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Abstract

Since its discovery over 350 years ago, studies of fibrinogen have revealed remarka-
ble characteristics. Its complex structure as a large (340 kDa) hexameric homodimer
supports complex roles in hemostasis and homeostasis. Fibrinogen synthesis is regu-
lated at the transcriptional and translational levels, undergoing both constitutive
(basal) secretion from liver, and inducible upregulation in response to inflammatory
events. In addition, alternative splicing yields fibrinogen variants with unique proper-
ties and contributions to coagulation biochemistry. During coagulation, fibrinogen
conversion to fibrin occurs via thrombin-mediated proteolytic cleavage that produces
intermediate protofibrils and then mature fibers that provide remarkable biochemical
and mechanical stability to clots. Fibrin formation, structure, and stability are regu-
lated by various genetic, biochemical, and environmental factors, allowing for dy-
namic kinetics of fibrin formation and structure. Interactions between fibrinogen
and/or fibrin and plasma proteins and receptors on platelets, leukocytes, endothelial
cells, and other cells enable complex functions in hemostasis, thrombosis, pregnancy,
inflammation, infection, cancer, and other pathologies. Disorders in fibrinogen con-
centration and/or function increase risk of bleeding, thrombosis, and infection. This
illustrated review covers fundamental aspects of fibrinogen and fibrin biology, bio-
chemistry, biophysics, epidemiology, and clinical applications. Continued efforts to
enhance our understanding of fibrinogen and fibrin in these processes are likely to

advance treatment and prevention of many human diseases.
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e Fibrinogen is a complex glycoprotein present in high concentrations in plasma.

e Fibrinogen is converted to fibrin, which stabilizes blood clots and promotes hemostasis.

e Fibrin structure and mechanical properties are modified by genetic and environmental factors.

e Fibrin(ogen) also contributes to thrombosis, host defense, inflammation, and wound healing.
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Fibrinogen and Fibrin: an lllustrated Review
9

j Once upon a time..... ’

If you enjoy a pretty sight, examine this blood [clot] with a microscope. You will
see a fibrous texture, and a networR of nerve-like threads, where small meshes
and honeycomb-like interstices develop...From these and similar cases, we may
surmise that Polyps appear when the mass of blood loses part of its proper fluid
nature.!

O

1666: Marcello Malpighi 1788: Antoine Fourcroy Early microscope

discovers fibrin names “fibrin”
1847: Rudolf Virchow 1838: Jacob Berzelius
names “fibrinogen” coins the term “protein”

1872: Alexander Schmidt states
fibrinogen-to-fibrin conversion is an 187.9_: OIc_>f Hammarsten
k enzymatic process purifies fibrinogen
}

|] Fibrinogen is a hexamer with 2 each of 3 polypeptide chains: 2 Aa-, 2 BB-, and 2 y-chains.

A The Aa-chain C-termini are highly
flexible and have not been
crystalized in full-length fibrinogen.?

Fibrinopeptide
cleavage site

E Region
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Acute-Phase Response
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Fibrinogen is expressed primarily in hepatocytes and is regulated transcriptionally and
post-transcriptionally.
The fibrinogen Aa, BB, and y chains are encoded by a 3-gene cluster FGB FGA FGG
on the long arm of human chromosome 4. H*
Fibrinogen expression is constitutive and inducible.3* . SR - N
e socs3e— GC  °,

-

Endoplasmic Reticulum

/
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Common variant with

biological relevance:
Fibrinogen undergoes
alternative splicing,
producing an
elongated y-chain (y’).

FGG DNA —|

P1 P2 Molecules containing y’-chains
I Intron9 — circulate mostly as yA/y’ and
p2 comprise 8-15% of total

YA pre-mRNA—l

l — ----p  AGDV

fibrinogen in healthy individuals.®’

Y’ pre-mRNA=—— l

| Intron 9 F -==-p..VRPEHPAETEYDSLYPEDDL

P1 & P2 = polyadenylation sites
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Fibrinogen is converted to fibrin by thrombin-mediated proteolysis.

Thrombin cleaves fibrinopeptides
(Fps) from the N-termini of the
Aa and B chains (FpA and FpB,
respectively).

Insertion of the newly-exposed knobs
into structural “holes” in the globular
domains of the y- and B- chains,
respectively, promotes protofibril
formation.

Half-staggered protofibril

Branching of individual fibers produces the fibrin network.® |I

e
Fibrin fiber
striation = — / Branching
22.5 nm
| X
/ \
160,000X /

Fibrin fiber cross-section® shows:

protofibrils.

Dense core of closely-
packed, well-connected

Fibrin can also assemble into a thin
sheet or film.10.11

Decreased density

toward fiber periphery.

Films may have
antimicrobial function.

3

Compared to yA/yA fibrinogen, y’ fibrinogen has...

Decreased

Larger pores

protofibril
packing

(L 7\

- .
l(-‘-( v\
= )

YA/VA

\

, Less stiff fibers
VA/Y

...and produces heterogenous clots resistant to lysis.1213
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Factor XIII (FXIIl) generates ¢-(-y-glutamyl)-lysyl covalent bonds, protecting clots against
lysis and mechanical disruption.

Crosslinking o.,-
antiplasmin, TAFI,
and fibronectin to
fibrin ensures they
are retained in the
clot during
contraction.20-22

a-chain crosslinks: transverse between fibrin

y-chain crosslinks: longitudinal strands increase stiffness, decrease inelastic
within a protofibril increase fiber deformation, increase fiber thickness, promote
density and stiffness.1415 red cell retention during clot contraction, and

decrease clot lysis. 141619

Fibrin has remarkable biomechanical characteristics.

Fibrin is stretchy, like a rubber 1
band... )
Fibrin fiber
...and has viscoelastic properties.1%23
Material Extensibility,,,
Fibrin fiber >330%
Viscous
Fibrin network 100-200%
Spider silk 270%
Elastin 150% ’
Collagen 12-16% HONEY
Fibronectin 200-300% Elastic
Microtubules <20%
Viscosity — likely the result Elasticity — the result
of slippage of protofibrils of reversible
Fibrin stiffens in response to shear, tension, under force. Fiber re- elongation of flexible,
or compression.2 positioning brings new unstructured a-
binding sites into helical coiled-coils
alignment, enables new into B-sheets, and
FEXIN interactions that permit unfolding of y-chain
v irreversible deformation C-termini and aC
g without structural damage. regions.
(%]
“EXI Clot mechanical properties originate from its multi-scale
hierarchical structure, governed by single fiber
Strain properties (orientation, stretching, bending, buckling).2*
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Fibrin is a cofactor for tissue plasminogen activator (tPA)-mediated plasmin generation.

Plasminogen (Pg) binding sites are cryptic in fibrinogen and become exposed during fibrin polymerization.2®

Low-affinity plasminogen binding site

High-affinity plasminogen binding site

| Fibrin also binds tPA, localizing it with plasminogen. |

plasmin

Fibrin fiber

Due to tight protofibril packing, it is unlikely that lytic
enzymes can diffuse through fibers.?”

) G G .
Fibers are lysed

transversely, not
longitudinally.?82°

X

Internal lysis: Fibrinolytic components circulating in
blood become incorporated into clots and lyse clots
from the inside, out.

External lysis: Plasminogen activators are presented
to the clot edge during thrombolytic therapy.

susceptible to lysis.?830

Thinner fibers lyse faster than thick fibers, but clots with thick fibers are typically more

Individual Fibers

Whole Clots

* Thin fibers have fewer protofibrils, so fewer
molecules must be cleaved to transect a fiber.3!

* In thin fibers, molecules are more densely-packed,
so tPA and plasmin binding sites are closer together
to facilitate plasmin crawling.?

* Thin fibers have increased tPA activation of
plasminogen.3?

* Thick fibers are under more tension than thin fibers.
Tension is lost during lysis, leading to elongation
which hinders lysis.?3

* tPA binds thick fibers longer, decreasing lysis.3*

Dense clots with small pores and thin fibers have decreased
penetration of lytic enzymes.?8

Crosslinking increases a,-antiplasmin in contracted clots
and alters mechanical properties, decreasing lysis.!®
Tangential flow aligns fibers and decreases lysis.3®
Perpendicular flow improves penetration of enzymes into
the clot and increases lysis.3®

Platelet-mediated clot contraction expels unbound lytic
proteins (e.g., tPA, plasminogen), and decreases tPA-fibrin
binding, decreasing lysis.3”

Fiber stretching decreases plasminogen activation and
access to plasmin cleavage sites.38
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Multiple factors influence fibrin clot formation, structure, and function. These may be
direct, or indirect by altering fibrinogen or thrombin concentration or induction of post-

translational modifications (reviewed in 3°-44),

Environmental factors:
age, sex, diet, body
composition, pollution,

systolic blood pressure,
infection, smoking & g

-

Genomics &
Epigenomics

N
 NH

T

e

Drugs: FXlla and FXa
inhibitors, COX inhibitors,
statins, ACE-inhibitors,
vitamin K antagonists,
oral contraceptives,

hypoglycaemic agents

ys ( i
;“@\Er\/wr( 1

Blood flow

Fibrinogen
and FXIII

v

Blood components and cells: albumin, calcium, glucose, HbA1C, histones,
hormones, lipoprotein(a), metal ions, polyphosphates, pH, antimicrobial proteins,
IL-6, cell-free DNA, FXlI(a), FXla, FXIll, complement factor 3, C-reactive protein,
platelets, red blood cells, neutrophil extracellular traps, extracellular vesicles

translational
modifications

20 I~
Ca
Calcium
40.078
-—
Protei t .*‘:!‘?.
rotein post- L=

mutations:
(BBGIu448Lys

AaThr?.lZAIa)'
Y’ chain,
FGB

148C/T,
EXII |Va|34Leu

“‘.‘\t\

Proteins crosslinked by FXIII:
o,-AP, TAFI, PAI-2

<+—pP Additional interactions between these factors also exist
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Fibrin(ogen) interactions with cells mediate hemostasis, thrombosis, and inflammatory
responses.*>8

Fibrinogen interactions with the B, Fibrin(ogen) interactions with
integrin on platelets enable platelet the leukocyte ay,B, (Macl)
aggregation and clot contraction. integrin promote
A A
inflammation.

Fibrin(ogen)
engagement of platelet
GPVI induces signaling

L and promotes
thrombus formation
and stabilization.

Fibrin(ogen) interactions
with red blood cells affect
blood viscosity and the
sedimentation rate.

Fibrin(ogen) also interacts with
integrins on endothelial cells,

possibly anchoring thrombi to the
vessel wall.

There are mouse and fish models of a-, dys-, and hyperfibrinogenemia.

Mice expressing fibrinogen with residues mutated Mice expressing fibrinogen with

to prevent fibrin formation (FibAtK) have normal residues y390-3% mutated to alanines
platelet aggregation, but compromised have decreased leukocyte

antimicrobial host defense.*? ' o a,,B,/fibrin(ogen) interactions,
decreased binding of FXIII to fibrinogen,
and decreased retention of RBCs in
Mice expressing fibrinogen lacking the thrombi.5253

last 5 residues of the y chain (FibyA5) @ \.
have defective fibrinogen binding to the

a,,,B; integrin, impaired platelet
aggregation, and increased bleeding.>° a

Transgenic hyperfibrinogenemic mice do
not have increased mortality or
morbidity, and do not show accelerated
Afibrinogenemic mice have spontaneous W»” ™ | progression of atherosclerotic disease.”*
bleeding. Females have fatal uterine ' '
bleeding and pregnancy failure.>!

@ Fish fibrinogen is incorporated into thrombi.
Afibrinogenemic fish have hemorrhage and
ad reduced survival.>>>®
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Fibrinogen abnormalities are associated with both bleeding and thrombosis.>”>8

In 2018, the Scientific Subcommittee of the International Society on Thrombosis
and Haemostasis reclassified the congenital fibrinogen disorders.>”

& Normal: 2 -4 g/L
ot

1. Afibrinogenemia

1A Patients with a bleeding phenotype or asymptomatic
@ 1B Afibrinogenemia with thrombotic phenotype
V4

8

2. Hypofibrinogenemia
. 2A Severe: Functional fibrinogen < 0.5 g/L
2B Moderate: Functional fibrinogen 0.5 -0.9 g/L
.’? 2C Mild: Functional fibrinogen 1 g/L to lower limit of normal
2D Hypofibrinogenemia with fibrinogen storage disease: Familial, with
histologically-proven accumulation of fibrin in hepatocytes

. 3. Dysfibrinogenemia
=

3A Patients with bleeding or thrombosis not fulfilling criteria 3B, or

asymptomatic individuals

3B Carriers of a thrombotic fibrinogen mutation or suffering from thrombotic
events with first-degree familial thrombotic history without other
thrombophilia

4A Severe: Fibrinogen antigen < 0.5 g/L
4B Moderate: Fibrinogen antigen 0.5—-0.9 g/L

”
U
%
‘ 4. Hypodysfibrinogenemia
&
L) 4C Mild: Fibrinogen antigen 1 g/Lto lower limit of normal

Fibrinogen is used in the clinic to treat and prevent bleeding and promote wound
healing.>®

Fibrinogen concentrate is
used clinically to manage
congenital and acquired
hypo- and
afibrinogenemia, trauma-
related bleeding, and
bleeding from
consumptive
coagulopathy and
hyperfibrinolysis.

Fibrin glue is used to seal cutaneous wounds and promote healing.
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Fibrin clot properties are clinically-relevant (reviewed in 4460-65),

Clots with densely-packed fibers, increased stiffness, and resistance to fibrinolysis are
found in cardiovascular and other diseases.

Arterial thrombosis:
Fibrin deposition in thrombi enhances
thrombus resistance to thrombolysis.

Examples: ischemic stroke, coronary
artery disease, peripheral arterial
disease, acute coronary syndrome,
no-reflow phenomena after acute
myocardial infarction, in-stent
thrombosis

Atherosclerosis: A
Fibrin in plaques
contributes to
plaque growth &
(in)stability

Venous Thrombosis/
Thromboembolism:
Increased fibrin deposition in these
fibrin-rich thrombi may also
sequester thrombin within thrombi.

Examples: deep vein thrombosis,
pulmonary embolism, cerebral
venous sinus thrombosis

Chronic inflammatory disease:

Fibrin may increase inflammation by recruiting
inflammatory cells and enhancing leukocyte
reactivity.

Examples: inflammatory bowel disease,
antiphospholipid syndrome, rheumatoid arthritis,
chronic obstructive pulmonary disease

—L inflammatory process.

<

Other:
Fibrin’s role in other settings may contribute to
disease pathogenesis or be a consequence of the

Examples: chronic heart failure with sinus rhythm,
\atrial fibrillation, arterial hypertension, aortic
aneurysm, disseminated intravascular coagulation,
congenital dysfibrinogenemia with thrombosis,
diabetes mellitus, end stage renal disease,
malignancy, liver cirrhosis

Weaker clots are
associated with .
bleeding.

Bleeding: congenital
dysfibrinogenaemia,
haemophilia, liver .
disease and

transplantation

Abnormal clot structures predict:
recurrent deep vein
thrombosis after
anticoagulant withdrawal

* adverse clinical outcome
following acute coronary
syndrome

recurrent thromboembolic
events in antiphospholipid
syndrome

But causality remains to
be proven!

In general, 1 V' is associated with arterial thrombosis, J, y’ with venous thrombosis, although this remains inconclusive.®®

Platelet binding Clot stiffness

Discord may
reflect complex
contributions of
YAandy’
fibrinogen to clot
properties.67-69

Thrombin binding (“antithrombin I”)

Clot structure

g &

Fibrinolysis

The remarkable biochemical and mechanical characteristics of fibrin(ogen) make it an
intriguing target for new therapeutic approaches.
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