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Abstract: The p38 mitogen-activated kinase (MAPK) family controls cell adaptation to stress stimuli.
p38 function has been studied in depth in relation to cardiac development and function. The first
isoform demonstrated to play an important role in cardiac development was p38α; however, all p38
family members are now known to collaborate in different aspects of cardiomyocyte differentiation
and growth. p38 family members have been proposed to have protective and deleterious actions in
the stressed myocardium, with the outcome of their action in part dependent on the model system
under study and the identity of the activated p38 family member. Most studies to date have been
performed with inhibitors that are not isoform-specific, and, consequently, knowledge remains very
limited about how the different p38s control cardiac physiology and respond to cardiac stress. In this
review, we summarize the current understanding of the role of the p38 pathway in cardiac physiology
and discuss recent advances in the field.
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1. Introduction

p38α was identified by three groups in 1994 as a 38 kDa polypeptide that was phosphorylated
after exposure to lipopolysaccharide (LPS), hyperosmolarity, or interleukin 1 (IL-1), that directly
phosphorylates and activates the upstream kinase MAPKAP-K2 [1–3]. Later, three additional isoforms
were described: p38β [4], p38γ (also called SAPK3 and ERK6) [5], and p38δ (also called SAPK4) [6].
The p38 family members are encoded by different genes, located tandemly in two chromosomes.
The p38β (Mapk11) and p38γ (Mapk12) genes are located together on one chromosome (15 in mice
and 22 in humans), whereas p38δ (Mapk13) and p38α (Mapk14) genes are located on another (17 in
mice and six in humans). Mapk12 is proposed to have arisen from tandem duplication of Mapk11,
and the Mapk13-Mapk14 gene unit is thought to have originated in a segmental duplication of the
Mapk11-Mapk12 unit [7].

The p38 family can be subdivided into two subsets, with p38α and p38β in one group and p38γ and
p38δ in the other. This classification is based partly on amino-acid sequence identity; p38α and p38β are
75% identical, whereas p38γ and p38δ are 62% and 61% identical to p38α, respectively, while sharing
70% sequence identity with each other. The two p38 subsets also differ in their susceptibility to
inhibitors, with in vitro and in vivo assays demonstrating that only p38α and p38β are inhibited by
pyridinyl imidazoles (SB202190 and SB203580). A third difference between the p38 subgroups is
substrate selectivity, with p38γ sharing common substrates with p38δ, and p38α with p38β [8–10].

p38 activity is regulated by phosphorylation at the end of a cascade composed of a MAPK
kinase (MKK) and an MKK kinase (MEKK) [11–13]. The cascade is initiated by one of several
MKK-phosphorylating MAP3Ks in cell-type- and stimulus-dependent manner. These MAP3Ks include
mixed-lineage kinases (MLK), TGF β-activated kinase 1 (TAK1), MAPK/ERK kinase kinases (MEKK),
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TAO1 and TAO2, and apoptosis signal-regulating kinase-1 (ASK1) [14]. The p38s are activated by
MKK-mediated dual phosphorylation of tyrosine and threonine residues in the conserved Thr–Xaa–Tyr
motif (in p38, kinases Xaa is glycine, whereas in JNKs, it is proline in ERKs glutamic acid) [14].
Phosphorylation by MKKs is highly selective due to the specificity of the phosphorylation motif and the
interaction of the MKK N-terminal region with different docking sites on the p38s. In addition, in T cells,
p38 is activated by autophosphorylation [15] and also through AMPK-TAB1 [16], an alternative pathway
that has been shown also in adipose tissue [17].

p38 activation is further tightly regulated by a group of inactivating phosphatases [11,14]. All p38
family members are widely expressed and considered ubiquitous, although p38β is most abundantly
expressed in brain and adipose tissue, p38γ in skeletal muscle, and p38δ in secretory glands [5,6,18,19].
While all four p38s are expressed in the heart, the predominant family members in cardiomyocytes
are p38α and p38γ. Extensive research into cardiac p38 function has suggested both protective and
deleterious roles in the stressed myocardium. Which outcome predominates seems to depend in part
on the model system under study and on the identity of the activated p38 family member. However,
understanding remains limited of how the different p38 family members control cardiac physiology
and respond to cardiac stress. In this review, we summarize current knowledge of p38 function in the
heart and discuss recent advances.

2. Cardiovascular Development

In 2000, three groups independently showed that p38α is essential for normal cardiovascular
development. Allen M. et al. demonstrated that genetic disruption of the p38α gene Mapk14 was
embryonically lethal [20]. Four months later, Adams R. et al. confirmed the essential requirement
for p38α during early mouse development, showing that p38α deletion correlated with a massive
reduction in myocardium formation and the appearance of blood-vessel malformations in the head
region [21]. These authors suggested that p38α is necessary for placental organogenesis but is not
necessary for other aspects of mammalian embryonic development [21]. Mudgett, J. et al. showed that
p38α is required for the vascular remodeling associated with placental angiogenesis and trophoblast
development [22].

Although p38 has been shown to play a key role in skeletal muscle development [23], less attention
has been paid to its role in cardiac development. Several in vitro studies point to a possible role of
p38 in cardiac development. For example, p38α activity is required for cardiomyocyte differentiation
of P19CL6 cells, which is mediated via the activation of the transcription factor AP-1 [24]. p38α has
also been shown to promote cardiogenesis over neurogenesis in ES cells [25]. Unfortunately, despite
the strong suggestion of a cardiogenic role of p38α from cell-culture studies, in vivo data supporting
this hypothesis are scarce. While embryos lacking p38α die due to defects in placental angiogenesis,
cardiac-specific deletion of p38α results in normal development of the heart [26].

Several studies have shown that p38 kinases play an important role in different aspects of
cardiogenesis, such as the regulation of cardiomyocyte differentiation and apoptosis. The role of
p38 in cardiomyocyte differentiation was first suggested by studies using a specific inhibitor of p38α
and p38β (SB203580), which demonstrated that p38 activity regulates important mitotic genes in
cardiomyocytes. Neonatal mice lacking p38α have increased cardiomyocyte mitosis, suggesting that
p38α acts as a negative regulator of cardiomyocyte proliferation 2. In adult cardiomyocytes, SB203580
and fibroblast growth factor 1 (FGF1) act synergistically to induce the expression of genes involved
in proliferation and regeneration [27,28], indicating that the combination of FGF1 stimulation and
p38α inhibition might rescue cardiac structure and function after injury [28]. The importance of
p38 in cardiac differentiation was evident by the finding that p38α inhibition or gene deletion were
sufficient to block cardiomyogenesis, suggesting that p38α activation constitutes an early switch
in embryonic stem cell commitment to cardiomyogenesis [25]. The deletion or inhibition of p38α
reduces expression of myocyte enhancer factor 2C (MEF2C), an important transcription factor acting
on many genes encoding cardiac structural proteins [29]. The inhibition of p38 correlates with
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decreases in other cardiac transcription factors and MEF2C targets, such as atrial natriuretic factor
(ANF) and myocardin, all of which contribute to the proper activation of the cardiac differentiation
program during the early stages of development. p38α also regulates sarcomere assembly through
the phosphorylation of ventricular myosin light chain 2 (MLC-2v), as well as the accumulation of
α-actinin and its incorporation into sarcomeric units [29]. The lack of MEF2C activation upon p38
inhibition suppresses the expression of bone morphogenetic protein 2 (BMP-2), a key regulator of early
cardiac cell development [30]. Most studies of cardiovascular development have focused on p38α;
however, it is important to also define the role of other p38 family members in cardiac development.
Mice with combined deletion of p38α and p38β display diverse developmental defects at mid-gestation,
together with major cardiovascular abnormalities [31]. Embryos that express p38β only under the
control of the p38α promoter display a similar heart phenotype as the double-knockout embryos,
suggesting that heart development requires endogenous p38β expression [31]. Moreover, p38α and
p38β have synergistic roles and specific functions in the regulation of cardiac gene expression during
development, suggesting that some specific functions could be explained by differences in expression
patterns [31]. It has been demonstrated the selective activation of p38 in the right ventricle during
neonatal development and simultaneous inactivation in the left ventricle in neonatal mouse heart [32].
Cardiac-specific deletion of p38α and p38β in mice showed an abnormal gross morphology of the heart,
developed right ventricle-specific enlargement dilation and, in consequence, a significant increase in
cardiomyocyte proliferation, hypertrophy and a reduction in apoptosis without changes in the left
ventricle. Furthermore, p38 inactivation induces XBP1 activity via IREα in the regulation of neonatal
cardiomyocyte proliferation [32]. Finally, the role of p38γ and p38δ in cardiomyocyte development
have not been assessed; however, animals lacking these kinases have smaller hearts at birth while
conserving a normal number of cardiomyocytes, suggesting that these kinases contribute to the control
of cardiomyocyte hypertrophy [33].

3. Cardiac Hypertrophy

The role of p38 kinases in cardiac hypertrophy was first suggested by the hypertrophic responses
induced upon overexpression in cardiomyocytes of active forms of the upstream activators MKK3 and
MMK6 [34–36]. The p38 pathway is also activated in cardiomyocytes exposed to hypertrophic stimuli,
and hypertrophic growth is blocked by the SB203580-mediated inhibition of p38α/β [35]. However,
MKK3 overexpression in cardiomyocytes also increased apoptosis [34]. The differences between
the effects of MKK3 and MKK6 might point to distinct roles of p38 family members, a possibility
supported by the finding that p38β activation in cultured cardiomyocytes induces characteristic features
of hypertrophy [36], whereas p38α activation promotes cardiomyocyte apoptosis [37]. Consistent
with this result, cardiac-specific knockout revealed a critical role for p38α in the cardiomyocyte
survival pathway triggered by pressure overload, whereas hypertrophic growth was unaffected [37].
Although some groups have reported a role of p38α in the regulation of cardiac hypertrophy, most
of those studies were based on the non-physiological overexpression of dominant-negative p38α or
indirect strategies that might alter the function of other p38 family members [38,39].

The cardiomyocyte expression and subcellular localization of p38 isoforms was characterized by
Dharmendra Dingar et al. in physiological conditions and in response to chronic pressure overload
induced by transverse aorta constriction (TAC) [40]. TAC did not induce changes in the amount of p38α
mRNA, whereas p38β and p38δ mRNA increased within 1 day of pressure overload and remained,
while p38γ mRNA increased initially before returning to baseline levels by day 7. Despite these
increases in mRNA abundance, the overall protein levels of p38β, p38γ, and p38δ were unaltered [40].
Confocal immunofluorescence analysis detected p38α and p38γ in the cytoplasm and nucleus at
baseline; however, after chronic pressure overload, p38γ accumulated in the nucleus, whereas p38α
distribution was unaffected. These localization differences would result in access to different substrates,
and hence distinct functional effects [40].
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The lack of pharmacological inhibitors of p38γ and p38δ has limited the study of these family
members, though they were recently shown to control physiological and pathological cardiomyocyte
growth. p38γ and p38δ are activated by angiotensin II and phosphorylate the mTOR inhibitor DEPTOR,
inducing its degradation by the proteasome. Once DEPTOR is degraded, mTOR is released and
activated, triggering protein synthesis and cardiomyocyte growth [33]. Mice lacking p38γ and p38δ
have smaller hearts than controls and a reduced cardiomyocyte area [33]. Reduced hypertrophy capacity
in these mice resulted in partial protection against angiotensin treatment [33]. Further experiments are
needed to assess the therapeutic effects of p38γ and p38δ modulation during pathological hypertrophy.

4. Cardiac Regeneration

The best model for studying the molecular mechanisms of cardiac regeneration is the zebrafish,
in which injury induces a cardiomyocyte proliferation that can overcome scar formation, thus
allowing cardiac muscle regeneration [41]. Little attention has been paid to the role of p38 in
zebrafish cardiac regeneration. p38α activation negatively regulates the proliferation of adult zebrafish
cardiomyocytes [42], as also occurs in mammals [27]. During heart regeneration in adult zebrafish,
the induction of p38α activity blocks cardiomyocyte proliferation, suggesting that p38α activity must
be switched off in order to trigger cardiomyocyte proliferation and myocardial regeneration [42].

Mammalian hearts have a very low or non-existent regenerative capacity after cardiac injury.
Nevertheless, in principle, signals that acutely trigger cardiomyocyte survival or modulate myoblast
activity could be manipulated to promote cardiac regeneration and avoid heart failure. There is evidence
implicating FGF1-upregulated genes in cardiac regeneration and cell-cycle control. The inhibition
of p38 and stimulation of FGF1 act together to induce the expression of specific genes involved in
proliferation and regeneration, such as cytokinesis regulator Ect2, cell-cycle-regulated protein 1 (CRP1),
Ki67, cdc2, cyclin A, and the cell-cycle inhibitor p27 [27] (Figure 1A). Moreover, p38 inhibition and FGF1
induction lead to the phosphorylation of the key cell-cycle regulator Rb. These findings suggest that
the promotion of cardiomyocyte proliferation by combined treatment with FGF1 and a p38 inhibitor
could provide an alternative approach to the rescue of cardiac function after injury [28]. Studies of p38
isoforms in muscle regeneration have shown that p38β, p38γ, and p38δ are not required for efficient
adult muscle regeneration and growth after injury [43], suggesting that p38α, in the absence of the
other isoforms, especially p38γ, is sufficient to maintain satellite-cell-mediated myogenesis in vivo
and in vitro [43].

The actions of p38 kinases in skeletal muscle regeneration have received much more attention
than their roles in the heart. However, given the similarities between cardiac and skeletal muscle,
the results of skeletal muscle studies can shed valuable light on the role of p38 in cardiac regeneration.
Much research has focused on the potential role in adult myogenesis of p38γ, which is highly
expressed in skeletal muscle. p38γ-deficient mice have a low muscle regeneration capacity after injury,
with a reduced number of satellite cells that express myogenin prematurely and proliferate poorly.
Mechanistically, p38γ phosphorylates MyoD, enhancing its occupancy of the myogenin promoter
and thereby suppressing its expression. p38γ thus acts in opposition to p38α, blocking premature
differentiation by inducing a repressive MyoD transcriptional complex during satellite-cell–mediated
muscle growth and muscle regeneration [44] (Figure 1B). MyoD activates proliferation-associated genes
but not differentiation genes, whose regulatory regions are repressed by ZEB1. Macrophages present
in the injured muscles of Zeb1-deficient mice have low phosphorylation levels of p38, and forced p38
activation alleviates muscle damage and improves muscle regeneration [45]. In a later study, Brien P et
al. demonstrated that a lack of p38α results in increased p38γ activation [46], suggesting that p38γ
hyperactivation is involved in muscle regeneration.
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Figure 1. p38 in cardiovascular regeneration. (A) p38α blocks cardiovascular regeneration by 
inhibiting the expression of genes involved in cardiomyocyte proliferation and regeneration, such as 
Ect2, Crp1, ki67, cdc2, cyclin A, and p27, and reducing Rb phosphorylation to block cell-cycle 
progression. FGF1 stimulation has the opposite effect. (B) p38γ activates differentiation and 
myogenesis in satellite cells by phosphorylating MyoD and activating proliferation. p38α prevents 
p38γ activation in satellite cells, blocking regeneration. ↑ increase, ↓ decrease. 

The actions of p38 kinases in skeletal muscle regeneration have received much more attention 
than their roles in the heart. However, given the similarities between cardiac and skeletal muscle, the 
results of skeletal muscle studies can shed valuable light on the role of p38 in cardiac regeneration. 
Much research has focused on the potential role in adult myogenesis of p38γ, which is highly 
expressed in skeletal muscle. p38γ-deficient mice have a low muscle regeneration capacity after 
injury, with a reduced number of satellite cells that express myogenin prematurely and proliferate 
poorly. Mechanistically, p38γ phosphorylates MyoD, enhancing its occupancy of the myogenin 
promoter and thereby suppressing its expression. p38γ thus acts in opposition to p38α, blocking 
premature differentiation by inducing a repressive MyoD transcriptional complex during satellite-
cell–mediated muscle growth and muscle regeneration [44] (Figure 1B). MyoD activates proliferation-
associated genes but not differentiation genes, whose regulatory regions are repressed by ZEB1. 
Macrophages present in the injured muscles of Zeb1-deficient mice have low phosphorylation levels 
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Figure 1. p38 in cardiovascular regeneration. (A) p38α blocks cardiovascular regeneration by inhibiting
the expression of genes involved in cardiomyocyte proliferation and regeneration, such as Ect2,
Crp1, ki67, cdc2, cyclin A, and p27, and reducing Rb phosphorylation to block cell-cycle progression.
FGF1 stimulation has the opposite effect. (B) p38γ activates differentiation and myogenesis in satellite
cells by phosphorylating MyoD and activating proliferation. p38α prevents p38γ activation in satellite
cells, blocking regeneration. ↑ increase, ↓ decrease.

Aging is characterized by a general decline in metabolic activity and function, with a loss of both
skeletal and cardiac muscle accompanied by marked functional and structural impairment. Skeletal
muscle has an outstanding regenerative capacity provided by its resident satellite cells. These normally
quiescent cells are activated after injury to promote skeletal muscle regeneration [47]. Cardiomyocytes
and cardiac muscle have long been thought to have lost these satellite cells and appear to lack the
capacity for self-renewal and repair, preventing full recovery. Given the fundamental role of p38
in skeletal muscle regeneration, it is reasonable to postulate a causal link between cardiac muscle
loss-of-function and p38.

To identify potential regeneration strategies based on satellite cells, a number of studies
have investigated the effect of manipulating p38 signaling on aged satellite cells. For example,
the manipulation of satellite cells enhances fibroblast growth factor receptor 1 (FGFR1) signaling and
reduces p38α/β activation in satellite cells, increasing self-renewal and stimulating skeletal muscle
regeneration [48]. Another study improved skeletal muscle repair and regeneration in rats using gold
and gold-silver nanoparticles (AuNPs and Au-AgNPs, respectively) [49]. These nanoparticles regulate
MyoD gene expression and activate p38α signaling, enhancing myoblast myogenic differentiation
and promoting skeletal muscle regeneration. The effects of AuNPs and AuAgNPs were blocked
with SB203580, suggesting that p38α is essential for myogenic differentiation [49]. These studies
indicate an important role for p38 signaling in muscle regeneration; however, the underlying molecular
mechanisms need further investigation to define the antagonic roles between p38α and p38γ. It will
also be important to determine whether this antagonistic relationship operates in cardiac muscle.

5. p38 in Ischemia–Reperfusion Injury

Ischemic heart disease, the leading cause of death worldwide, is normally produced by a coronary
artery occlusion that impairs cardiac blood flow. The ensuing decrease in oxygen delivery can lead
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to myocardial infarction. Reperfusion consists of the restoration of blood flow after the ischemia,
and although this step is essential to avoid cardiomyocyte death, it also causes further damage
associated with increased oxidative stress and inflammation [50,51]. Short ischemic episodes have
been shown to protect the heart from a later ischemic insult, a process known as preconditioning or
postconditioning, depending on whether it happens before or after the ischemia [52].

The p38 pathway is activated in response to ischemia–reperfusion and during preconditioning,
producing a variety of results and cardiovascular scenarios [53]. In perfused rat hearts, p38 activation
during ischemia and reperfusion is associated with a poor cardiac outcome. In contrast, during repetitive
preconditioning treatments, p38 is maximally activated in the first episode, and activation gradually
is reduced during sustained ischemia–reperfusion, improving cardiac functional recovery [53].
Interestingly, p38 activation is compartmentalized, with ischemia activating p38 in mitochondria,
whereas during reperfusion p38 is activated in all cell compartments [54]. It would be interesting
to determine whether different p38 family members are activated and localized in different cell
compartments during these processes. Experiments performed in PC12 cells showed that moderate
hypoxia (5% O2) increases p38γ and p38α phosphorylation, suggesting that ischemia might activate
more than one p38 family member [55]. Most studies have examined p38α and β, both of which are
inhibited by the widely used inhibitor SB203580. There is evidence to suggest that these two kinases have
opposite roles, with p38α activation during ischemia triggering apoptosis, whereas p38β is responsible
for pro-survival signaling during preconditioning [56]. Therefore, SB203580-mediated blockade of
both isoforms during preconditioning results in loss of cardioprotective effects, whereas inhibition
during I/R is beneficial [53].

The activation of p38 during preconditioning seems to be a consequence of adenosine release,
which triggers the opening of ATP-sensitive potassium channels (KATP) during hypoxia [57,58].
The cardioprotective effects of p38 are thought to be due to phosphorylation of the downstream
target Hsp27 and the subsequent enhancement of cytoskeletal stabilization during hypoxic stress [59].
In line with this idea, reactive oxygen species (ROS)-induced activation of p38α during hypoxia
stabilizes hypoxia-inducible factor 1 (HIF-1) [60]. Moreover, the lack of dual specificity protein
phosphatase 4 (DUSP4) leads to p38 hyper-phosphorylation and apoptosis [61]. Preclinical and clinical
studies [62–64] with antioxidants highlight the importance of ROS as mediators of cardiac stress
injury during I/R. ROS are potent p38 activators, but in vitro results with HL-1 cardiomyocytes also
showed that p38 activation drives elevated ROS levels during ischemia–reperfusion [65]. In this
analysis, the damaging effects of ROS were abolished by the p38 pan inhibitor BIRB796 [65]. Moreover,
p38 inhibition with an antioxidant during ischemia–reperfusion is associated with improved cardiac
recovery, decreased infarct size, and reduced apoptosis [66]. This was related to increased endogenous
anti-oxidative enzyme activity and inhibition of oxidative stress [67]. The antioxidant Peroxiredoxin 1
and the ROS scavenger N-acetyl-l-cysteine have been also shown to decrease oxidative stress and block
the activation of p38 and JNK, thus reducing apoptosis during ischemia–reperfusion [68]. Moreover,
oxidative stress can directly regulate p38α activity and protein interactions by affecting the oxidation
state of cysteines. Treatment with H2O2 induced p38-MKK3 disulfide dimer formation in isolated
rat hearts and in an ischemia–reperfusion model, and dimer formation was abolished when the
redox-sensitive cysteines were mutated or sterically inaccessible [69]. Further research is needed
to determine whether p38 activation triggers ROS production, as proposed by Ashraf et al. [53,65],
whether ROS induce p38 activation, or, more likely, there is reciprocal ROS–p38 regulation.

p38 has also been linked to cardiac inflammation through its promotion of the expression
of regenerating islet-derived 3γ (Reg3γ), a protein associated with cardiac inflammatory
signaling [70]. Moreover, treatment with the anti-inflammatory compound gamboge protects against
infarction-induced inflammation by targeting the NF-κB–p38 pathway [71]. p38α activation is also
associated with increased fibrosis during ischemia-induced cardiac remodeling [72]. Supporting this
idea, inhibition of the p38 substrate MK2 impairs fibrotic scar formation after myocardial infarction [73].
The profibrotic effect of p38α was confirmed by conditional p38α deletion in myofibroblasts,
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which demonstrated that a lack of p38α blocks cardiac fibroblast differentiation into myofibroblasts,
reducing fibrosis in response to ischemic injury [74]. p38 pathway activation by MKK6 overexpression
results in interstitial and perivascular cardiac fibrosis [74], and p38 inhibition may underlie the
beneficial effects of some statins on cardiac remodeling after myocardial infarction [75,76]. Supporting
this idea, protease inhibitors induce cardioprotection in models of ischemia–reperfusion, in part by
attenuating p38 phosphorylation, leading to reductions in injury, ROS levels, and infarct size [77].

The ischemia–reperfusion injury response is crucially determined by mitochondrial function and
activity because mitochondria control cell metabolic status, intracellular calcium influx, oxidative
stress, and apoptotic pathways, among other processes. p38 inhibition during ischemia–reperfusion
decreases mitochondrial swelling, protects against ultra-structure alterations, and mitigates
mitochondrial membrane depolarization [78]. There is also evidence that p38 activation during
ischemia–reperfusion contributes to cardiac damage by triggering intracellular Ca2+ overload [79].
Pharmacological inhibition of p38 during ischemia–reperfusion induces cardioprotection by promoting
phospholamban phosphorylation, increasing the activity of sarcoplasmic reticulum Ca2+-ATPase
(SERCA2), and decreasing Ca2+ overload [80]. The role of p38 in the control of intracellular Ca2+ was
corroborated in H9c2 cells: phosphodiesterase-inhibitor–mediated reduction in ERK1/2, JNK, and p38
activation reduced ischemia-induced apoptosis and restored normal calcium influx, oxidative stress
levels, and eNOS expression [81]. p38 inhibition also potentiates the metformin-induced reduction in
myocardial ischemia–reperfusion injury in non-obese type 2 diabetic rats [82].

Ischemia–reperfusion injury also increases the risk of arrhythmia. p38 inhibition with SB203580
decreases ventricular tachycardia and ventricular fibrillation when administered to adult Wistar rats
before or during ischemia, but not at the onset of reperfusion [83]. Mechanistically, this could be due to
the ROS-dependent activation of p38 by ASK1 [84]. ASK1 would respond to the moderate increase in
ROS during ischemia, but not to the higher levels of ROS observed in ischemia/reperfusion, acting as a
redox sensor to mediate ROS-dependent signaling to p38 [84]. These findings highlight the importance
of determining the optimal timing of p38 inhibition in order to achieve an efficient therapeutic response
(Figure 2).
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Figure 2. Dual role of p38 activation during preconditioning and ischemia–reperfusion injury. Activation
of p38β during preconditioning triggers pro-survival signaling pathways, whereas decreased p38α
activation during the ischemic episode leads to cardioprotection. On the other hand, ROS-induced p38α
activation during the ischemic insult triggers HIF1-α stabilization; increases (↑) fibrosis, arrhythmias,
and inflammation; and disrupts mitochondrial homeostasis. SB203580 administration during
preconditioning increases myocardial injury, whereas administration during ischemia–reperfusion
improves cardiac outcome. Indirect p38 downregulators, such as gamboge, statins, and antioxidants,
seem to have beneficial effects when administered during or after the ischemia. Further research is
needed to determine the precise reciprocity of ROS–p38 regulation. ↑ increase.
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6. p38 in Heart Failure and Cardiac Arrhythmia

Heart failure (HF) is a major cardiac pathology and a global pandemic that affects more than
37 million people worldwide [85,86]. The p38 pathway is activated in HF, and specifically in the
pathological cardiac remodeling that can lead to cardiac arrhythmia in the failing heart [87–90]. p38 plays
an important role in the regulation of cardiac remodeling and cardiac contractility. Most studies suggest
a negative role of p38 activation in extracellular matrix remodeling and the development of cardiac
fibrosis, processes related to the development of HF [91–93]. Studies using transgenic animals with
cardiac-specific expression of the activated p38 upstream kinases MKK3bE and MKK6bE showed that
p38 pathway activation promotes cardiac interstitial fibrosis and increased expression of embryonic gene
markers, similar to the expression profile observed in HF [89,94]. The profibrotic effect of p38 activation
may be due to the induction in cardiomyocytes of TNF-α and IL-6 [89], which are closely associated with
the development of fibrosis, adverse cardiac remodeling, and HF [95,96]. The effect of p38 activation
on cardiac fibrosis is not limited to cardiomyocytes and also affects cardiac fibroblasts. The specific
activation of the p38 pathway in cardiac fibroblasts leads to maladaptive cardiac remodeling with a
profibrotic and hypertrophic phenotype and the activation of TGF-β signaling [97], a key cytokine
involved in cardiac fibrosis and HF [95,96,98,99]. p38 is also necessary for the differentiation of
fibroblasts into myofibroblasts, and specific deletion of p38α in cardiac fibroblasts or myofibroblasts
reduces cardiac fibrosis in response to cardiac injury [74]. This is consistent with results showing that
p38 inhibition decreases cardiac fibrosis and pro-inflammatory cytokine production [74,90], suggesting
that p38 blockade is a possible treatment in HF. However, mice with cardiac-specific p38α deletion
have a worse outcome to TAC-induced pressure overload, characterized by extensive cardiac fibrosis,
dysfunction, and dilatation [37]. These opposite results might indicate that another family member is
responsible for the protective effects of inhibitors or that p38 has opposite roles in cardiomyocytes
versus other cardiac cells. Moreover, by promoting non-specific phosphorylations, overexpression of
activated kinases may produce artificial cardiac structural and functional phenotypes. Further research
is needed to determine the specific roles played by the different p38 family members in cardiac fibrosis
and HF, since most studies have focused on p38α or the p38 pathway in general.

p38 can also control cardiomyocyte contractility, a predominant target of therapeutic strategies
to treat HF [100]. The existing evidence indicates that p38 activation has an anti-inotropic effect
in cardiac muscle [101–106]. Different mechanisms have been proposed for the negative effect of
p38 on cardiac contractility. For example, p38 has been proposed to mediate the anti-inotropic
effects of angiotensin II and ROS, which are also increased during HF, desensitizing the response
of myofilaments to Ca2+ [102,105,107]. The mechanism underlying p38-mediated dampening of
Ca2+ responsiveness is unknown, but two main possibilities have been proposed: modification of
intracellular pH or phosphorylation of contractile proteins. However, studies have disproved the
involvement of pH modification in myofilament sensitivity to Ca2+ [105,107], leaving phosphorylation
of contractile proteins as the more likely mechanism. Analysis by Liao et al. did not detect increased
p38-mediated troponin I phosphorylation, which is known to reduce myofilament responsiveness
to Ca2+ [102]. Later work by Vahebi et al. showed that, rather than phosphorylation, p38 activation
promotes the dephosphorylation of α-tropomyosin and troponin I. This was accompanied by a
depression of cardiac and myofilament function and a decrease in maximum ATPase activity [106].
In agreement with this finding, p38 inhibition was found to promote troponin I phosphorylation [108].
p38-mediated dephosphorylation of α-tropomyosin and troponin I appears to be mediated by the
protein phosphatases PP2C-α and PP2C-β, since p38, PP2C-α, and PP2C-β were found in the same
protein complex in the sarcomere [106].

Another mechanism through which p38 might affect cardiac contractile function is the regulation of
proteins involved in cardiomyocyte Ca2+ handling. During cardiac contraction, a depolarizing action
potential promotes Ca2+ release from the sarcoplasmic reticulum, a process known as excitation-contraction
coupling. Ca2+ enters the cell via L-type Ca2+ channels and, in much lower amounts, via the Na+/Ca2+

exchanger (NCX) [109]. This Ca2+ activates further sarcoplasmic reticulum Ca2+ release via the
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Ca2+-triggered Ca2+ release channel ryanodine receptor (RyR). The incoming cytosolic Ca2+ binds
to the thin-filament protein troponin C, initiating myocyte contraction. For relaxation, calcium is removed
from the cytosol by the action of Ca2+ transporters, mainly the sarcoplasmic/endoplasmic reticulum
Ca2+-ATPase 2 (SERCA2) and sarcolemmal NCX [109]. Human HF is characterized by the reduced
expression or activity of SERCA2 [110], resulting in increased diastolic Ca2+ concentrations due to
defects in cytosolic Ca2+ removal, leading to reduced contractile force and impaired relaxation [110].
SERCA2 expression and activity are affected by p38 activation. In rat cardiomyocytes, p38 activation
reduces SERCA2 mRNA expression and protein levels and reduces the activity of the SERCA2 gene
promoter [111,112]. Scharf et al. showed that MK2/3 deletion results in increased protein levels and
activity of SERCA2 in the heart and that SERCA2 gene expression is regulated by MK2-dependent
Egr-1 transcription factor expression and promoter binding [113]. The p38 pathway regulates not
only SERCA2 expression, but also its activity. For example, p38 inhibition increases the inotropic
effect of endothelin-1 (ET-1) by modifying the SERCA2 inhibitory protein phospholamban (PLN).
ET-1 treatment induces p38 phosphorylation [110,114] and promotes PLN phosphorylation at Ser-16 in
the presence of p38 inhibition [80]. Similar results were obtained in a model of ischemia–reperfusion,
which activated p38 and reduced SERCA2 expression and activity, as well as PLN phosphorylation,
whereas these effects were partially reversed by p38 inhibition [113]. In MK2/3 double knockout mice,
PLN phosphorylation is increased in the heart at the Ca2+/calmodulin-dependent protein kinase II (CaMKII)
site (Thr-17) [113]. In the dephosphorylated state, PLN binds to and inhibits SERCA2. Phosphorylation at
Ser-16 or Thr-17 relieves this inhibition, promoting Ca2+ reuptake to the sarcoplasmic reticulum and thus
increasing cardiac contractility [115]. By promoting PLN dephosphorylation, p38 activation can therefore
limit cardiac contractility. Although the main phosphatase responsible for PLN dephosphorylation is
protein phosphatase 1 (PP1), PLN dephosphorylation can also be mediated by protein phosphatase
2A (PP2A) [116,117]. p38 activation has been reported to promote PP2A translocation and activation
in myocytes [118], and p38 inhibition reduces PP2A-mediated dephosphorylation of PLN [108,118].
Furthermore, PP2A activation could be the mechanism by which p38 activation inhibits the β-adrenergic
receptor-mediated contractile response in cardiomyoctes [104,118]. Kaikkonen et al. also proposed that
decreased PP2A activity upon p38 inhibition could also promote PP1 inhibition, and that the p38 isoform
responsible for these effects on SERCA2 regulation would likely be p38α [108]. Given that p38 also affects
the activity of PP2C-α and PP2C-β, is feasible that p38 also affects the activity of PP2Ce, a novel member
of the PP2C family that has been reported to be a specific and potent PLN phosphatase [116].

p38α also appears to participate in α-adrenergic-mediated Ncx1 gene upregulation [119].
The overexpression of active MKK3 and MKK6 was sufficient to induce NCX1 upregulation in
isolated cardiomyocytes, and this effect was mediated primarily by p38α [119,120]. Additionally,
chemical inhibition of NCX1 promotes the formation of an NCX1-p38 complex and p38 activation.
p38 activation induced by NCX1 inhibition has been suggested to be a physiological mechanism to
compensate for loss of NCX1 activity by promoting Ncx1 gene expression [121]. NCX1 activity and
expression is also increased in heart failure [110] and the increased NCX1 activity increases Ca2+

extrusion to preserve the reduced diastolic Ca2+. This may compensate in part for the reduced SERCA2
function [110]; however, it can also promote other negative effects on cardiac contractility. For example,
high NCX1 activity increases Ca2+ release from the cell, reducing sarcoplasmic reticulum Ca2+ stores
and inducing contractile dysfunction. The elevated translocation of Ca2+ across the plasma membrane
also results in a higher risk of delayed afterdepolarizations, which can cause arrhythmia and sudden
death [110,122]. By reducing SERCA2 and increasing NCX1 function, p38 would seem to play an
important role in the development of cardiac arrhythmia. Indeed, p38 activation has been linked
to arrhythmogenic cardiac and ionic channel remodeling [83,87,88,123–125]. The pharmacological
inhibition of p38 reduces the incidence of arrhythmia after ischemia–reperfusion by increasing the
levels of phosphorylated connexin 43 (Cx43) [83]. Connexin clusters in the plasma membrane form
gap junctions, which regulate cell-to-cell electrical and metabolic coupling and are essential for normal
cardiac impulse transmission [126]. Cx43 is the most abundantly expressed connexin in cardiac
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myocytes, and its alteration has been linked to increased susceptibility to cardiac arrhythmia by
altering action potential propagation in the heart [126,127]. There is strong evidence indicating a
role for p38 in the regulation of Cx43. Several processes are involved in Cx43 regulation, including
synthesis/degradation, phosphorylation/dephosphorylation at different residues, and cell membrane
localization [128]. Cx43 expression is increased by p38 activation induced by several stimuli [129–133],
but p38 is also implicated in Cx43 degradation [134]. The effect of p38 activation on Cx43 expression
might depend on the activating stimulus and the cell type being studied. In cardiomyocytes,
p38 activation appears to promote an increase in Cx43 mRNA and protein expression [129–133].
p38 can form a complex with Cx43 [135,136], and its activation has been reported to promote both
Cx43 phosphorylation [135,137,138] and dephosphorylation (via PP2A activity) [136]. Adding further
complexity, the increased phosphorylation of Cx43 upon p38 activation has been suggested to
promote Cx43 degradation [137]. More research is needed to clarify the role of p38 activation in
the regulation of Cx43 and gap junctions. However, despite the varying effects of p38 activation
on Cx43 phosphorylation, the outcome of p38 activation is consistent across studies. p38-induced
phosphorylation and dephosphorylation of Cx43 both lead to reduced cell-to-cell communication,
impaired propagation of the action potential, and the development of cardiac arrhythmia [136–138].
Furthermore p38, inhibition improves cell-to-cell communication and reduces the incidence of
arrhythmia [83,138].

Many aspects of the role of p38 in the development of HF and cardiac arrhythmia remain to be
clarified; however, most of the evidence points to a negative effect of p38 activation on the onset of HF
and arrhythmias. The mechanisms involved include the development of cardiac fibrosis, alterations
to Ca2+ handling proteins, and the modulation of gap junctions in the cardiomyocyte (Figure 3).
Future research will need to address the role of the different p38 family members in these processes,
since most studies have focused on p38α or p38α/β.
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Figure 3. p38 in heart failure and cardiac arrhythmia. p38 activation participates in the development of
heart failure and cardiac arrhythmia through three main mechanisms: (A) Increased cardiac fibrosis by
induction of TNF-α and IL-6 in cardiomyocytes, differentiation of fibroblasts, and induction of TGF-β
in cardiac myofibroblasts; (B) Reduced cardiac contractility due to dephosphorylation of a-tropomyosin
and troponin I via PP2C-α/PP2C-β; (C) Promotion of cardiac arrhythmias due to reduced expression and
activity of SERCA2 (Atp2a2), increased expression of NCX1 (Ncx1) and Cx43 (Cnx43), and altered Cx43
phosphorylation, inducing cardiac contractile dysfunction and altered action potential propagation.
↑ increase, ↓ decrease.
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7. p38 Inhibitors in Clinical Trials

Despite the abundance of experimental evidence for the potential benefits of p38 inhibitors,
clinical trials have failed to show improved cardiac outcomes after ischemia–reperfusion. The new
anti-inflammatory medication losmapimod inhibits p38, and its administration to patients with
non-ST-segment elevation myocardial infarction was well tolerated and improved the cardiac
outcome [139]. However, in another study in acute myocardial infarction patients, losmapimod
did not reduce the risk of major ischemic cardiovascular events, resulting in the withdrawal of the
clinical trial [140].

Alternative approaches to p38 inhibition have been suggested in order to avoid undesirable
side effects. The inhibition of MK2 in activated rheumatoid arthritis fibroblast-like synoviocytes
avoided the modification of the secretion of chemokines like TNF-alpha, normally associated with the
activation of other pro-inflammatory pathways like ERK and JNK during direct p38 inhibition [141].
Moreover, MK2−/− mice showed improved ventricular recovery after ischemia–reperfusion, as well as
reductions in infarct size and apoptosis [142]. MK2 inhibition with MMI-0100 after acute myocardial
infarction inhibited cardiac fibrosis by enhancing primary cardiac fibroblast cell death while inhibiting
cardiomyocyte apoptosis [73].

The lack of efficacy of p38 inhibitors in clinical trials might be due to the high similarity among p38
family members. The lack of isoform-specific inhibitors promotes the development of toxic secondary
effects and probably leads to the triggering of regulatory feedback loops. Moreover, most studies used
non-specific inhibitors, and very few studies have examined the specific p38 family member involved
in a given action. Given the broad spectrum of undesired effects associated with the administration of
inhibitors, the results obtained to date are hard to interpret. Further research with transgenic animal
models will help to define the complex roles of p38 kinases.
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