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ABSTRACT

Survival analyses of gene expression data has been
a useful and widely used approach in clinical applica-
tions. But, in complex diseases, such as cancer, the
identification of survival-associated cell processes
- rather than single genes - provides more infor-
mative results because the efficacy of survival pre-
diction increases when multiple prognostic features
are combined to enlarge the possibility of having
druggable targets. Moreover, genome-wide screen-
ing in molecular medicine has rapidly grown, pro-
viding not only gene expression but also multi-omic
measurements such as DNA mutations, methylation,
expression, and copy number data. In cancer, vir-
tually all these aberrations can contribute in syn-
ergy to pathological processes, and their measure-
ments can improve a patient’s outcome and help in
diagnosis and treatment decisions. Here, we present
MOSClip, an R package implementing a new topo-
logical pathway analysis tool able to integrate multi-
omic data and look for survival-associated gene
modules. MOSClip tests the survival association of
dimensionality-reduced multi-omic data using multi-
variate models, providing graphical devices for man-
agement, browsing and interpretation of results. Us-
ing simulated data we evaluated MOSClip perfor-
mance in terms of false positives and false nega-
tives in different settings, while the TCGA ovarian
cancer dataset is used as a case study to highlight
MOSClip’s potential.

INTRODUCTION

Cancer is a disease of the genome. The genome defects im-
pact the transcriptome and the methylome and their com-
bined effects are observed in tumor cell processes (1).

In the last decade, next-generation sequencing technolo-
gies have boosted cancer genomic studies, complemented
histology-based classification, improved the definition of
clinical outcomes and suggested tailored treatments (2).

The multi-omics dimensions of cells, in healthy as well as
pathological conditions, interact to complement each other.
Thus, improving our ability to study multi-omic signals is
essential to understand biological processes. However, while
the statistical analyses of a single-omic dataset is straight-
forward, the integration of multi-omic data is still challeng-
ing (3).

The approaches to identify survival-associated markers
currently used in medical protocols (4) go through univari-
ate or multivariate survival models one molecular variable
at a time, and do so separately for each omic dataset. How-
ever, this approach has limits, including missing interactions
among genes and among different layers of gene deregula-
tion, and missing context-specific cellular mechanisms in-
volved.

Large-scale cancer genomics projects, such as The Can-
cer Genome Atlas, have generated terabytes of matched
omic data on hundreds––and sometimes thousands––of pa-
tients, shifting the main challenge from data collection to
data analysis. In this scenario, multi-omic data integration
is emerging as a promising approach to prioritize findings
and generate a more comprehensive view of the mechanism
disrupting cellular functions (3,5,6).

In recent years many efforts have been dedicated to multi-
omic data integration (7–12), see (13) and (14) for compre-
hensive reviews. Different strategies have been proposed,
from machine learning algorithms to correlation and pe-
nalized linear models. However, these are focused mainly
for two-class comparison and for identification of cancer
subtypes (not necessarily different prognoses) (15–21). A
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few approaches have been developed for survival pathway
analysis (8,22–25), but still they do not combine multi-omic
datasets (8,24,25) or do not consider interactions among
genes (22,23).

In an attempt to fill in these gaps, here we present
MOSClip: a multi-omic statistical approach based on path-
way topology. MOSClip (Multi-Omics Survival Clip) ex-
ploits the topology of pathway annotations and integrates
multi-omics data to identify pathways or pathway modules
associated with right-censored survival data.

MOSClip is implemented as an R package. It is highly
flexible, accepting from one to many omics datasets, also al-
lowing the use and combination of different data reduction
strategies. It furthermore contains several tools to graphi-
cally summarize the results and help the user during data
interpretation. These features make MOSClip a useful and
versatile tool for omics integration analyses.

MATERIALS AND METHODS

The multi-omic model and tests

MOSClip analysis is summarized in Figure 1. Given the
structure of a pathway converted into a graph structure,
MOSClip can perform survival multi-omic tests either on
a pathway (Figure 1A), or at the module level (connected
components of the pathway graph, Figure 1B). The path-
way and the module tests can be independently performed.

Briefly, MOSClip applies omic-specific dimensionality re-
duction techniques on each pathway or module, and then
uses the multivariate survival model to identify those asso-
ciated with survival. This approach is highly flexible, allow-
ing the use of several omic datasets together, even those con-
taining different data distributions.

In the next paragraph, a brief description of MOSClip
functionalities is reported for the case of four omics: ex-
pression, methylation, copy number variation and muta-
tion. The generalization of these functions and adaptation
for fewer or more datasets is straightforward. Let XT

v×pe
,

MT
v×pm

, CT
v×pm

and UT
v×pu

be respectively the gene expres-
sion, methylation, copy number variation and mutational
matrices of the genes belonging to graph G across v sam-
ples. Expression data is expected to be normalized and log
transformed, methylation data should be a � value matrix,
while mutational or CNV data should be binary matries
(presence/absence of mutation/CNV or GISTIC thresh-
olded data for CNV). It is not required to have all the omics
for all genes, but patient matching across the different omics
is required.

Dimensionality reduction strategies. To reduce the dimen-
sions of numerical matrices such as X or M (gene expres-
sion or methylation) we propose principal component (PC)
analysis using the information on pathway topology as rep-
resented by the graphical model described below or by clus-
ter analysis.

Principal component analysis. Let G = (P, E) be a directed
acyclic graph (DAG) with P nodes (genes) and E edges rep-
resentative of a specific pathway topology and for instance
Xp × v the expression matrix of the P genes belonging to G

across v samples (columns). Then we can model the data
with a graphical model as follows:

M(G) = {X ∼ Np(μ,�), K = �−1 ∈ S+(G)}, (1)

where N is a Normal distribution, p is the number of genes
(nodes of the graph), K is the concentration matrix (inverse
of the covariance matrix) of the model and S+(G) is the set
of symmetric positive definite matrices with null elements
corresponding to the missing edges of G. Without loss of
generality, we assume � = 0. In this model, the maximum
likelihood estimate of � (hereafter �̂I PS) can be obtained
by using the Iterative Proportional Scaling (IPS) algorithm
with the sample covariance matrix (�̂ = X′ X/(n − 1)) as
starting value. The IPS guarantees that �̂−1

I PS ∈ S+(G).
Classic principal component analysis is based on the

spectral decomposition of the sample covariance matrix:

�̂ = VLVT, (2)

where L is a diagonal matrix with eigenvalues arranged
in decreasing order and V is the matrix of corresponding
eigenvectors. The eigenvectors are the principal directions
of the data. The jth principal component is given by j-th
column of XV.

Here, we propose using the spectral decomposition of
�̂I PS, instead of �̂, to calculate the PCs. Given that IPS
takes sample covariance matrices as starting values, in case
of small sample sizes with respect to the number of vari-
ables, we will use a shrinkage approach to estimate �̂. The
number k of PCs to be selected for the final model is es-
timated using a cross-validation approach (26). When the
dimension reduction is performed on modules of graph G
(fully connected component), IPS is not needed and a sparse
PCA (R package elasticnet) is implemented (see Prognostic
module identification paragraph for more details).

Cluster analysis. Hierarchical cluster analysis is applied
on X or M matrices. NbClust R package (27) was used to
identify the optimal number of clusters. NbClust computes
30 different validity measures along with a consensus es-
timation in the case that all the measures are selected. By
default, MOSClip uses the Silhouette index, but any other
validity measure can be selected. On the basis of the op-
timal number of clusters identified, patients are classified
into groups. Then, the numerical matrix is summarized with
a vector reporting the cluster in which the patients are as-
signed. The same cluster analysis strategy is used for both
pathway and module analyses.

To reduce the dimensions of binary matrices such as C or
U (copy number variation or mutations) we propose a bi-
nary summary or a vote counting strategy. Differently from
mutational events with CNV data, amplifications and dele-
tions are considered as separate events and thus as two dif-
ferent covariates in the model. We marked a CNV event
when a severe amplification/deletion was found (following
GISTIC thresholded data a severe amplification is 2 and a
severe deletion is –2).

Binary summary. We summarize the binary matrix with
a sample binary vector having 1 if at least one gene in the
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Figure 1. A schematic overview of the computational strategy of MOSClip. (A) Survival Pathway Test. Given the graph topology G and gene expression,
methylation, copy number and mutational matrices, dimension reduction is applied to generate matrix W. W is composed by reduced omic vectors with
patient classes obtained from PCA, hierarchical clustering and binary/vote counting as described in the Methods. Then a multivariate Cox proportional
hazard model is applied using the W matrix as covariates. The full model P-value is returned. (B) Survival Module Test. After graph moralization and if
necessary triangularization, modules (maximal cliques) are identified. For each module the same analysis as reported in panel (A) is applied. (C) Panoramic
view of MOSClip graphical tools. MOSClip package provides: a summary to rank modules/pathways considering their P-values; an heatmap with top
genes for each omic along with sample annotations; a radial plot for pathway frequencies by omic; a graph visualization to highlight the modules in the
whole pathway; a summary of omic combination as frequency distributions by pathways/modules and by omics; Kaplan–Meyer curves and log-rank test
of sample groups classified according to omic combination.

pathway/module is mutated, amplified or deleted and 0 oth-
erwise. The same strategy is used for both pathway and
module analyses.

Vote counting summary. We summarize the binary matrix
with a numeric vector with values from 0 to the number of
altered genes within the pathway/module. The same strat-
egy is used for both pathway and module analyses.

Pathway test. The multivariate Cox proportional hazard
model is used to perform survival analysis. In the model,
the omic reduced vectors are included as covariates, while
survival measures (e.g. overall and/or progression-free sur-

vival) as response variables. The P-value of the likelihood
ratio test of the model and of the coefficient P-values of
the models are returned to give insights into the associa-
tion between each covariate and the survival measure. In
addition to multi-omic data the survival test implemented
in MOSClip can support non-omic covariates, such as clini-
cal variables or known confounders. Moreover, the package
optionally supports a robust proportional hazard model us-
ing a smooth modification of the partial likelihood as imple-
mented in coxrobust R package.

Module test. Using graphical theory after appropriate
transformations (moralization and if necessary triangular-
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ization), G can be decomposed into small, overlapping,
connected components (maximal cliques in graph theory),
hereafter called modules. Modules are identified using the
maxClique function implemented in RBGL R package.
Then, for each module, MOSClip applies the same strategy
as for the whole pathway test. The dimensionality reduc-
tion strategies using clusters and binary/vote counting sum-
maries are the same as described above, while the estimation
of the PCs is based on penalized regression (sparse PCA).
As modules are completely connected, IPS is not necessary.
If the sample size is small compared to the dimensions of the
module, shrinkage covariance estimation is used in place of
sample covariance. The use of penalized PCA is meant to
enhance the signal of the most important genes, as a penal-
ization is used in the PC regression model estimation step.
Finally, for each module the multivariate Cox proportional
hazard model is applied. As well as in pathway test, in ad-
dition to multi-omic data the survival module test can sup-
port clinical variables and known confounders and a robust
proportional hazard model can be optionally used.

Gene prioritization. Given a prognostic module or path-
way, MOSClip implements different strategies to identify
the genes most associated with survival. To this end, we
include a prioritization system specific for each method of
data reduction: the absolute value of gene loadings is used in
PCA, then the Kruskall–Wallis test is used to compare mea-
surements across patient groups for cluster analyses, and the
three genes with the highest number of events are reported
for binary data.

Resampling strategy. Genes in pathways, as well as in
modules, are highly redundant. Thus P-values obtained are
not independent, violating the assumption of FDR-based
methods for P-value correction. Thus, to control false posi-
tives and to improve the robustness of pathway/module se-
lection, we implemented a re-sampling strategy. From the
original cohort, we created 100 sub-cohorts of patients by
randomly removing 1% of the patients. We ran MOSClip on
all these cohorts to identify a list of significant pathways and
modules. Finally, these results are checked to see how many
times pathways/modules are significant. In the analysis of
TCGA data, we chose the re-sampling success threshold of
80% in both the pathway test and the module test (pathways
or modules significant in at least 80 re-sampled cohorts).

Visualization and graphical summaries. MOSClip provides
several graphical tools to browse, manage and help interpre-
tation of results (Figure 1 C). A brief description is reported
below:

• Test summary. Pathways/modules heat-map of P-values.
The P-value of the Cox model along with those of the
omic coefficients (PCs, methylation, CNV and mutation
variables) are reported for each pathway and for modules
within a pathway. These plots visualize pathway or mod-
ule rank and are useful to evaluate omic contributions.

• Heatmap plot. In this plot, we performed sample clus-
tering with prioritized genes. Prioritized genes for each
omic are reported along with clinical annotations. The
heatmap reports the prioritized gene measurements in
each omic across different patients.

• Pathway frequencies. This radial plot frequency distribu-
tion shows the frequency distribution of pathways ag-
gregated into macro-categories, using the Reactome or
KEGG hierarchical structure separately for each omic
combinations. This plot suggests prognostic biological
processes that may be impacted by the omics and their
cross-talk.

• Network visualization. The pathway network is reported
with the module genes highlighted in red, along with the
impact of the different omics as colored areas.

• Omic combination. This feature implements a Super Ex-
act test and multi-set multi-omics visualization to provide
efficient computation of the statistical distributions of
multi-omic pathway/module set intersections, for this the
theoretical framework implemented in SuperExactTest R
package was used (28). A circle plot is returned with the
frequency of all significant omic combinations and their
significance levels.

• Survival Annotations. Kaplan–Mayer curves and log-
rank tests are used to stratify patients according to the
combination of pathway/module omic variables.

Simulations

To assess MOSClip performance in terms of the rate of false
positives and false negatives, we used simulated data under
H0 (no pathway/module association with survival) and un-
der H1. Under H1 data was simulated so that a selection
of gene measurements were associated with the prognosis,
while under H0 data was simulated so that no genes were
associated with survival.

Simulations were planned in order to test a single or
combination of omics within a pathway and a module.
Specifically, given a graph structure G obtained from the
graphite package (29,30), expression, methylation, mutation
and CNV have been simulated 1000 times to obtain the fol-
lowing scenarios (Figure 2 A): (i) one module (module 27)
with one differentially methylated gene (IGF1R), (ii) one
module (module 21) with one differentially expressed gene
JAK1, (iii) two modules (modules 12 and 23) with two mu-
tated genes (PDGFB, PDGFA, and ERBB2, EGFR), (iv)
one module (module 7) with three significantly deregulated
genes, one with altered methylation (IGF1R) and two mu-
tated genes (ERBB2, EGFR) and (v) one module (mod-
ule 8) with four deregulated genes with respective methyla-
tion (IGF1R), expression (JAK1) and mutation alterations
(ERBB2, EGFR1).

Right-censored survival data (status, follow-up and right-
censoring) was simulated using the survsim package (31)
(see Supporting material). Distributions used to simulate
omic datasets were selected according to the nature of
the data: Gaussian for log-expression, uniform (between
0 and 1) for methylation � values and Bernullian for
mutation/CNV data; details are reported briefly below. For
both the whole pathway and the module tests we used n =
300.

Expression alteration. Gene expression was generated us-
ing simPATHy (32). We used the graph structure reported
in Figure 2 A. The graph contains 79 genes, with 299 edges
distributed in 34 modules. Under H0 a single matrix with
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Figure 2. Simulation results under H1. (A) Pathway graph Pathway graph used for simulations. (B) Pathway results Distributions of the log-transformed
likelihood ratio test (LRT) P-values of the full-model (gray) and of the model coefficients (red for expression, green for methylation and blue for mutation)
over 1000 simulated datasets under H1. Red line represents the 0.05 threshold, while the number on the x-axis are the true positives rate. (C) Module results
Distributions, across all pathway modules, of the log-transformed LRT P-values of the full-model (sub-panel ‘Cox-pvalues’) and of the model coefficients
(red for expression, green for methylation and blue for mutation) over 1000 simulated datasets under H1. Red line represents the 0.05 threshold, while the
number on the x-axis are the true positives rate. The grid in the lower part of the panel highlights the module numbers, along with the presence and the
type of alterations. Modules without colored boxes are composed of genes that were not altered in the simulations.

n1 + n2 rows and 79 columns was simulated with default set-
tings. Under H1 a first matrix with n1 rows and 79 columns
was simulated with default settings and a second matrix
with n2 rows and 79 columns was simulated to have the path
from HGF, to STAT3 (in pink in Figure 2A) perturbed. The
node JAK1 (in red in Figure 2A) was selected to have the
maximum significant difference (mean > 2) between classes,
i.e. the expected true positive.

Methylation alteration. Denote with M(k)
j the random

variable representing the methylation alteration for gene

j, j = 1, . . . , 79, in condition k, k = 1, 2. We assume that
M(k)

j is a uniform random variable centred at θ
(k)
j with range

2�, with θ
(k)
j ∈ (ε, 1 − ε) and � ∈ (0, 1/2). The hypothesis of

absence of dysregulation corresponds to the hypothesis H0 :
θ

(1)
j = θ

(2)
j = θ j . Under H0, M(k)

j ∼ U(θ j − ε; θ j + ε), k =
1, 2. In the simulations, we set � = 0.1 For each non dys-
regulated gene j, �j is fixed to a number randomly chosen in
the interval (0.1,0.9). For each dysregulated gene j, we set
θ

(1)
j = 0.8 and θ

(2)
j = 0.4.
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Mutation/CNV alteration. Mutations and CNV events
are simulated in the same way. Under H0, genes are simu-
lated to have a random alteration rate of 10−3 across all n1 +
n2 patients. Under H1, the set of patients with poor progno-
sis defined by the survsim package were stratified to have 5%
of patients with all selected genes altered (solid blue in Fig-
ure 2A), 10% with three out of four, 20% with two altered,
and the remaining samples with only one altered gene. For
the remaining patients, the genes are simulated to have a
random alteration rate of 10−3.

Once omic datasets were simulated, clinical data were
matched accordingly.

TCGA ovarian cancer data and pathway preprocessing

TCGA multi-omic ovarian cancer (OVC) data (expression,
methylation, CNV and mutation) were used as a case study.
Datasets were downloaded using TCGAbiolinks R package
(version 2.9.2), and all the data referred to human genome
version 38. Clinical annotations were downloaded and used
to select only primary tumor samples. All data were pro-
cessed following TCGA guidelines as described below.

Copy number variation. We downloaded CNV matrix us-
ing getGistic function with type = ‘thresholded’ (TCGABi-
olinks R package). The matrix is in the form ‘gene per
patients’. It contains integer values from –2 to 2: positive
and negative numbers respectively indicate amplification
and deletion; ±2 represents severe amplification/deletion,
±1 mild amplification/deletion and 0 means no defects de-
tected.

Somatic mutations. We downloaded the somatic muta-
tions called by mutect2 pipeline. Following the mutation im-
pact defined by VEP software (33), all the variants with high
and moderate impact were included in the analysis. We ex-
cluded those with low impact (assumed to be mostly harm-
less or unlikely to change protein behavior), and those de-
fined as modifier (non-coding variants or variants affecting
only non-coding genes, or predictions without evidence of
impact) (for more details, see https://docs.gdc.cancer.gov/
Data/). Note that summarizing at the gene level, multiple
mutations on the same gene are counted as one. The data
was transformed into a boolean sparse matrix of genes per
patients, representing the presence/absence of mutations.

Gene (promoter) methylation. Methylation profiles from
the Illumina Human Methylation 27K and 450K platforms
were downloaded. We summarized CpG islands into clus-
ters using the methylMix R package (version 2.10.0 used
with default parameters). A gene may have more than one
cluster of CpG. Probes with no detectable values in more
than 60% of patients were excluded. Within a single cell, any
cluster of CpGs can be methylated or unmethylated. How-
ever, when measuring methylation for a population of cells,
it has to be interpreted as the proportion of cells showing
the site methylated. Different sites are then collapsed and
associated to a gene promoter as � values, which are defined
as the percentage of methylated sites of the promoter of a
gene (34). After filtering of our data, missing values were
imputed using knn (knn R package, k = 5).

Expression profiles. We used gene expression quantifica-
tion obtained via NGS technology. We then filtered out
those genes with <100 raw counts in at least one patient,
normalized data with upper-quantile (EDAseq R pack-
age, version 2.14.0) and used the log2-transformed pseudo-
counts for the analyses.

Survival data. Progression Free Survival (PFS) was de-
fined according to (35). PFS times were defined as the days
from surgery to tumor relapse or tumor death, or alterna-
tively to the last contact date.

Patient cohort. All patients with survival annotations and
profiled for expression, methylation, CNV and mutation
were included in the analysis. Analysis was conducted with
a total of 266 patients.

Pathways. Reactome biological pathways were down-
loaded using the graphite R package (version 1.26.1). We fil-
tered the pathway genes to include those with an expression
profile. For pathway analysis, we further filtered pathways
to include those with >10 genes. For module analysis, path-
ways were filtered to only include pathways containing 20–
100 genes. These cutoffs were empirically selected to remove
reaction redundancies and cut the Reactome pathway hier-
archy. After filtering, we ended up with 1283 pathways of
which 728 where used for module analyses. The Reactome
hierarchy was downloaded from the Reactome website.

RESULTS AND DISCUSSION

MOSClip is a new tool to perform survival pathway analy-
ses on multi-omic datasets. Both pathways and their graph-
ical model decompositions (modules) are tested to find bi-
ological processes impacting the patient’s survival. In the
MOSClip model, multi-omic gene measurements are tested
as covariates of a Cox proportional hazard model after a
dimensionality reduction step. The significance of the mod-
ules could be driven by a single or by a combination of prog-
nostic elements, and graphical tools can help the user inter-
pret the results accordingly.MOSClip has a modular struc-
ture, allowing the use of one or multiple omics with differ-
ent data distributions, and the choice of different reduction
strategies. Furthermore, specific graphical tools have been
implemented to browse, manage and provide help in result
interpretation.

MOSClip implementation

MOSClip is available as an R package on GitHub
(cavei.github.io/MOSClip/). Thanks to compatibility with
the Bioconductor graphite package, MOSClip allows sur-
vival analysis using many of the major pathway databases
such as KEGG (36) and Reactome (37). To enhance and
simplify its usage, MOSClip is distributed along with tuto-
rials on how to (i) download TCGA data using the TCGAbi-
olinks package, (ii) pre-process data for the analysis, (iii) per-
form analyses both at the pathway and module level and (iv)
result visualizations. Finally, we also provide an advanced
tutorial for the creation of multi-omic networks that can be
visualized with Cytoscape (38). These tutorials guide users

https://docs.gdc.cancer.gov/Data/
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in the reproduction of all data and plots contained in this
publication.

MOSClip on simulated data

Simulated data were used to (i) compare methods of dimen-
sion reduction for expression, methylation and binary data
and (ii) evaluate MOSClip statistical power and control of
type I errors.

We tested PC and cluster analysis summaries on both
expression and methylation data. Results show that at the
level of the pathway, PCA and cluster analysis are the best
choices respectively for expression (Supplementary Figure
S1A, power of 90%) and methylation data (Supplementary
Figure S2A, power 100%), while at the level of modules both
methods show excellent performance (Supplementary Fig-
ures S1B and S2B).

Then we tested binary and vote counting for
mutation/CNV data. Results show that, although at
the module level both methods reach a power grater than
90% (Supplementary Figure S3B), at the pathway level the
vote counting method is more powerful (Supplementary
Figure S3A; 100% for vote counting and 88% for binary).
As a general conclusion, although the user might select the
dimension reduction strategy that best fits the biological
question of the study, we suggest the use of PCA for
expression data, clustering for methylation data and vote
counting for mutational/CNV data.

Regarding MOSClip performance in case of multiple
deregulated omics within the same pathway/module, our
simulations show a good control of the type I error under
the null hypothesis both at the level of pathway (Supplemen-
tary Figure S4) and at the level of modules (Supplementary
Figure S5). In particular mutation and methylation data
show an error rate very close to the nominal value, while
expression data seems to have a slightly higher rate of false
positives. On the other hand, under the alternative hypoth-
esis MOSClip shows an excellent power (greater than 90%)
at the level of the pathway (Figure 2B) and modules (Figure
2C).

MOSClip and TCGA data analyses

We used MOSClip to find progression-free survival (PFS)
associated pathways and modules in the TCGA multi-omic
dataset of ovarian cancer (OVC). The analyses have the
main purpose of demonstrating MOSClip feasibility and
usefulness. The OVC results have been discussed in light of
published literature which is considered a benchmark in the
field. We summarized the state-of-the-art knowledge on ex-
pression, CNV and methylation alterations and mutations
in OVC in Supplementary Table S1.

Specifically, OVC is characterized by ubiquitous TP53
mutations (39), alterations of PI3K/AKT signaling, loss
of E-cadherin expression, mutations or epigenetic loss of
RB1, NF1 and PTEN (40,41), and deregulation of TGF-
β/SMAD signaling resulting in the promotion of epithelial
to mesenchymal transition (42,43). More aggressive OVC
phenotypes show matrix metalloproteinase (MMP) signal
deregulations influencing cellular migration and tissue in-
vasion (44–50). OVC tumors of long term survivors had in-
creased somatic mutations and frequent BRCA1/2 biallelic

inactivation through mutation and loss of heterozygosity
(51). Characteristics of short term survivors included focal
copy number gain of CCNE1, lack of a BRCA mutation
signature, and low homologous recombination deficiency
scores (51). Copy number alterations dominate the land-
scape of OVC genomes (41); specific copy number changes
have been found in CCNE1, MECOM, MYC (CNV gain),
PTEN and RB1 (CNV loss) (52). Copy number alterations
deregulate cellular senescence pathways, cell cycle, inter-
leukin, PI3K/AKT, RAS and WNT signalings and Toll Like
Receptor cascades (53).

Pathway results. MOSClip identified 33 significant path-
ways out of 1283 tested (2.6%, P-value ≤ 0.05 and re-
sampling successes ≥ 80%, Figure 3 A, Supplementary Ta-
ble S2). Consistent with OVC literature, many pathways
involved OVC known oncogenes and processes, such as
PI3K/AKT signaling, PTEN and TP53 regulation and Toll-
like receptor cascades. Considering the contribution of each
omic on these pathways, we found that 23 are lead by gene
expression, 6 by changes in methylation, 16 by cumula-
tive gene mutations and 7 by CNVs. Moreover, 21 path-
ways show PFS association guided by the combination of
at least two (Figure 3B, Supplementary Table S3) or three
(CNVs, expression and mutation: ‘Nucleobase catabolism’
and ‘Purine catabolism’) different omics. Other than be-
ing building blocks for DNA and RNA, purine metabolites
provide fuel for cell survival and proliferation; this result
tantalizingly links OVC to therapeutic strategies to repro-
gram cancer adenosine metabolism (54,55) and re-activate
the anti-cancer immune response (56,57). The combina-
tion of expression and mutation (E–M), and expression and
CNVs (E–C) are over-represented (P-values ≤ 1 × 10−7,
Figure 3B) if compared to all the other omics combinations
(Supplementary Table S3), suggesting causal relationships.
Specifically, pathways guided by the combination of E–M
and E–C are involved in signaling and disease pathways and
cell-cell communication, respectively (Figure 3 C). Pathway
guided by expression alone are involved in immune system
and development, those guided by methylation are involved
in developmental processes, while those guided by mutation
are mainly disease pathways (Figure 3C and Supplementary
Table S4).

Module results. MOSClip tested 4931 modules as part of
728 pathways, finding 213 modules significantly associated
with PFS (4.3%, P-value ≤ 0.05 and re-sampling successes
≥ 80%, Supplementary Table S5). Gene expression guides
survival association in 110 modules, methylation in 70, mu-
tation in 16 and CNV in 88 modules (Figure 4A). Gene
expression leads metabolism, signaling pathways and ex-
tracellular matrix organization, while methylation changes
are mainly involved in metabolism of proteins and devel-
opmental modules, and CNVs mainly hit immune system
modules (Figure 4B, Supplementary Table S6). The signifi-
cant co-occurrence of different omics is observed for (i) ex-
pression and mutation (9 modules, P-values ≤ 1 × 10−7)
in modules associated with metabolism, (ii) expression and
methylation (18 modules P-values ≤ 1 × 10−7) in mod-
ules associated with metabolism of proteins and the im-
mune system and (iii) expression and CNVs (34 modules
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Figure 3. Pathway Visual Inspection. (A) Summary of the significant pathways (P-value < 0.05 and resampling > 80%). The heatmap has pathways on
the rows ordered by full model Likelihood ratio test P-values (white=0; blue=1) and omics on the columns (yellow = CNV; red = expression; green =
methylation; blue = mutation). The full model LRT test along with coefficient specific P-values are reported within each cell with color degree. (B) Circle
plot representing the frequency of significant pathways whose survival association is guided by a single or a combination of omic data. The four innermost
layers represent the combination of omics (the yellow sector means ‘on’), while the external layer represents the number of pathways. P-values of the
overlap between omic-specific sets of pathway were calculated using the SuperExactTest R package. (C) Radial plot showing the frequency distribution of
significant pathways according to each omic. The categories are obtained by mapping the pathways to broader categories given by Reactome hierarchy.

P-values ≤ 1 × 10−7) in modules focused on metabolism.
Only four survival modules were found to be guided by the
contribution of three omics (CNVs, methylation and ex-
pression) (Figure 4A–C, Supplementary Tables S6 and S7).
Consistent with OVC literature, many PFS associated mod-
ules involved OVC known oncogenes and processes, such as
TP53, PI3K/AKT pathway and MMPs (CNVs, expression,
methylation and mutation), TGF-β (expression and muta-
tion), SMADs (expression), WNT (CNVs and expression).

To provide examples of the MOSClip visualization tools,
we focused on ‘Activation of Matrix Metalloproteinases’.

This pathway describes the turnover of extra-cellular ma-
trix components by metalloproteinases. It is associated with
PFS via expression (PC1 P-value = 0.02) and methylation
(P-value = 0.01). The majority of metalloproteinase sub-
strates are cytokines, growth factor binding proteins and re-
ceptors; deregulated expression of metalloproteinases and
their epigenetic control play a role in tumor cell invasion
and metastasis (58). Among the most significant modules in
the ‘Activation of Matrix Metalloproteinases’ pathway we
found the number 2 (Figure 4D), in which modulation of ex-
pression (PC1) and methylation well predicts patients’ PFS.
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Figure 4. Module results. (A) Circle plot representing the frequency of modules with a single or a combination of significant omic variables. The four
innermost layers represent the combination of omics (the yellow sector means ‘on’), while the external layer represents the frequency of the combination.
(B) Radial plot showing the frequency distribution of modules with a single significant omic. The categories were obtained by mapping the pathways to
broader categories given by Reactome hierarchy. (C) Radial plot showing the frequency distribution of modules multiple significant omics. The categories
were obtained as described in panel B. (D) ‘Activation of Matrix Metalloproteinases’ module summary. The heatmap has modules on the rows ordered
by full model LRT P-values (white = 0; blue =1) and omics on the columns (yellow= CNV; red = expression; green = methylation; blue = mutation).
The full model LRT test along with coefficient specific P-values are reported within each cell with color degree (white = 0 to blue = 1). (E) Network of
‘Activation of Matrix Metalloproteinases’ pathway. Genes belonging to module 2 are coloured in red while the omic impact is highlighted with colored
areas (red = expression; green = methylation, yellow=CNV). (F) Heatmap of module 2 of ‘Activation of Matrix Metalloproteinases’ pathway. The heatmap
shows the profiles of prioritized genes for each omic. On top sample annotations are reported. (G) Module 2 Kaplan–Meier curves. Patient groups were
defined using the combination of expression and methylation classes.
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Figure 5. Selection of OVC related modules from the module combination. Node colors represent the omic variable with survival association: red for
expression, green for methylation, yellow for CNV, and blue for mutation. The node sizes represent the strength of the survival association. Nodes with the
biggest size represent those selected by a penalized Cox model. Within each node, a ring chart delineates the portion of the cohort showing the deregulation
(the colored slice). The colored ring slice represents a negative prognosis. Dark and light colors specify the type of aberration associated with the negative
prognosis (e.g. high or low expression/methylation; amplification of deletion for CNV; absence or presence for mutation). For example, methylation of
TP53 is strongly associated with survival, the hypermethylation is associated with a negative prognosis, which is in 10% of the cohort.

Figure 4E shows the pathway graph with module 2 (nodes
in red) and the influence of the different omics over differ-
ent genes. MMP11 and FURIN genes are clearly the most
representative for expression (PC1) and methylation (Figure
4F) respectively. Combining the expression and methylation
variables, we see that patients characterized by high levels
of PC1 and low level of methylation (hyper-methylation of
FURIN promoters and low expression of MMP11) have a
significantly better prognosis with respect to the other pa-
tients (Figure 4G, for the risk table see Supplementary Table
S8).

Redundancy reduction through module combination. Path-
ways are usually characterized by gene and reaction redun-
dancy, i.e. the same genes are often found in different path-
ways. To remove these redundancies from results, we can
combine pathways or module into a unique non-redundant
network.

Here, we chose to merge all the significant modules, in
order to offer a comprehensive survival network. This net-
work, provided in Supplementary Figure S6, has 681 genes
(5252 connections), the genes are colored by the omics with
the best survival association, and node size is proportional
to the gene prognostic power (73 genes with the biggest
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Figure 6. Signature for patient prognosis prediction. (A) Heatmap of the number of biomarkers predicting the poor prognosis. Each column represents a
patient, while each row is a prognostic multi-omic feature. Black cells represent a prognostic feature in the poor prognosis configuration, and white cells
represent the opposite. The feature annotations on the right represent the omic. Patients are ordered according to the number of poor prognostic feature,
quantiles are used to cut the population into classes of risk. Mutations and CNVs are grouped by pathway module. For methylation variables, the name
of the gene and the CpG cluster number are reported. (B) Kaplan–Meyer, log-rank test P-value and risk table on the three classes of patients obtained
through the stratification of (A).

size resulted as significant with Cox penalized analysis). The
network in Figure 5 offers a simplified view of this network
with a selection of 25 genes, and their neighbours, known
to be involved in OVC prognosis and thus considered as our
benchmark results.

The processes highlighted in Figure 5 show the connec-
tion across the PI3K/AKT signaling pathway, TP53 and
WNT signals, the activation of matrix metalloproteinases
(MMPs) and immune system regulation. This multi-omic
circuit shows only a subset of the MOSClip results, but is
useful to appreciate the overview provided by our tool of
the survival associated cell circuits.

Possible application of MOSClip results: the identification of
predictive survival signatures. A common task in the analy-
sis of omic datasets is the identification of prognostic signa-
tures. Using penalised Cox model on the molecular features
of Supplementary Figure S6, we selected 73 prognostic fea-

tures (26 expression and 21 methylation profiles, 10 modules
of mutated genes and 16 modules with CNV alterations, see
Supplementary Table S1). Based on this signature, patients
were sorted by the number of features predicting a negative
prognosis (Figure 6A) and stratified using quantiles of this
distribution (low risk: score < Q2, middle risk: Q2 ≤ score
< Q3, high risk: score > Q3). Figure 6B shows the differ-
ences in survival time of patient classes with Kaplan–Meier
curves (P-value < 0.0001). However, the identification of a
predictive signature is somehow tricky due to the large di-
mensionality of the data and the presence of many unknown
confounding factors (59). We tested the significance of our
signature using both random sampling signatures and 189
known signatures from MSigDB oncogenic gene sets C6
proposed by Venet et al. (59) using the sigCheck Biocon-
ductor package. We found that in both cases MOSClip sig-
nature predicted patient prognosis significantly better than



e80 Nucleic Acids Research, 2019, Vol. 47, No. 14 PAGE 12 OF 13

random signatures (P-value ≤ 0.001, Supplementary Fig-
ure S7) and known oncogenic signatures (P-value ≤ 0.001,
Supplementary Figure S8).

CONCLUSION

In the last 10 years we have witnessed a dramatic change
in the clinical treatment of patients thanks to molecular
and personalized medicine. As the amount of genome wide
data grows, we need to adapt and improve our methods to
cope with the higher complexity and multi-level structure of
available information, thus integrating multi-omic dimen-
sions. Pathway topology allows the switching from a gene-
focused view to a model/pathway view. The advantages of
this switch are twofold: firstly, we are able to consider the
cooperation among neighbor genes; secondly, we gain sta-
tistical power and we better contextualize genes and their
functions.

MOSClip can deal with this complexity, allowing multi-
omic data integration through survival pathway and mod-
ule analyses.

The use of modules turned out to be a good choice
for multi-omic integration. As methylation and mutation
events may have direct effects on the expression of target
genes, the use of a network structure allows researchers to
model this situation. Overall, a gene by gene approach is
often poorly predictive, while the simultaneous analysis of
multidimensional data can overcome this issue and increase
predictive power. A possible application of the knowledge
provided by MOSClip is the suggestion of putative prog-
nostic signature.

MOSClip is freely available as an R package, with tutori-
als, guidelines and tips for best practice provided to fully ex-
ploit the potential of MOSClip and to guide the user in data
analysis and interpretation of results. Effort was dedicated
to visualization tools, thus giving the user the opportunity
to dissect every single aspect of their results.

We have tested MOSClip with the OVC dataset from
TCGA using four omics (19430, 16590, 11906 and 24776 ge-
nomic features for expression, methylation, CNV and muta-
tion respectively) on 266 patients, identifying a survival as-
sociated circuit whose combination allows for survival prog-
nostication.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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