuscular 
mycorrhizal fungal (AMF) species (Acaulospora morrowiae and Archaeospora trappei, plotted in lighter shades) for which it is a poorer host 
(less hosty) relative to its competitor, Panicum sphaerocarpon (green). Plantago also benefits less from AMF, that it hosts better (Scutellospora 
calospora, dark shades). (d) From Koziol and Bever (2015): for 30 prairie plant species from across successional stages (earliest lo latest: light 
green, dark green, light blue, dark blue), the mycorrhizal response ratio of the mass of AMF- inoculated plants tends to be lower in earlier 
successional plants that are also worse AMF hosts. This generates a positive feedback that may contribute to successional turnover. All figures 
have been redrawn for display on hostiness– happiness axes using data presented in figures or tables in the original references

(a) (b)

(c) (d)
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Because our interest is in microbiome interactions 
driving host dynamics, we can simplify the interaction 
matrix by assuming that intraspecific and interspecific 
competition coefficients for the two hosts are equal,

Using loop analysis to calculate the net feedback 
shows some familiar elements:

Specifically, we see that the first two terms again de-
scribe the equivalent of Is. Furthermore, the third term 
comprises the set of direct and indirect feedbacks previ-
ously described by the loops in Figure 4. Thus, dynamics 
are still governed by the hostiness- happiness relation-
ships, where the importance of the mutualist feedback 
and pathogen feedback are mediated by the strength of 
intraspecific and interspecific density dependence of the 
hosts, and intraspecific density dependence in pathogens 
and mutualists (Equation (12)). There is also an interac-
tion between the mutualist-  and pathogen- driven feed-
backs, which can be disentangled into a set of direct and 
indirect feedbacks that only involve host– microbiome 
effects (Figure 5).
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within and between host community feedbacks− see Fig. 5

.

F I G U R E  4  Loop analysis for a two- host– microbiome community model with density- dependent resource competition within and between 
host types. (a) Combining information about the microbiome into a single variable representing the frequency of host 1’s microbiome, M̂

1
.  

(b) The four loops that make up the 3- variable model. Each loop (which need not form a closed path; see e.g. Loops 1 and 4) consists of a set 
of interactions in which each variable has exactly one arrow pointing towards it and exactly one arrow pointing away. See Box 2 for a full 
mathematical description
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Box 2 Loop analysis of a combined Lotka– Volterra competition- feedback model

Density- dependent resource competition within and between host types can be considered by combining the 
feedback model (Equation (1)) with the Lotka– Volterra competition model (Bever, 2003). Considering two 
hosts and their associated microbiomes, we write

where ri is the host i's intrinsic population growth rate, M̂i is the frequency of its microbiome in the shared envi-
ronment 

(
M̂i =

Mi

M1 +M2

)
, and cij > 0 is the competitive effect of host type j on host type i. All other notations follow 

the main text, except that we set microbiome i's response to host type i, vi in Equation (1a), to 1 for i = 1 and write 
it simply as v for i = 2, for consistency with (Bever, 2003). By representing the microbiome in terms of frequencies, 
we only need one microbiome equation (Figure 4a). Loop analysis can be performed on the interaction matrix of 
the system described by Equation (B2.1), which can be written as follows:

where � =
M̂

∗

2

N∗
1
+N∗

2

, with the asterisks representing equilibria. Since � is always positive, it does not affect the sign of 

the net feedback in the system. Therefore, the net feedback of the system can be inferred from the matrix

whose determinant is

Expanding Equation (B2.3) yields the four feedback loops described in the main text and shown in Figure 3.
In the absence of competitive differences between hosts (i.e. r1 = r2 = r, c11 = c22 = cIntra, c12 = c21 = cInter, � = 1),  
the net feedback of the system reduces to,

Because r�
(
cIntra + cInter

)
 is a positive constant, the sign of the net feedback in the system is described by Is 

(Equation 5) in this case.
The structure of Equation (B2.3) reveals several different processes that are important in generating the 
system- level host– microbiome feedback. The first factor in the first term, (c22 + vc21), quantifies the ability 
of host 1 to indirectly manipulate the microbiomes through its competitive effect on host 2. This ability in-
creases not only with the degree of interspecific competition exerted on host 2 (c21), but also with the degree of 

(B2.1a)
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dt
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intraspecific competition experienced by host 2 (c22), and the per capita effect of host 2 on microbiome com-
position (�). The second factor in the first term quantifies the ability of both microbiomes to manipulate the 
density of host 1, as it describes how the net microbiome effect on this host changes when it increases in relative 
abundance (�11 − �12). The multiplication by r1 accounts for the rate at which these latter effects develop. By 
symmetry, the second term of Equation (B2.3) quantifies these impacts for host 2.
For the system described by Equation (B2.1), the net feedback determines the position of the one equilibrium 
point in which the hosts and their microbiomes coexist,

in which

and matrices AC1 and AC2 are defined below. We derive the equilibrium by setting the equations (B2.1) to zero. In 
this case, the microbiome would maintain both hosts at equilibrium if microbiome effects cancel out the density- 
independent and density- dependent effects on fitness resulting from host– host interactions. As per capita effects 
on fitness are constant (Equation B2.2), and M̂2 =

(
1 − M̂1

)
 , we can infer from this equilibrium requirement that 

the following equation needs to be fulfilled:

Using Cramer's rule, we obtain M̂
∗

1
 (and det AC1) by substituting the right- hand side of Equation (B2.6) into the 

third column of the interaction matrix, to obtain the host- specific feedback exerted on M̂1 (and N1):

By symmetry, obtaining the host- specific feedback exerted on M̂
∗

2
 (and N2) then requires solving the matrix 

equation:

which then yields:
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Box 2 (Continued)
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TH E UTILITY OF SIM PLE 
TH EORY FOR U N DERSTA N DING 
COM PLEX SYSTEMS

The loop analysis discussed above and illustrated in Box 
2 shows that many of the insights gained from models 
(1) and (7) transfer well to more realistic settings. This 
is notable, since the basic models lack density depend-
ence and equilibrate only in terms of the frequencies of 
each community member. Nevertheless, the key roles of 
hosting ability and benefits derived from the microbi-
ome in determining net community outcome are robust 
to inclusion of the myriad sources of density dependence 
(Equation (12)). We are therefore interested in knowing 
how far simple feedback theory can get us. Even in the 

simplest host– microbiome feedback model (Bever et al., 
1997), Is < 0 is a necessary but not sufficient condition for 
host coexistence. We do not expect Is to provide complete 
information on community- level outcomes because there 
are multiple system characteristics and mechanisms that 
may prevent species coexistence even when Is < 0. Most 
obviously, the theoretical coexistence state that would 
be maintained by negative feedback may include nega-
tive densities of hosts and/or microbiome populations 
(Kandlikar et al., 2019). Second, the negative feedback 
generated by Is < 0 may or may not be sufficient to con-
strain a system with complex eigenvalues to a stable limit 
cycle (Eppinga et al., 2018). An interesting difference be-
tween the dominant eigenvalue of the Jacobian matrix 
and Is is that the former only informs about the fate of 

F I G U R E  5  Graphical representation of the second row of Equation (12). Arrows pointing from species or functional group j to species or 
group i represent the fitness effect of j on i's population growth rate. This is the i,jth element of the interaction matrix (Equation (10)). In the 
final row, products are depicted as multiple arrows drawn together
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A feasible equilibrium point requires that all equilibrium densities be positive, meaning

thus, either all signs in Equation (B2.10) are positive, or they are all negative. To assess which of these two cases is 
stable, we can solve the determinant of the Jacobian matrix of the system described by Equation (B2.1), evaluated 
at the coexistence equilibrium point. As the determinant is the product of the system's three eigenvalues, a nega-
tive determinant is necessary (though not sufficient) for stability. The determinant of the Jacobian matrix, U, can 
be written as follows:

The parameters r1, r2 and v must be positive for biological realism, and if Equation (B2.10) holds, then the frac-
tion in Equation (B2.11) is also positive. Hence, stable coexistence of both plant hosts and their microbiomes 
requires JS < 0, corresponding to negative host– microbiome feedback, thereby obtaining a result of (Revilla 
et al., 2013), who used a graphical approach.
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Box 2 (Continued)
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small perturbations around the coexistence equilibrium, 
while the latter informs about the attraction of the coex-
istence equilibrium when one host is rare (Eppinga et al., 
2018). Hence, Is < 0 is a necessary condition for species 
persistence, while a negative dominant eigenvalue is not 
(Eppinga et al., 2018). The reason Is < 0 is not sufficient is 
that it does not consider that multiple hosts and their mi-
crobiomes can simultaneously become rare, after which 
one or more hosts and their microbiomes may get ex-
cluded (Eppinga et al., 2018). In future analyses, Floquet 
theory (e.g. Klausmeier, 2008) may provide further in-
sights into the connection between Is and the ability of a 
community to persist while fluctuating.

DISCUSSION

Host– microbiome feedback theory has proven useful for 
understanding net effects of interactions between plants 
and their soil microbes on plant communities, and we 
contend that the framework translates readily to other 
host taxa. While the combination of the theory with em-
pirical tests is powerful, it treats the feedbacks as a ‘black 
box’, whereby host and microbial responses to one an-
other are input and output but the mechanisms underly-
ing these responses are not addressed. Classic ecological 
theory for how hosts interact with shared mutualists and 
pathogens allows us to study these mechanisms, but has 
previously been unconnected with net community- level 
feedbacks. In this paper, we have synthesised feedback 
theory with classic modelling approaches. By merg-
ing these two research directions, we can now link net 
feedback theory, with its readily measurable and highly 
informative net feedback coefficient, with mechanistic 
theory that opens the black box.

The central constructs of microbiome feedback theory 
are state variables that represent the direction of change 
in microbiome composition due to association with a 
particular host (Bever et al., 1997). These state variables 
are qualitatively different from common state variables, 
such as density, that can be directly measured. While 
host- specific microbiome divergence, a critical step 
in microbiome feedback, could be quantified through 
amplicon sequencing or other tools, feedback theory 
measures host- specific divergence through microbiome 
impacts on host fitness. This framework has the advan-
tage of constructing theory around a workable experi-
mental test of microbiome influence on fitness (Figure 2, 
Box 1), but it has been difficult to represent the meaning 
of the parameters of the feedback model. By explicitly 
bridging these two theoretical frameworks, we show that 
feedback parameters correspond to integrative measures 
of host effects on microbes and host responses to mi-
crobes. Microbiome feedback then corresponds to the 
product of the differential ability to host microbes and 
the differential host fitness response to those microbes. 
A negative ‘hostiness- happiness’ correlation generates 

negative microbiome feedback that can stabilise coex-
istence of host species, while positive microbiome feed-
backs generated by a positive correlation can drive host 
turnover or alternative stable states (Figure 3).

Our analyses show that microbiome feedback the-
ory and classic ecological theory are complementary 
approaches to understanding the influence of the mi-
crobiome on host communities. Considering disease dy-
namics as an example, classic theory explicitly models 
disease spread separately from disease impacts and this 
modelling approach has motivated a general prediction 
that disease incidence will decline with host diversity 
(Keesing et al., 2006). This prediction, called the dilution 
effect, became very controversial because of the depen-
dence on specific modelling assumptions and questions 
of correspondence to empirical systems (Randolph & 
Dobson, 2012). Microbiome feedback theory does not 
monitor disease incidence, and therefore does not in-
form questions of disease incidence per se. However, 
by representing the net consequence of disease dynam-
ics on host fitness, feedback theory does predict that 
when negative feedback predominates, increases in host 
diversity will result in reduced impact of pathogens on 
host fitness. Given evidence that root pathogens drive 
negative microbiome feedback in plant communities 
(Crawford et al., 2019), some have argued that impacts 
of root pathogens will generally be diluted by increasing 
plant diversity (Collins et al., 2020). Moreover, a general 
argument on the importance of pathogens in structur-
ing plant communities can be constructed by combin-
ing inference from the few tests of classic host– pathogen 
models parameterised to particular systems (Mordecai, 
2013b, a) with the much broader data available on pat-
terns of plant– soil microbiome feedback (Bever et al., 
2015).

We argue that integrating work under the classical and 
microbiome feedback frameworks is necessary to build a 
predictive understanding of how environmental change 
may alter host– microbiome interactions and thereby 
host community structure. For example, when the signs 
of feedback loops through various components differ 
(e.g. simultaneous positive feedback through mutualists 
and negative feedback through pathogens), changes in 
environmental factors like climate or nutrient availabil-
ity may readily reverse the sign of the net feedback. While 
building and parameterising models that incorporate 
environmental dependence of host– microbe interactions 
is a priority, prospects for broad application of this ap-
proach are limited given the fantastic diversity of host– 
microbe interactions. Rapid progress may be possible by 
using illustrative examples from classic ecology theory 
to generate predictions that can then be tested using the 
host– microbiome feedback approach. The microbiome 
feedback approach provides tests of the potential for 
the microbiome to mediate host– host interactions, and 
inference from these tests is constrained to the test's mi-
crobiome source (Crawford et al., 2019; Diez et al., 2010) 
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and environmental context (Smith- Ramesh & Reynolds, 
2017). However, the environmental dependence of micro-
biome feedback can provide tests of general tendencies 
of these systems. For example, a recent test of plant– soil 
microbiome feedback found that consistency of environ-
ment generated more stabilising negative feedbacks than 
did fluctuating environments (Duell et al., 2019).

Peter Chesson's partitioning of interspecific inter-
actions into stabilising and equalising effect (Chesson, 
2000), often called ‘modern coexistence theory’, has been 
embraced as a useful guide to bridge theory and empir-
ical studies (e.g. Ellner et al., 2019; HilleRisLambers 
et al., 2012). The aim of the feedback framework is to 
evaluate the stabilising potential of microbiome dynam-
ics. The quantity Is represents the stabilising potential of 
microbiome dynamics near the coexistence equilibrium: 
the more strongly negative, the greater the stabilising 
potential. Full application of modern coexistence theory 
to the feedback model (i.e. determining if the internal 
equilibrium exists and estimating the equalising effect of 
the microbiome; Kandlikar et al., 2019; Ke & Wan, 2020) 
is difficult because it requires estimation of individual 
feedback parameters (αij). These parameters represent 
the difference between host fitness with differentiated 
microbiomes and host fitness with a naïve microbiome 
(i.e. upon initiation of the training step of the feedback 
experiment). Because microbiomes are not static, and 
because relative fitness effects are best estimated in a 
randomised common environment, the fitness effect of a 
naïve microbiome is empirically challenging to estimate. 
Host fitness in a naïve environment should not, despite 
the suggestion of Ke and Wan (2020), be conflated with 
fitness in a sterile environment, as this would confound 
the effects of microbiome dynamics with the effects of 
microbiome presence. As such, practical challenges re-
main for the unification of modern coexistence theory 
with feedback experiments.

As both empirical and theoretical investigations of 
host– microbiome feedbacks are extended to include 
more taxa and more processes, we expect linkages be-
tween net feedbacks and underlying mechanisms will 
be important for building understanding and predic-
tion. Many patterns in community ecology are context- 
dependent, making generalisation a challenge (Lawton, 
1999). The type of synthesis we promote here elucidates 
the origins of ‘microbial context- dependence’, where the 
potential for positive feedbacks and alternative stable 
states creates a situation in which the final community- 
level outcome depends (predictably, once one knows how 
to look) on initial microbiome composition (Jiang et al., 
2020) and/or initial host densities (Bever, 1999).

ACK NOW LEDGEM EN TS
This work originated from the authors’ participation 
in the Plant- Soil Feedback Theory working group at 
the National Institute for Mathematical and Biological 
Synthesis, supported by the National Science Foundation 

through NSF Award DBI- 1300426, with additional sup-
port from The University of Tennessee, Knoxville. 
Additional support was provided by NSF grants DEB- 
1556664, DEB 1738041 and OIA 1656006.

AU T HORSH I P
KCA and JDB motivated the study; KCA, MBE, JU and 
MB performed mathematical analyses; KCA, JDB and 
MBE wrote the first draft, and all authors contributed 
substantially to revisions.

PEER R EV I EW
The peer review history for this article is available at 
https://publo ns.com/publo n/10.1111/ele.13891.

DATA AVA I LA BI LI T Y STAT EM EN T
No new data are presented.

ORCI D
Mara Baudena   https://orcid.org/0000-0002-6873-6466 
James D. Bever   https://orcid.
org/0000-0003-4068-3582 

R E F ER E NC E S
Backhed, F., Ley, R.E., Sonnenburg, J.L., Peterson, D.A. & Gordon, 

J.I. (2005) Host- bacterial mutualism in the human intestines. 
Science, 307, 1915– 1920.

Bennett, J.A., Maherali, H., Reinhart, K.O., Lekberg, Y., Hart, M.M. 
& Klironomos, J. (2017) Plant- soil feedbacks and mycorrhizal 
type influence temperate forest population dynamics. Science, 
355(6321), 181– 184. https://doi.org/10.1126/scien ce.aai8212.

Bever, J.D. (1994) Feedback between plants and their soil communi-
ties in an old field community. Ecology, 75, 1965– 1977.

Bever, J.D. (1999) Dynamics within mutualism and the maintenance 
of diversity: inference from a model of interguild frequency de-
pendence. Ecology Letters, 2, 52– 61.

Bever, J.D. (2002) Negative feedback within a mutualism: host- specific 
growth of mycorrhizal fungi reduces plant benefit. Proceedings 
of the Royal Society of London. Series B: Biological Sciences, 269, 
2595– 2601.

Bever, J.D. (2003) Soil community feedback and the coexistence of 
competitors: conceptual frameworks and empirical tests. New 
Phytologist, 157, 465– 473.

Bever, J.D., Mangan, S.A. & Alexander, H.M. (2015) Maintenance of 
plant species diversity by pathogens. Annual Review of Ecology, 
Evolution, and Systematics, 46, 305– 325.

Bever, J.D., Platt, T.G. & Morton, E.R. (2012) Microbial population 
and community dynamics on plant roots and their feedbacks on 
plant communities. Annual Review of Microbiology, 66, 265– 283.

Bever, J.D., Westover, K.M. & Antonovics, J. (1997) Incorporating the 
soil community into plant population dynamics: the utility of the 
feedback approach. Journal of Ecology, 85(5), 561– 573.

Chesson, P.L. (2000) Mechanisms of maintenance of species diversity. 
Annual Review of Ecology and Systematics, 31, 343– 366.

Christian, N., Whitaker, B.K. & Clay, K. (2015) Microbiomes: uni-
fying animal and plant systems through the lens of community 
ecology theory. Frontiers in Microbiology, 6, 100.

Collins, C.D., Bever, J.D. & Hersh, M.H. (2020) Community context 
for mechanisms of disease dilution: insights from linking epide-
miology and plant- soil feedback theory. Annals of the New York 
Academy of Sciences, 1469, 65– 85.

Costello, E.K., Stagaman, K., Dethlefsen, L., Bohannan, B.J.M. 
& Relman, D.A. (2012) The application of ecological theory 

https://publons.com/publon/10.1111/ele.13891
https://orcid.org/0000-0002-6873-6466
https://orcid.org/0000-0002-6873-6466
https://orcid.org/0000-0003-4068-3582
https://orcid.org/0000-0003-4068-3582
https://orcid.org/0000-0003-4068-3582
https://doi.org/10.1126/science.aai8212


2810 |   
MICROBIOME INFLUENCE ON HOST COMMUNITY DYNAMICS: CONCEPTUAL 

INTEGRATION OF MICROBIOME FEEDBACK WITH CLASSICAL HOST–MICROBE THEORY

toward an understanding of the human microbiome. Science, 
336, 1255– 1262.

Coyte, K.Z., Schluter, J. & Foster, K.R. (2015) The ecology of the 
microbiome: networks, competition, and stability. Science, 350, 
663– 666.

Crawford, J., Harris, J., Ritz, K. & Young, I. (2005) Towards an evo-
lutionary ecology of life in soil. Trends in Ecology & Evolution, 
20, 81– 87.

Crawford, K.M., Bauer, J.T., Comita, L.S., Eppinga, M.B., Johnson, 
D.J., Mangan, S.A. et al. (2019) When and where plant- soil feed-
back may promote plant coexistence: a meta- analysis. Ecology 
Letters, 17, 1613.

David, L.A., Maurice, C.F., Carmody, R.N., Gootenberg, D.B., 
Button, J.E., Wolfe, B.E. et al. (2014) Diet rapidly and reproduc-
ibly alters the human gut microbiome. Nature, 505, 559– 563.

Diez, J.M., Dickie, I., Edwards, G., Hulme, P.E., Sullivan, J.J. & 
Duncan, R.P. (2010) Negative soil feedbacks accumulate over 
time for non- native plant species. Ecology Letters, 13, 803– 809.

Duell, E., Bever, J.D. & Wilson, G.T. (2019) Climate affects plant- soil 
feedbacks of native and invasive grasses: negative feedbacks in 
stable but not variable environments. Frontiers in Ecology and 
Evolution, 7, 419.

Ellner, S.P., Snyder, R.E., Adler, P.B. & Hooker, G. (2019) An ex-
panded modern coexistence theory for empirical applications. 
Ecology Letters, 22, 3– 18.

Eppinga, M.B., Baudena, M., Johnson, D.J., Jiang, J., Mack, K.M.L., 
Strand, A.E. et al. (2018) Frequency- dependent feedback 
constrains plant community coexistence. Nature Ecology & 
Evolution, 2(9), 1– 8.

Friesen, M.L., Porter, S.S., Stark, S.C., von Wettberg, E.J., Sachs, 
J.L. & Martinez- Romero, E. (2011) Microbially mediated plant 
functional traits. Annual Review of Ecology, Evolution, and 
Systematics, 42, 23– 46.

Gerardo, N.M. & Parker, B.J. (2014) Mechanisms of symbiont- 
conferred protection against natural enemies: an ecological and 
evolutionary framework. Current Opinion in Insect Science, 4, 
8– 14.

HilleRisLambers, J., Adler, P.B., Harpole, W.S., Levine, J.M. & 
Mayfield, M.M. (2012) Rethinking community assembly 
through the lens of coexistence theory. Annual Review of Ecology, 
Evolution, and Systematics, 43, 227– 248.

Hite, J.L., Penczykowski, R.M., Shocket, M.S. & Strauss, A.T. 
(2015) Parasites destabilize host populations by shifting stage- 
structured interactions. Ecology, 97, 439– 449.

Huttenhower, C. & The Human Microbiome Project Consortium 
(2012) Structure, function and diversity of the healthy human 
microbiome. Nature, 486, 207– 214.

Jez, J., Lee, S.G. & Sherp, A.M. (2016) The next green movement: 
plant biology for the environment and sustainability. Science, 
353, 1241– 1244.

Jiang, J., Abbott, K.C., Baudena, M., Eppinga, M.B., Umbanhowar, 
J. & Bever, J.D. (2020) Pathogens and mutualists as joint drivers 
of host species coexistence and turnover: implications forplant 
competition and succession. American Naturalist, 195, 591– 602.

Joshi, T., Elderd, B.D. & Abbott, K.C. (2018) No appendix necessary: 
fecal transplants and antibiotics can resolve Clostridium difficile 
infection. Journal of Theoretical Biology, 442, 139– 148.

Kandlikar, G.S., Johnson, C.A., Yan, X., Kraft, N.J.B. & Levine, 
J.M. (2019) Winning and losing with microbes: how microbially 
mediated fitness differences influence plant diversity. Ecology 
Letters, 108, 5638.

Ke, P.- J. & Wan, J. (2020) Effects of soil microbes on plant competi-
tion: a perspective from modern coexistence theory. Ecological 
Monographs, 90, e01391.

Keesing, F., Holt, R.D. & Ostfeld, R.S. (2006) Effects of species diver-
sity on disease risk. Ecology Letters, 9, 485– 498.

Klausmeier, C.A. (2008) Floquet theory: a useful tool for understand-
ing nonequilibrium dynamics. Theoretical Ecology, 1, 153– 161.

Koziol, L. & Bever, J.D. (2015) Mycorrhizal response trades off with 
plant growth rate and increases with plant successional status. 
Ecology, 96(7), 1768– 1774. https://doi.org/10.1890/14- 2208.1.

Koziol, L. & Bever, J.D. (2016) AMF, phylogeny and succession: spec-
ificity of plant response to arbuscular mycorrhizal fungal species 
increases with succession. Ecosphere, 7, e01555.

Lawton, J.H. (1999) Are there general laws in ecology? Oikos, 84(2), 
177– 192.

Levins, R. (1974) The qualitative analysis of partially specified sys-
tems. Annals of the New York Academy of Sciences, 321, 123– 138.

Mack, K.M.L., Eppinga, M.B. & Bever, J.D. (2019) Keystone compet-
itors stabilize plant communities structured by biotic feedbacks: 
invasion, coexistence, and robustness in multi- species models. 
PLoS One, 14, e0211572.

Mangan, S.A., Schnitzer, S.A., Herre, E.A., Mack, K.M.L., Valencia, 
M.C., Sanchez, E.I. et al. (2010) Negative plant- soil feedback pre-
dicts tree- species relative abundance in a tropical forest. Nature, 
466, 752– 755.

Miller, E.T., Svanbäck, R. & Bohannan, B.J.M. (2018) Microbiomes 
as metacommunities: understanding host- associated microbes 
through metacommunity ecology. Trends in Ecology & Evolution, 
33, 926– 935.

Molofsky, J. & Bever, J.D. (2002) A novel theory to explain species di-
versity in landscapes: positive frequency dependence and habitat 
suitability. Proceedings of the Royal Society of London. Series B: 
Biological Sciences, 269, 2389– 2393.

Molofsky, J., Bever, J.D., Antonovics, J. & Newman, T.J. (2002) 
Negative frequency dependence and the importance of spatial 
scale. Ecology, 83, 21– 27.

Morar, N. & Bohannan, B.J.M. (2019) The conceptual ecology of 
the human microbiome. The Quarterly Review of Biology, 94, 
149– 175.

Mordecai, E.A. (2013a) Consequences of pathogen spillover for 
cheatgrass- invaded grasslands: coexistence, competitive exclu-
sion, or priority effects. American Naturalist, 181, 737– 747.

Mordecai, E.A. (2013b) Despite spillover, a shared pathogen promotes 
native plant persistence in a cheatgrass- invaded grassland. 
Ecology, 94, 2744– 2753.

Muegge, B.D., Kuczynski, J., Knights, D., Clemente, J.C., Gonzalez, 
A., Fontana, L. et al. (2011) Diet drives convergence in gut mi-
crobiome functions across mammalian phylogeny and within 
humans. Science, 332, 970– 974.

Mueller, U.G. & Sachs, J.L. (2015) Engineering microbiomes to improve 
plant and animal health. Trends in Microbiology, 23, 606– 607.

Novak, M., Yeakel, J.D., Noble, A.E., Doak, D.F., Emmerson, M., 
Estes, J.A. et al. (2016) Characterizing species interactions to 
understand press perturbations: what is the community matrix? 
Annual Review of Ecology, Evolution, and Systematics, 47, 409– 432.

Peterman, J.S., Fergus, A.J.F., Turnbull, L.A. & Schmid, B. (2008) 
Janzen- Connell effects are widespread and strong enough to 
maintain diversity in grasslands. Ecology, 89, 2399– 2406.

Puccia, C.J. & Levins, R. (1991) Qualitative modeling in ecology: loop 
analysis, signed digraphs, and time averaging. In: Fishwick, 
P.A. & Luker, P.A. (Eds.) Quatitative Simulation Modeling and 
Analysis. York: Springer, New, pp. 119– 143.

Raaijmakers, J.M. & Mazzola, M. (2016) Soil immune responses. 
Science, 352, 1392– 1393.

Randolph, S.E. & Dobson, A.P. (2012) Pangloss revisited: A critique 
of the dilution effect and the biodiversity- buffers- disease para-
digm. Parasitology, 139, 847– 863.

Revilla, T.A., Veen, G.F., Eppinga, M.B. & Weissing, F.J. (2013) 
Plant- soil feedbacks and the coexistence of competing plants. 
Theoretical Ecology, 6, 99– 113.

Rinella, M.J. & Reinhart, K.O. (2018) Toward more robust plant- soil 
feedback research. Ecology, 99, 550– 556.

Rudolf, V.H.W. & Antonovics, J. (2005) Species coexistence and 
pathogens with frequency- dependent transmission. American 
Naturalist, 166, 112– 118.

https://doi.org/10.1890/14-2208.1


   | 2811ABBOTT et al.

Smith- Ramesh, L.M. & Reynolds, H.L. (2017) The next frontier of 
plant- soil feedback research: unraveling context dependence 
across biotic and abiotic gradients. Journal of Vegetation Science, 
28, 484– 494.

Sonnenburg, J.L. & Backhed, F. (2016) Diet- microbiota interactions 
as moderators of human metabolism. Nature, 535, 56– 64.

Teste, F.P., Kardol, P., Turner, B.L., Wardle, D.A., Zemunik, G., 
Renton, M. et al. (2017) Plant- soil feedback and the maintenance 
of diversity in Mediterranean- climate shrublands. Australian 
Journal of Zoology, 355(6321), 173– 176.

Thompkins, D.M., Greenman, J.V. & Hudson, P.J. (2001) Differential 
impact of a shared nematode parasite on two gamebird hosts: 
implications for apparent competition. Parasitology, 122(02), 1– 
7. https://doi.org/10.1017/S0031 18200 1007247.

Thompkins, D.M., Greenman, J.V., Robertson, P.A. & Hudson, P.J. 
(2000) The role of shared parasites in the exclusion of wildlife 
hosts: \emph{Heterakis gallinarum} in the ring- necked pheasant 
and the grey partridge. Journal of Animal Ecology, 69, 829– 840.

Umbanhowar, J. & McCann, K. (2005) Simple rules for the coexis-
tence and competitive dominance of plants mediated by mycor-
rhizal fungi. Ecology Letters, 8, 247– 252.

van der Putten, W.H., Bardgett, R.D., Bever, J.D., Bezemer, T.M., 
Casper, B.B., Fukami, T. et al. (2013) Plant- soil feedbacks: the past, 
the present and future challenges. Journal of Ecology, 101, 265– 276.

van der Putten, W.H., van Dijk, C. & Peters, B.A.M. (1993) Plant- 
specific soil- bourne diseases contribute to succession in fore-
dune vegetation. Nature, 362, 53– 56.

Vogelsang, K.M. & Bever, J.D. (2009) Mycorrhizal densities decline in 
association with nonnative plants and contribute to plant inva-
sion. Ecology, 90, 399– 407.

Whitaker, B.K., Bauer, J.T., Bever, J.D. & Clay, K. (2017) Negative 
plant- phyllosphere feedbacks in native Asteraceae hosts –  a 
novel extension of the plant- soil feedback framework. Ecology 
Letters, 20, 1064– 1073.

Zeller, M. & Koella, J.C. (2017) The role of the environment in the 
evolution of tolerance and resistance to a pathogen. American 
Naturalist, 190, 389– 397.

SU PPORT I NG I N FOR M AT ION
Additional supporting information may be found in the 
online version of the article at the publisher’s website.

How to cite this article: Abbott, K.C., Eppinga, 
M.B., Umbanhowar, J., Baudena, M. & Bever, J.D. 
(2021) Microbiome influence on host community 
dynamics: Conceptual integration of microbiome 
feedback with classical host– microbe theory. 
Ecology Letters, 24, 2796– 2811. https://doi.
org/10.1111/ele.13891

https://doi.org/10.1017/S0031182001007247
https://doi.org/10.1111/ele.13891
https://doi.org/10.1111/ele.13891

