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Abstract: Alzheimer’s disease (AD) is one of the most prominent neurodegenerative diseases, which
impairs cognitive function in afflicted individuals. AD results in gradual decay of neuronal function as
a consequence of diverse degenerating events. Several neuroimmune players (such as cytokines and
growth factors that are key players in maintaining CNS homeostasis) turn aberrant during crosstalk
between the innate and adaptive immunities. This aberrance underlies neuroinflammation and drives
neuronal cells toward apoptotic decline. Neuroinflammation involves microglial activation and has
been shown to exacerbate AD. This review attempted to elucidate the role of cytokines, growth factors,
and associated mechanisms implicated in the course of AD, especially with neuroinflammation. We
also evaluated the propensities and specific mechanism(s) of cytokines and growth factors impacting
neuron upon apoptotic decline and further shed light on the availability and accessibility of cytokines
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across the blood-brain barrier and choroid plexus in AD pathophysiology. The pathogenic and the
protective roles of macrophage migration and inhibitory factors, neurotrophic factors, hematopoietic-
related growth factors, TAU phosphorylation, advanced glycation end products, complement system,
and glial cells in AD and neuropsychiatric pathology were also discussed. Taken together, the
emerging roles of these factors in AD pathology emphasize the importance of building novel strategies
for an effective therapeutic/neuropsychiatric management of AD in clinics.

Keywords: Alzheimer’s disease; cytokines; chemokines; neuroinflammation; neurotrophic factors;
pathophysiology; blood brain barrier; mild cognitive impairment; brain health; therapeutics

1. Introduction

Neurodegeneration has been a puzzle gradually elucidated by the progress of ample
research and the investigation of dementia and progressive cognitive decline. Dementia
which is marked by the affliction of Alzheimer’s disease (AD), is understood as the decline
in memory and other fundamental cognitive functions. AD is the most commonly occur-
ring neurodegenerative disease in the world. AD has been extensively characterized by
the gradual decline of neuronal health. Neurotoxins, TAU protein neurofibrillary tangles,
amyloid-beta (Aβ) plaque accumulation in mature neuron phenotypes [1–5], mitochondria
dysfunction (fusion-fission imbalance) [6,7], and neuroinflammation collectively involves
in neurodegeneration in AD [8–11]. Mitochondrial dysfunction results in the accumulation
of harmful reactive oxygen species (ROS), which subsequently trigger CNS apoptotic de-
cline [7]. Neuroinflammation is mainly governed by the actions of cytokines, chemokines,
and growth factors, which play key roles in neurodegeneration [8–10]. These aberran-
cies have been widely reported as fundamental hallmarks of AD and its pathological
quantification [12,13].

Cytokines are non-structural proteins within the molecular weight range of 8000–40,000 Da.
They can be described as inflammatory peptides aiding the immune defense response. The
majority of nucleated cells are capable of synthesizing cytokines but they are predominantly
produced by macrophages/microglia and lymphocytes [14]. These cells can in turn also
respond to and interact with cytokines. Cytokines can be grouped into certain classes
based on their biological activities which could be pro-inflammatory or anti-inflammatory.
The biological activities of cytokines are vast and range from cell proliferation to apop-
tosis and from cell differentiation to inflammatory responses. Cytokines are also termed
lymphokines since they are primarily involved in the differentiation of different types of
T lymphocytes viz. T helper cells, and T regulatory cells from undifferentiated cells [15].
Many of these proteins, for example, interleukins (ILs), interferons (INFs), tumor necrosis
factors (TNFs), and certain growth factors are produced by neurons and glial cells of
the brain in the event of neuroinflammation. Levels of IL-1α, IL-1β, IL-6, TNF-α, IFN-α,
macrophage colony-stimulating factors (MCSFs), IFN-α and IL-8 receptor type B are en-
hanced in blood and cerebrospinal fluid (CSF) in AD patients. Nerve growth factors (NGF),
growth-promoting properties of APP, vascular endothelial growth factor (VEGF) also play
vital roles in the pathophysiology of AD. Growth factors are proteins by nature and support
the survival of cells within the nervous system. Moreover, they are vital players for the
proper development of the brain. In the CNS and PNS, they stimulate axonal growth and
regulate the growth of different kinds of cells.

AD is named after German psychiatrist and neurologist Alois Alzheimer [16]. In 1906,
the doctor noted some peculiar findings in the brain of a patient who passed away after
suffering from memory loss, disorientation, paranoia, and unpredictable behaviors. AD
causes a gradual decline in cognitive processes starting with mild cognitive impairment
(MCI) reaching a stage of severe irreversible loss of cognition and functionality (Table 1).
AD, by nature, is an insidious, progressive, and degenerative disorder. Given the fact
that the improvements in medical science considerably improve the quality of life and
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increase life expectancy in afflicted individuals, a longitudinal study that began with a
cohort of normal subjects revealed a higher incidence of AD in women compared to men
with the largest incidence in age group ≥ 85 (95% CI 5.01 to 8.38) [17], and epidemiological
studies of the prevalence of AD show a positive correlation with increasing age [18]. AD
invariably starts from the hippocampus (responsible for new memory generation) making
anterograde amnesia a primary symptom of the disease. As neurofibrillary tangles start
to spread outward towards the frontal lobe, dementia is followed by progressive speech
problems, mood imbalance, and inability in decisions making [19]. Several genes including
the senilins, SORL1, APP, and ApoE4 were found to play crucial roles in the onset and
progression of AD [19]. Early AD onset is generally familial, while late AD onset is largely
related to SORL1. From the viewpoint of pathophysiology, AD is characterized by intracel-
lular neurofibrillary tangles and extracellular senile plaques. Assessment of Instrumental
activities of daily living in a geropsychiatry clinic revealed that impairment and memory
loss was higher in patients with mild cognitive impairment (MCI) (n = 66) compared to
control subjects (n = 61) [20]. During the course of AD progression, individuals begin to
experience cognitive decline prior to clinically diagnosed MCI. In a longitudinal study by
Cloutier et al., compared to healthy controls who did not progress to an MCI diagnosis, in-
dividuals who were previously healthy and later expressed cognitive impairment showed
different patterns of impairment years prior to an MCI diagnosis and escalating severity of
decline was observed over time [21]. The incidence of neuropsychological decline consti-
tuting memory loss, episodic cognitive decline, and executive function decline 12 years
before MCI diagnosis indicate that neuroinflammation is present in neurodegeneration that
leads to AD prior to diagnosable MCI [22]. Brain hypometabolism map PET scan analysis
corroborated that the activation of microglial regional clusters in the brains of individuals
is predominantly involved in the transition from healthy status to dementia [23], which
divulges the involvement of inflammation in neurodegeneration leading to AD.

Table 1. Stepwise progression of AD.

Serial. No. Stages Pathological Symptoms

1 Early onset
AD/MCI

Impairment of non-memory features of cognition, difficulty in word finding, decline in
reasoning/judgement.

2 Mild AD Loss of spontaneity, memory loss, anxiety, aggression, restlessness, altered personality,
misplacing items.

3 Moderate AD Confusion, attention deficit, continuous cognition problems, impulsive behavior, delusion,
paranoia, hallucination, recognition problem.

4 Severe AD
Severe dementia, continued cognitive decline, seizures, functional limitations, lack of

bowel/bladder control, weight loss, skin infection, swallowing difficulty, enhanced sleep time,
brain atrophy.

Identification and elucidation of the roles of cytokines and their co-associating factors,
such as growth factors, in the immune system and in response to the pathogenesis of AD,
is a key step to explore their potentials for therapeutic interventions. This review aims to
analyze research data, prior AD-related research, and affiliations between connected fates
of inflammatory and immune responses of AD, to help identify the role of cytokines and
key growth factors implicated in AD.

2. Immune Response in AD: Role of Cytokines

Cytokines mediate cell functioning, cell signaling behaviors, and neuro-immune
activity and are classified by the actions that they solicit. During AD immune response, such
cytokines include pro-inflammatory cytokines, anti-inflammatory cytokines, and cytokines
that are known to inhibit virus replication. These cytokines can activate macrophages,
B-cells, T-cells, and mast-cells and constitute a cytokine network in the brain. In AD, certain
cytokines are involved in the immune responses that precede and stimulate the actions of
other cytokines in the innate neuroimmune inflammatory reactions. It was observed in
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AD consequent of aberrant pathologies in the brain and concomitant to CNS insults that
include neurotoxicity, accumulation of Aβ senile plaque, and TAU pathologies (Table 2).
IL-1α containing plasmids were analyzed in IL-1 cDNA clones by the hybrid selection of
biologically active mRNA that resulted in abundant IL-1 expression in LPS-stimulated
macrophages [24].

Of the classes of cytokines that are implicated in AD, specialized groups of cytokines
are differentiated by the availability of their receptors expressed on the cell surface of
implicated cell types and the condition of the genes that regulate these receptors. Cytokines
play a major role in routine neurological activities of the CNS in the transfer and reception of
chemical cues that confer instructions on cell actions and reactions. Chemotactic cytokines
that function as chemoattractant cytokines, such as IL-8 and IP-10/CXCL10 may experience
N-terminal proteolytic alteration after being secreted.

2.1. Immune System in AD and Cytokines

At the beginning of neurodegeneration, the immune reactions trigger macrophage
activation (predominantly M2 and sometimes M1) [25]. These macrophages secrete chemi-
cal messengers in interneuronal communications and develop autoimmune neurotoxicity
including those reactions that lead to neuroinflammation and escalation of AD. The im-
mune system employs cytokines, which play a major role in immune responses following
the activation of microglia in the pathology of AD. Cytokines determine the mechanisms
and reactions that take place in the immune system in response to abnormal changes in the
neurons. These trigger the recruitment of other defensive cells including neutrophils and
macrophage progenitor cells.

Table 2. Changes mediated by cytokines and growth factors within CNS.

Serial No. Mediators Functions References

1 IL-1α Increases α-secretase, decreases amyloidogenic processing, increases sAPPα [24,26,27]

2 IL-1β Increases APP mRNA, increases α-secretase and γ-secretase, downregulates
β-secretase, upregulates TAU mRNA [28–30]

3 IL-4 Upregulates Aβ production, increases p-TAU [30,31]
4 IL-6 Upregulates APP mRNA, increases p-TAU [10,32]
5 IL-8/CXCL8 Upregulates γ-secretase activity by increasing substrates C83 and C99 [33,34]
6 IL-10 Favors Aβ deposition [10,35,36]

7 IL-18 Increases APP, upregulates both β-secretase and γ-secretase, increases Aβ

formation [10,37,38]

8 TNF-α Upregulates APP mRNA, upregulates both β-secretase and γ-secretase,
increases sAPPβ [10,36,39]

9 IFN-γ Upregulates APP intracellular domains, upregulates both β-secretase and
γ-secretase, increases Aβ deposition [40–43]

10 TGF-β1 Increases APP mRNA, increases Aβ deposition [10,42,43]
11 CCL2 Increases Aβ formation and deposition [44,45]
12 CCL3 Upregulates β-secretase, increases C99, increases Aβ deposition [45,46]
13 CCL5 Upregulates β-secretase, increase C99, increases Aβ deposition [46,47]
14 CXCL10 Decreases Aβ deposition [34,48]
15 CX3CL1 Decreased Aβ deposition, upregulated p-TAU [49,50]

16 VEGF Upregulates expressions of monocytes and macrophages, increases proliferation
of endothelial cells [51–53]

17 FGF Attenuates Aβ related pathologies [52,54]

18 NGF Increases degeneration leads to loss of cholinergic nerve endings in cortex and
hippocampus [55,56]

19 BDNF Upregulates sAPPα, promotes non-amyloidogenic pathway, astrocyte activation,
improved memory performance [57,58]

20 GDNF Neuroprotection [55,59]
21 GCSF Induces neurogenesis [60,61]

22 Stem cell
factor Maintains hematopoietic brain support, neurogenesis [62,63]

23 SDF Neurogenesis, inflammatory disruption of BBB [64,65]
24 CXCR4 Ligand for SDF-1 [64,66]

25 Angiopoeitins Angiopoeitin-1 prevents neuronal apoptosis, Angiopoeitin-2 promotes
neurogenesis via migration of neural progenitor cells [67–69]
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Table 2. Cont.

Serial No. Mediators Functions References

26 Neurotrophin-
3

Upregulates neuronal apoptosis inhibitory protein 1, limits cleavage of caspases
3, 8 and 9 [70,71]

27 Neurotrophin-
4 Regulates TAU dephosphorylation [70,72]

28 TrKA Receptor protein for β-NGF [73,74]
29 TrKB Receptor protein for brain derived neurotrophic factor and neurotrophins [73,75]
30 TrKC Receptor protein for neurotrophin-3 [73,76]
31 p75 Neurotrophin receptor protein, regulates phosphorylation of TAU [71,72]

In the case of AD, Aβ originating from APP trigger the rest of the pathologies. Aβ

outside the neurons and neurofibrillary tangles inside the neurons make up for the de-
velopment of AD [77,78]. Aβ further produces immune response activating complement
systems. In CNS, the immune system is programmed to functionally respond to pathologi-
cal changes such as those presented by the progression of AD [25]. The immune system
activation observed in AD is labelled as neuroinflammation [79]. Herein, misfolded and
aggregated proteins i.e., Aβ act through danger-associated molecular pathways (DAMP)
to bind pathogen recognition receptors such as CD14, CD36, α6β1, integrin, and toll-like
receptors (TLRs) [80]. These, in turn, control functions of ROS, NO, IL-1β and TNF-α. It
has been experimentally shown that, contrary to antiquated conclusions about neuroin-
flammation, observed in MCI, early, and late AD onset are initiating events predominantly
driven by the CNS resident immune cells, such as microglia and perivascular myeloid
cells [79]. An up-regulation of TNF-α with concomitant suppression in TGF-β synergize
Aβ42 deposition in MCI, which further trigger neuroinflammation via recruiting IL-1β
(Figure 1). Genetic variants and transcription factors also determine the expression of
activated microglia in the pathological environment. Damaging or degenerating neurons
give off signals acting as a form of microglial control switch that stimulates microglia which
could become cytotoxic from the reactive intermediates solicited such as pro-inflammatory
cytokines [81]. In response to a change in homeostasis, microglia must first be activated,
changing it from a static to a primed state. Changes in infiltrating monocytes that support
CNS immune response in the parenchyma and neuronal progenitor granule crossing the
BBB might be a hallmark for early detection of AD and propensity of inflammatory re-
sponse and neurodegeneration [82]. Asymmetrical changes in serum and plasma levels of
cytokines may indicate changes in early cytokine levels widely reported in macrophage pre-
cursor cells that may confer a greater risk of developing neurodegeneration and abnormal
macrophage morphology.
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Figure 1. Schematic representation of MCI, linked with up-regulation of TNF-α and decrease in
TGF-β characterized by upregulation of IL-1β and Aβ42 expressions. The blue arrows (↑) indicate
downstream cellular events, upward green arrows (↑) indicate upregulation, downward red arrow
(↓) indicates down-regulation, and plus sign (+) indicates enhanced activity.

2.2. Roles of Cytokines in Autophagy

Aβ burden has been revealed to be positively correlated with age [51] and exacerbated
by oxidative stress, such as GAPs that promote the generation of ROS [54] that perturb
brain health [83–85]. Glycation end products that confer oxidative stress in AD, which was
found to be heavily associated with ApoE in its dimeric form greater than its monomeric
form at Aβ accumulation site [55]. An increase of ApoE can lower the Aβ40–42 turnover
rate on greater cognitive decline in AD [57]. The same has also been found to negatively
influence or disturb autophagy by disrupting autophagosome formation [59]. This, in turn,
leads to greater deterioration of neuronal health in AD pathology. Autophagy is critical for
Aβ clearance and important in the maintenance of homeostasis in the CNS. In concert with
dysfunction of autophagy, mitophagy was observed to express excessive fragmentation,
decline in synaptic integrity [60], and an imbalance of mitochondrial dynamics [61,62].
Dysfunction of autophagy/mitophagy indicates a notable neuroinflammatory pathology
and involvement of cytokines. IL-1β and IFN-γ (which are known to be expressed in AD
pathogenesis) exposure to primary rat β-islet cells hindered autophagy resulting in cell
apoptosis [64] and additionally, IL-1β was reported to modulate microglia autophagy in
LPS cultures in the presence and absence of Aβ42 [67,86]. This evidence suggests that IL-1β
and IFN-γ maintain control of inflammation in AD via lysosomal pathway and initiation
of phagophore assembly.

2.3. Cytokines and BBB

There exists a definite correlation between brain cytokine levels and neuropsychi-
atric disorders. Right at this point, selectivity, and integrity of BBB to cytokines become
important. Cytokines are pleiotropic, hence their release, unlike hormones has more com-
plicated effects on the regulation of neurotransmission. Cytokines can cross BBB, activate
free calcium, and by disrupting the compartmental model of brain calcium homeostasis,
compromise the integrity of BBB [87]. Many cytokines can pass through BBB directly [88].
Interestingly, glial cell-derived neurotrophic factors bypass the BBB by simple diffusion
through circumventricular organs. Whereas passage of IL-1α, IL-6, and TNF-α involves
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saturable influx transport through retrograde axonal transport system [87,89]. TNF-α, a
downstream cytokine of chemokine IP10, decreases tight junction proteins leading to the
destruction of endothelial tight junctions of BBB to affect its permeability [90]. On the other
side, inhibition of mTOR hyperactivity has been reported to protect the integrity of BBB in
AD [91]. Therefore, BBB dysfunction brings about early aging in the brain paving the way
for AD and other neurodegenerative disorders.

3. Role of Cytokines and Chemokines in Neuropsychiatry

The study of cytokines to understand the pathophysiology of neuropsychiatric disor-
ders such as dementia, anxiety, and delirium has been pioneered by Dr. M. Maes who first
linked vegetative symptoms with enhanced presence of IL-1, IL-6, and haptoglobin [87,92].
Chemokines regulate the migration of microglia and the recruitment of astrocytes to the
sites of inflammation. Cytokines may act in an autocrine, paracrine, or endocrine fashion
and generally are upregulated at sites of Aβ plaques. Aβ peptides mediate cell mediators,
such as monocytes are also responsible for the generation of IL-8, monocyte chemoattractant
protein 1 (MCP1), MIP1α, and MIP1β. LPS stimulates astrocytes to secrete cytokines in-
cluding IL-6 and TNF-α, activates astrocytoma cells to secrete IL-6 and IL-8 and monocytes
to secrete IL-8 under the influence of Aβ peptides [93]. Synergistic activity of cytokines
has also been reported along with Aβ peptides e.g., TNF-γ synergizes with Aβ to enhance
secretion of TNF-α and reactive nitrogen species [39]. IL-1β displays pro-inflammatory
actions via MEK 1/2, JNK-activated α-secretase cleavage and upregulated a disintegrin
and metalloprotease (ADAM)-17/TNF-α converting enzyme (TACE) pathway to increase
sAPPα secretion [94]. On the contrary, IL-1β can also serve as an anti-amyloidogenic factor
by decreasing sAPPβ and amyloidogenic Aβ fragment levels by reducing β-secretase
cleavage [95]. It was also suggested that increased Aβ clearance by microglia in mod-
els of sustained IL-1β neuroinflammation could involve Th2 cytokines, such as IL-4 [30].
Moreover, a feedback signalling loop between Aβ and IL-1β was also proposed in which
Aβ can induce the production of IL-1β [96]. The migration of astrocytes to Aβ plaques
is promoted by chemokines CCL2 and CCL3, which are generally released by activated
microglial cells. Upregulation of CCL2 by LPS was found to promote synaptic impairment
through recruiting activin A leading to loss of hippocampal plasticity (Figure 2).

Figure 2. Schematic diagram showing impact of LPS on elicited CCL2 activity in turn leading to aberrant hippocampal
plasticity. The blue arrows (↑) indicate downstream cellular events, upward green arrow (↑) indicates upregulation, and
minus sign (−) indicates decreased activity.
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Important pathways involved in the pathogenesis of AD include the amyloid cascade
hypothesis, TAU hypothesis, cholinergic hypothesis, and excitotoxicity hypothesis. In the
case of AD, CSF dysfunction is noticed even before cognitive decline. Activities of mTOR
cause vascular irregularities in the brain decreasing cerebral blood flow which in turn
sets up cognitive decline. The amyloid cascade hypothesis identifies the accumulation of
Aβ plaques at different areas of CNS and related changes as the principal factor behind
the development of AD [97]. TAU hypothesis proposed that hyperphosphorylation of
TAU leads to form neurofibrillary tangles preventing its regular role of supporting axonal
microtubules and subsequently plays a critical role in neurodegeneration [98]. Cholin-
ergic hypothesis focuses on symptoms of cognitive decline and presents malfunctioning
of cholinergic neurons as a pathophysiological factor towards initiation of AD [99]. Ex-
citotoxicity refers to the unprecedented death of nerve cells due to the overstimulation
of certain amino acid receptors [100]. A high concentration of glutamates activates N-
methyl-d-aspartate and α-amino-3-hydroxy-5-methylisoxazole propionic acid receptors.
As a result, voltage-gated calcium allows the entry of extracellular calcium into cells and
thus a hindrance in neuronal energy metabolism leads to cell death.

4. Neuroinflammation

Inflammation is the response of our body system to eliminate both sources of cell
injury along with the cell and tissue debris originating from the insult. The immune
system activation observed in AD is labelled as neuroinflammation. Though classical
signs of inflammation such as swelling, heat, and pain are absent in brain inflammation, it
characteristically involves increased monocytes and glial macrophage cells [31]. During the
initial phase of neurodegeneration, immune reactions are triggered through the activation
of macrophages (mainly M2 and sometimes M1) [101]. These activated macrophages
secrete chemical messengers in interneuronal communications and develop autoimmune
neurotoxicity including those reactions that lead to neuroinflammation and the escalation
of AD. Activated cells strongly produce inflammatory mediators such as pro-inflammatory
cytokines, chemokines, macrophage inflammatory proteins, monocyte chemo-attractant
proteins, prostaglandins, leukotrienes, thromboxanes, coagulation factors, ROS (and other
radicals), nitric oxide, complement factors, proteases, protease inhibitors, pentraxins, and
C-reactive protein. Upregulated immunoinflammatory events play important roles in the
pathogenesis of AD.

Chronic neuroinflammation (immune response to the formation of Aβ peptides and
neurofibrillary tangles) is characterized by persistent activation of microglia and release of
inflammatory mediators. Hence, an inflammatory cycle is perpetuated since microglia and
astrocytes are constantly activated, leading to a further increase in the levels of cytokines
and chemokines. These mediators, in turn, alter APP processing encourage the formation
of Aβ plaques. These alterations also result in reduced production of neuroprotective
sAPPα. Senile plaques activate the complement system resulting in inflammation within
CNS. Thus, neuroinflammation-mediated tissue damage initiates the degeneration process.
During the early stages of AD, neuroinflammation leads to the entry of PNS cells with
chemokine receptors into the brain crossing BBB [102]. As a result of Aβ deposition,
chemokines e.g., CCL2, IL-8, CXCL10, CCL5 are released from PNS.

Aβ plaques containing dystrophic neuritis, activated microglia, and reactive astro-
cytes that along with released inflammatory mediators contribute to neuronal dystrophy.
Inflammatory mediators and activated glial cells together kill neighboring neurons and
encourage amyloidogenic processing of APP. Nuclear receptor binding factor 2 (NRBF2)
is a key factor for maintaining autophagic degradation of APP and production of Aβ by
controlling maturation of APP-containing vesicles through the interaction of APP with
CCZ1-MON1A-RAB7 module [103,104]. The inability of CNS phagocytes to clear Aβ

plaques and upregulated formation of plaques as a result of chronic neuroinflammation
play instrumental roles in AD [105]. In agreement with this, in a cohort study, Taipa and
colleagues reported elevated levels of eotaxin, IL-1 receptor antagonist (IL-1ra), IL-4, IL-7,
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IL-8, IL-9, IL-10, IL-15, TNF-α, granulocyte colony-stimulating factor (GCSF), MCP1, and
platelet-derived growth factor in CSF of AD patients in comparison with non-demented
controls [40]. The same study also reported inverse relations between CSF levels of IL-1β,
IL-4, IL-6, IL-9, IL-17A, IFN-γ, basic FGF/FGF2, GCSF, GMCSF, and MIP1β with AD
progression [40]. In this section, we reviewed the roles of several neuroinflammatory
factors including pro- and anti-inflammatory cytokines, APP and TAU proteins, glial
cells, advanced glycation end products, and complement systems in the pathogenesis and
development of AD.

4.1. Pro-Inflammatory Cytokines

Cytokines are secreted by glial cells around Aβ plaques. Disturbances in inflammatory
and immune pathways in AD have been strongly associated with altered levels of some
acute-phase proteins and pro-inflammatory cytokines in the blood, CSF, and brains. Aβ

peptides can directly trigger the expression of several pro-inflammatory cytokines such as
IL-1β, IL-6, TNF-α, and IFN-γ by glial cells. Pro-inflammatory cytokines like MMIF, YKL40,
TNFs, and their receptors, sTREM2 are clearly engaged in TAU pathology and in the aging
process [32]. Additionally, IL-15, MCP-1, VEGFR-1, sICAM1, sVCAM-1, and VEGF-D
are found to be associated with TAU pathology and correlate with CSF TAU level [106].
Pro-inflammatory cytokines were found to induce indoleamine 2,3 dioxygenase to increase
blood levels of quinolinic acid, a neurotoxic factor [107]. Pro-inflammatory cytokines, in
conjugation with chemoattractants endorse neurodegeneration via promoting neuroinflam-
mation, which can be triggered by the activation of defective microglia. TREM2 deficiency
strongly triggers neuroinflammation via potentiating microglial activation and reducing
microglia-mediated Aβ phagocytosis. TREM2 deficiency is also associated with activation
of inflammatory markers, such as TNF-α through a TLR-dependent pathway (Figure 3).
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Figure 3. Pro-inflammatory cytokines and chemoattractant cytokines are key characteristic of neuroinflammation that can
be acquired by the activation of microglia and can escalate neurodegeneration. Abnormalities in the TREM2 variant lead to
defective microglial activation and decrease its phagocytic ability. The blue arrows (↑) indicate downstream cellular events,
upward green arrows (↑) indicate upregulation, downward red arrows (↓) indicate down-regulation, and minus signs (−)
indicate decreased activity.

High levels of pro-inflammatory cytokines, such as IL-1β, IL-6, and TNF-α, have
been detected in the brain of AD subjects [108]. Pro-inflammatory molecules produced
by the reactive astrocytes can elevate the expression of secretases in neurons, enhancing
the production of Aβ and activating microglia to produce inflammatory factors [109]. In
transgenic mice model, pro-inflammatory cytokines viz. IL-1 β, TNF-α, IL-6, IL-12, and
IL-23 have also been found to correlate with Aβ load [110].

IL-1α and IL-1β are known to initiate cell activation upon binding with cell membrane
receptors. Physiologically, an elevated level of IL-1β is a characteristic feature of brain
parenchymal cells immediately after injury [111], while IL-1 hastens neuronal degeneration
by increasing the production of IL-6 and the activity of iNOS. In addition to that, IL-1 is
also responsible for enhanced acetylcholinesterase activity, activation of astrocytes and
microglial cells, expression of S100β, production of macrophage colony-stimulating factor
(MCSF), and further additional production of IL-1. IL-6 is a major player in host inflam-
matory response. IL-6 displays neurotrophic effects by activating microglia, promoting
astrogliosis, and stimulating the production of acute-phase proteins. IFN-γ endorses TNFs
and NO activities. TNF-α centrally regulates cytokine activities during inflammatory
response through regulating an autocrine cascade of production of IL-1 and TNF-α from
glial cells. In the AD brain, IL-1 regulates APP processing. In an experiment, rat cortical
glial cells presented themselves with increased IL-6 mRNA on being exposed to the first
105 carboxy-terminal amino acids of APP [112]. Dose-dependent increments were also
observed in levels of IL-1, IL-6, TNF-α, MIP-1α, and MCP-1 in glial cells on exposure to
Aβ peptides [74].

In contrast, IL-1ra, IL-4, IL-10, IL-11, IL-13, TGF-β act as anti-inflammatory cytokines,
specific receptors for IL-1, TNF-α, and IL-18 act as inhibitors of pro-inflammatory cytokines.
Anti-inflammatory cytokines belonging to Th2 and Th3 cell subsets exert a protective ef-
fect against AD by counteracting the effects of pro-inflammatory cytokines [80]. Of note,
TGF- β, produced by Th3 cells is capable of ameliorating Aβ-induced cytotoxicity both
in vivo and in vitro; while, deficiency of TGF-β1 promotes accumulation of Aβ peptides
and formation of neurofibrillary tangles [113]. Dysregulation of the balance between pro-
inflammatory and anti-inflammatory cytokines in the favor of pro-inflammatory cytokines
leads to a cycle of further cytokine production, cytokine synergism, and cellular activa-
tion. It has been shown that an absence of chemokine (CX3CL1) can increase TNF-α and
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TNFR1 expression by intensifying LPS action, which simultaneously triggers the release of
other pro-inflammatory cytokines like IL-1 by macrophages mediated through enhanced
arachidonate release. Microglial hyperactivation can lead to CX3CL1 impairment in the
brain, which ultimately impacts by amplifying and worsening the neuroinflammatory
conditions (Figure 4).
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4.2. Anti-Inflammatory Cytokines

Interestingly IL-4, IL-10, and IL-13 can suppress pro-inflammatory cytokine genes
e.g., IL-1, TNFs, and chemokines. IL-1ra directly antagonizes the activities of IL-1α and
IL-1β by competitive inhibition. Experimental results suggest that IL-1ra suppresses IL-1β-
induced TNF-α production and iNOS expression in astrocytes by preferentially binding
with IL-1R1 [29]. In addition to protecting against IL-1β-induced neurotoxicity, IL-1ra
also attenuates neuronal damage caused by ischaemic excitations. IL-4 can suppress pro-
inflammatory cytokines such as IL-1, TNF-α, IL-6, IL-8, and MIP-1α by inhibiting their
expressions. Further IL-4 is associated with increased production of IL-1ra and inhibition
of IFN-γ leading to a decrease in TNF-α and NO. IL-10, acting through specific cell surface
receptors reduces the synthesis of IL-1 and TNF-α. IL-10 also inhibits TNF-α, IL-1, IL-6,
IL-8, IL-12, GMSF, MIP-1α, and MIP-2α. Secretion of pro-inflammatory cytokines by glial
cells is halted on pre-exposure to IL-10. IL-10 has been hypothesized to exert the actions
by suppressing cytokine receptor expression, inhibiting receptor activation, while TGF-
β has been shown to impede the production of IL-2, IFN-γ, and TNFs. Of note, three
mammalian isoforms of TGF-β i.e., TGF-β1, TGF-β2, and TGF-β3 are prevalent within
the CNS. As a result of this, TGF-β is associated with a plethora of activities including
microglial activation to inflammatory response, astrocytes, and regulation of COX-2 and
APP. Interestingly, elevated levels of TGF-β1 and TGF-β2 have been observed in CSF and
blood of AD patients [114,115].

4.3. APP Protein

APP is a transmembrane protein present in the cell membrane of all neurons. Under
normal conditions, α-secretase and γ-secretase cleave APP into three fragments which in
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turn get digested via proteosomes (non-amyloidogenic pathway). During the initial phases
of AD, the amyloidogenic pathway takes over and β-secretase becomes involved in the
process in place of α-secretase [116]. The α-secretase activity is exerted by three members
of the ADAM family viz. ADAM9, ADAM10, and ADAM17/TACE. The β-secretase
activity has been mainly attributed to the β-site APP cleaving enzyme. The γ-secretase
complex comprises presenilin (PSEN), nicastrin, anterior pharynx defective-1 (APH-1),
and presenilin enhancer-2 (Pen-2). The amyloidogenic pathway predominantly gives rise
to fragments like sAPPβ, APP intracellular domain (AICD), and Aβ peptide spanning
from 1-40 amino acid residues. It further exacerbates AD symptoms as these abnormal
fragments are not naturally digested resulting in extracellular accumulation of aggregates
or plaques of those fragments. Eventually, these senile plaques are termed Aβ peptides or
Aβ lipoproteins. These senile plaques, in general, lead to neurotoxicity, apoptosis, oxidative
stress, and neuroinflammation. In addition to generating inflammatory responses, Aβ also
causes mechanical disruption in synaptic transmission [117].

4.4. TAU

TAU protein stabilizes microtubules which are very important for the cytoskeletal
integrity of a cell. They reside throughout the axon to aid transport proteins to move
nutrients and neurotransmitters. Microtubules lose their structure in absence of TAU and
break apart. When β-secretase becomes more active than α-secretase, thus a high amount
of Aβ is produced that in turn, causes hyperpolarisation of TAU protein through excessive
phosphorylation of TAU [118]. On hyperpolarisation, TAU protein starts aggregating with
each other. Unlike senile plaques, TAU clumps stay inside neuronal cells. As a consequence
of this, the cytoskeleton starts to fall apart that hampers axonal transport. Neurotransmitter
transport from soma to synaptic bud becomes affected and neuronal function decreases.
Not only neurotransmitters, but the flow of nutrients inside the longest cell of the body
also suffers, and gradually axons and dendrons start to degenerate. As a result of this, the
cluster of such neurons forms neurofibrillary tangles. Cytokines with kinase activity on
TAU include cyclin-dependent kinase 5 (CDK5), glycogen synthase kinase-3β (GSK-3β),
and p38 mitogen-activated protein kinases (p38-MAPK) [119].

In AD, these TAU-led neurofibrillary tangles have been observed to be further propa-
gated through the toxicity presented by Aβ plaque accumulation and loss of cholinergic
neurons in rat basal forebrain primary septal culture [120]. Additionally, Aβ was found
to prevent microtubule binding in primary cultures of fetal rat hippocampal neurons.
While in the human cortical neurons induced hyperphosphorylation of TAU at Ser-202 and
Ser-396 was found to be accumulated in the somatodendritic compartment of Aβ-treated
neurons [121].

The constituents of axonal projections in the mammalian brain are neurofilaments that
form side projections of carboxy-terminals from the core filament, believed to be heavily
phosphorylated; while TAU-embellished microtubules are also known to be differentially
phosphorylated. The α- and β-globulin subunits that constitute axonal microtubules are
formed by the energy-consuming nucleation process. An energy-expensive neuro-process
would require optimal active mitochondria to properly conduct impulse. Hyperphosphory-
lation of TAU has been credited to play an active role in the impairment of axonal support
functioning that optimizes interneuronal communications amongst associated organelles.
The oxidative stress in AD brains also may lead to hyperphosphorylation of TAU. Of note,
where the absence of superoxide dismutase (SOD) was observed to increase oxidation
damage from ROS, an escalation of Ser-36 phospho-TAU was revealed in treatments of
SOD-null mice. Untreated mice did not survive past one week, reflecting SOD deficiency
was, therefore, deleterious [122].

4.5. Glial Cells

Progress in AD-related research has revealed the important roles of glial cells including
the astrocytes, microglia, NG2 glia, and oligodendrocytes that contribute to the pathogene-
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sis of the disease [123]. Astrocytes and microglia participate by functioning as effector cells
to release cytokines by somehow failing to live up to their homeostatic functions. NG2
glia, a novel and distinct class of glial cells in CNS are responsible for myelination and
remyelination of axons thus playing a vital role in high-speed nerve impulse transport and
cognition [124]. It is interesting to note that amyloid peptides and their precursor APP
protein act as glial activators. Disruption of the APP gene and its proteolytic products
delay and decrease amyloid-dependent microglial activation.

Astrocytes are star-shaped glial cells in CNS involved in energy reserves, regulation
of extracellular ions, as well as the clearance, metabolism of neurotransmitters, and mod-
ulation of oxidative stress. Among the notable neurotransmitters, glutamate is released
during neuroinflammatory conditions mainly which in the long-term is proved to be toxic
to neurons via the excitotoxicity pathway. Of note, astrocytes can take up glutamate and
recycle it to neurons after transforming into glutamine, an amino acid [125]. In the AD, Aβ

peptides decrease uptake of glutamate, resulting in increasing redox insult. Interestingly,
alongside the neuroprotective activities of astrocytes through Aβ clearance and degrada-
tion, they could also be a source of Aβ owing to their overexpression of beta-secretase 1
(BACE1) in response to chronic stress [126].

The migration of astrocytes to Aβ plaques is promoted by chemokines CCL2 and
CCL3, which are released by activated microglial cells. In an experimental model, mouse
astrocytes plated on amyloid-rich brain sections from APP transgenic mice have been
found to reduce amyloids [45]. Of note, astrocytes respond to CNS insults through a
process named reactive astrogliosis, an early pathological feature of AD, and can represent
a response to the accumulation of Aβ and/or to the increasing number of degenerating
neurons [127]. Astrocytes can be stimulated by oxidative stress, free saturated fatty acids,
pathogens, and LPSs. Additionally, contrary to quiescent astrocytes, reactive astrocytes can
produce cytokines, such as TNF-α, IFN-γ, and ILs [41]. IFN-β, TNF-α, and IL-1β induce the
generation of Aβ in primary human astrocytes and astrocytoma cells. Astrogliosis is also
characterized by a high level of the astrocyte marker glial fibrillary acidic protein (GFAP).
The latter occurs around Aβ deposits both in the brain parenchyma and in the cerebral
microvasculature. Senile plaques are associated with GFAP-positive activated astrocytes.
In various neuropathological states, the increased expression of GFAP corresponds to the
severity of astroglial activation [128]. Microglial cells and astrocytes express pathogen
recognition receptors e.g., TLRs, integrin α6β1, A1, CD36, CD47, CD14 to act as class A
scavenger receptors through DAMP [80].

Oligodendrocytes, under the influence of NG2 cells, are responsible for myelin sheath
generation around axons. A study concluded that Aβ peptides induce local translation
of myelin basic protein 18.5 kDa isoform in distal cell processes [129]. It is interesting to
note that Aβ oligomers modulate the expression of myelin basic protein with the help of
the integrin β1 receptor, Src-family kinase Fyn, and Ca2+/CaMKII. The pharmacological
inhibition of Fyn kinase was found to attenuate oligodendrocyte differentiation and sur-
vival induced by Aβ. Interestingly, in ex vivo organotypic cerebellar slices, Aβ caused
upregulation of myelin basic protein through Fyn kinase and modulated oligodendrocyte
population dynamics by inducing cell proliferation and differentiation [129]. Application of
Aβ oligomers to cerebellar organotypic slices, enhance remyelination and oligodendrocyte
lineage recovery was suggested in the case of lysolecithin-induced demyelination.

4.6. Advanced Glycation End Products

Advanced glycation end products mediate crosslinking of certain proteins resulting
in age-related decline in cognition and other cellular functions [130]. RAGE (receptor for
advanced glycation end-products), a ligand for both Aβ and S100B is also associated with
the activity [131]. In hyperglycaemic patients, unusual glucose metabolism and oxidative
stress aggravate the activities of advanced glycation end-products [132]. This may be corre-
lated with the notion that excess dietary carbohydrates and deficient cholesterol may lead
to AD development. Intracellular neurofibrillary tangles and extracellular senile plaques
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serve as substrates for glycation. Advanced glycation end products induce the production
of ROS and cytokines through activation of microglial RAGE leading to engagement of
nuclear factor kappa B (NF-κB) [133]. It has been clinically observed that low dietary intake
of advanced glycation end products is directly related to reduced oxidative stress and
inflammation that can further exacerbate AD symptoms [134,135].

4.7. Complement System

At an early stage of AD, Aβ peptides activate the complement system. The comple-
ment system works as a part of the immune system to remove unwanted bodies through
antibody-mediated phagocytosis. In course of doing this, complementary proteins interact
with cell surface receptors to promote an inflammatory response in the host system. Com-
plement system attacks and destroys invaders in four steps viz. recognition, opsonization,
inflammatory stimulation, and killing. In the human brain, astrocytes are the major center
of complement activity. Astrocytes can synthesize complement proteins including C1-C9,
regulatory factors B, D, H, I, and complement receptors namely C1qR, C3aR, and C5aR
locally to defend through both classical and alternative pathways [74]. Microglia also
supports phagocytosis by expressing C1q, C3 proteins, and C1qR, CR3, and C5aR recep-
tors [136]. Apart from neuroglia, neurons also express regulatory factors H, S, and receptors
C1qR, C3aR, and C5aR. Complement protein C1q affects the formation of Aβ plaques
containing β-sheet structures [137]. In transgenic AD mice, inhibition of the complement
system by C3-knockout resulted in the increased formation of Aβ plaques. These results
have further supported a neuroprotective role of the complement system [137–139].

5. MMIFs in AD: Pathogenic or Protective?

MMIF, also termed as a glycosylation inhibiting factor, is classified as a pro-inflammatory
cytokine is an important regulator of innate immunity. Expression of MMIF correlates with
expression of VEGF in CNS [140,141]. Interestingly, glucocorticoids stimulate the secretion
of MMIF, whereas glucocorticoids are known to suppress most of the other cytokines. Thus,
MMIF acts against the general anti-inflammatory response of glucocorticoids. There exists a
debate on whether endogenous MMIFs support or counter the pathogenesis of AD. Enhanced
MMIFs have been reported in mouse models of neurodegenerative disorders [80,142]. Again,
several studies reported that MMIF-knockdown in mutant mice has resulted in the accelera-
tion of neurodegenerative disorders [143,144]. MMIFs have also been reported to regulate
neuroinflammation and autophagy in the favor of neuroprotection [144–146].

MMIF has a notable function in controlling the synthesis and release of TNF-α, IL-1,
and other cytokines. MMIF is also involved in macrophage functions such as phagocytosis
and tumoricidal activities. On the other note, a brain insulin-resistant state arises due to
prolonged exposure of cortical neurons to high concentrations of insulin. MMIF contributes
to this insulin-resistant state through inhibition of Akt phosphorylation [147]. In some cases,
a structural homolog of MMIF, D-dopachrome tautomerase (MIF-2) exhibits synergistic
activities in combination with MMIF [148]. Moreover, MMIF and fragments of senile
plaques display similar neurotoxicity patterns [149]. The study also reported enhanced
MMIF levels in CSF of AD patients [149]. In silico studies further suggest that MMIF may
be involved in neuronal apoptosis during AD [150]. However, it is interesting to note that
Popp and colleagues earlier did not find any difference in MMIF levels of AD patients
with mild, moderate, and severe dementia [151]. Conclusively, we can say that imbalance
between oxidized and reduced isoforms of MMIF is the key to regulate the switch to either
a diseased or normal state [151].

6. Choroid Plexus Growth Factors and AD

The growth-promoting properties of APP, along with other growth factors, play vital
roles in the development of AD. The choroid plexus supports neuronal function by secreting
CSF. VEGF and FGF can be found in epithelial cells of the choroid plexus. It is rich in
various proteins and their receptors. Proteins include FGF-2, TGF-α, and TGF-β along
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with mRNA expressions for TGF-β, IGF-II, FGF-2, and NGF receptors. The choroid plexus
also contains receptor binding sites for FGF-7, keratinocyte growth factor, IGF-1, and IGF-2.
Blood-CSF barrier made up of epithelial cells and tight junctions at the choroid plexus
allow selective passage of materials into the brain. FGF-2 has been reported to increase
in brain parenchyma of AD patients. Moreover, infusion of FGF-2 in rats has resulted in
hydrocephalus ex vacuo, which is a clinical feature of AD [152]. It is important to note that
improper CSF circulation and impaired clearance of CSF may give rise to dementia and
neurodegeneration due to lack of nutrition to CNS cells and enhanced toxic accumulations
within CSF. In this section, we shed light on the specific roles of VEGF and FGF growth
factors in the development of AD.

6.1. Vascular Endothelial Growth Factors (VEGFs)

VEGFs and their receptors have been reported to localize at the area with lesions and
AD-related developments. Different isoforms of VEGF act as pro-inflammatory cytokines,
which increase endothelial cell permeability, induce the expression of endothelial cell
adhesion molecules and act as monocyte chemoattractants [153]. VEGF is involved in the
regulation of GLUT1 and tissue thromboplastin, which in turn regulate vascular pathologies
of AD. GLUT1, present in BBB mediates glucose transport into the brain and reduced
expression of GLUT1 is relatable with aggravated AD conditions. Tissue thromboplastin
and derived factors play a pro-inflammatory role leading to vascular dementia [154]. AD
patients tend to present with enhanced VEGF activity within reactive astrocytes [155]. Rats
subjected to cerebral ischemia displayed increased perivascular VEGF reactivity in the
clusters of reactive astrocytes [156].

6.2. Fibroblast Growth Factors (FGF)

FGFs are circulatory proteins that play important roles in the activation of cell sur-
face receptors. Around 23 FGF subtypes have been known to exert distinct functions
to date [157]. Acidic FGF-1 and basic FGF-2, among eight other FGF family proteins,
act through four families of FGF receptors. However, FGF-11-14 does not act through
FGF receptors.

FGF-1 and FGF-2 are more potent angiogenic factors than VEGF [52]. Within CNS,
FGFs play important roles in the proliferation and differentiation of neuronal stem cells
including neurogenesis and axonal growth. FGFs also support the self-renewal of radial
glial cells. FGF-8 is a vital player for the proper functioning of the cerebral cortex. Increased
levels of FGF-2 have reportedly been associated with AD brain leading to enlargement of
ventricles [158]. FGFs regulate not only neuronal stem cells but also adult neurogenesis.
Additionally, the maintenance and survival of neurons throughout their life depend greatly
on FGF-2. Synaptic plasticity, to some extent, is controlled by FGF-1 and FGF-2. Thus,
the conduction of nerve impulses through axons and synapses for proper cognition is
dependent upon FGFs. Belluardo and colleagues demonstrated that upregulation of
FGF-2 can successfully prevent neuronal loss in cortical and hippocampal regions of
the brain [159]. In the rat models, FGF-21 has been found to ameliorate senile plaques-
mediated neurodegeneration [160]. The effects were achieved via minimizing oxidative
stress through PP2A/MAPK/HIF-1α-mediated pathways [160].

7. Neurotrophic Factors

Neurotrophic growth factors produced by neural stem cells are involved in the differ-
entiation of cells and cell survival. Neurotrophic growth factors consist of NGFs, GDNF,
neurokines, and non-neuronal growth factors. NGF is probably the most discussed neu-
rotrophic growth factor/neuropeptide that involves in growth regulation, maintenance,
proliferation, and survival of certain target neurons. NGF was the first neurotrophin to be
discovered followed by BDNF, neurotrophin-3, neurotrophin-4/5, and neurotrophin-6 [72].
Neurotrophins bind to cognate TrK receptors and p75NTR. The low-affinity p75NTR can
bind with all neurotrophin family members. Neurokines and cytokines related to IL-6 bind
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to cell surface receptor complexes, which share a common structural organization. The
four ligands interchangeably employ two distinct receptor subunits, leukemia inhibitory
factor receptor b (LIFRb) and gp130; some employ a ligand-specific α subunit [76].

NGF exhibits protective action over cholinergic neurodegeneration. NGF can influence
APP processing towards the non-amyloidogenic pathway via protein kinase C-coupled
M1 and M3 receptors. Interestingly, NGFs are upregulated in AD brain and CSF, while
NGF receptor TrKA is downregulated [74]. BDNFs alone and in chimeric combination with
NGF have been found to protect cholinergic neurons in prosencephalon [58]. Interestingly,
AD brains have been diagnosed with decreased levels of mRNAs for BDNFs but normal
levels of mRNAs for NGF and neurotrophin-3 [161]. In the AD brain, astrogliosis may
contribute to increasing NGF and reducing TrKA in the cortex and nucleus basalis. Vinculin-
dependent adhesions are central to the functioning of NGF to promote axonal outgrowth.
Vinculin-dependent coupling regulates the level of myosin needed for NGF stimulation.
The role of NGF as a growth factor amongst a bouquet of proteins is paramount in cognitive
processes that may be involved in the survival and phosphorylation of fibrils in axons, that
are involved in AD and other chronic diseases closely related to AD [56].

8. Hematopoietic Growth Factors

Apart from controlling hematopoiesis in blood progenitor cells, hematopoietic growth
factors such as IL-3, GCSF, GMCSF, MCSF, and erythropoietin play vital roles in the
functional activation of all mature cells. In the biological and pathological role of the
immune system, the immune system achieves its role by cells that encapsulate it as a
whole. Such cells originate from hematopoietic stem cells in the bone marrow by a blood-
forming process of hematopoiesis that gives rise to myeloid progenitor cells and lymphoid
progenitor cells [162]. Myeloid progenitor cells constitute megakaryocytes, erythrocytes,
mast cells, and myeloblast. The myeloblast cells differentiate into immune cells, such
as basophil, neutrophil, eosinophil, and monocytes. Of the subset of the myoblast cells
are the monocytes that later develop into macrophages, which play an initiating part in
immune system responses that counter foreign material, pathogens, and compromised
cells in the CNS.

Hematopoietic growth factors are important contributors to brain marrow for neu-
ropoiesis. They can prevent neuronal death to some extent. Jin and colleagues have pointed
out enhanced neurogenesis during AD progression [163], though many pose doubts on
the marker doublecortin [164,165]. In a mouse model, GCSF has been observed to restore
cognition by restoring acetylcholine levels [61]. The survivability of neural networks in the
brain largely depends on GCSF and LEF1 availability, which enter through the BBB and
promote their survivability. VEGF increases BBB permeability; however, a defective VEGF
expression can trigger immunoreactivity, which is a characteristic feature in AD (Figure 5).
Stem cell factors, in combination with receptor c-kit, stimulate neurogenesis [62]. The lower
level of stem cell factor in blood and CSF were observed to accelerate cognitive decline
during AD [63]. Increased levels of angiopoietins 1 and 2 indicate a cognitive decline in AD.
In the mouse models, angiopoietin 1 accelerates AD via FOXA2/PEN2/APP-dependent
pathway [166]. Increased neurogenesis, anti-apoptotic influences, and mobilization of
microglia contribute to brain repair involving hematopoietic growth factors.
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Figure 5. Schematic representation of functional control across BBB by hematopoietic growth factors. The blue arrows (↑)
indicate downstream cellular events, blue lines (T) indicate restriction, upward green arrows (↑) indicate upregulation,
downward red arrows (↓) indicate down-regulation, and minus sign (−) indicates decreased activity.

9. Potential Strategies Involving Cytokines for Management of AD

AD affects millions of individuals worldwide among the aging population, yet no
therapeutic intervention is available to stop and eliminate this disorder. Neuropathological
hallmarks of AD are extracellular deposits of Aβ peptides assembled in plaques, intraneu-
ronal accumulation of hyperphosphorylated TAU protein forming neurofibrillary tangles,
and chronic neuroinflammation. No absolute cure for AD is available so far [167].

Among the available therapeutic options against AD, cholinesterase inhibitors and
NMDA antagonists display moderate relief in the case of AD. Donepezil, an inhibitor of
acetylcholinesterase improved cognitive conditions in AD and increased BDNFs [168].
Pharmacotherapy against Aβ and TAU has yielded limited success only. Treatment
with β-sheet breaker peptides results in reduced brain inflammation by disrupting amy-
loids [169]. RAGE/NF-κB axis could be a potential therapeutic target in AD [170]. Some
dietary nutraceuticals display inhibitory effects on the formation of advanced glycation
end-products [171]. Resveratrol has been found to modulate levels of Aβ and certain
inflammatory markers in AD patients [172]. Luteolin can play a prophylactic role against
AD [173]. Additionally, moderate activation of microglia is thought to have beneficial
effects in removing neurotoxins, cellular debris, and dying cells or in promoting neuronal
survival. Since MMIF is augmented in AD, measuring blood and CSF levels of MMIF may
represent a diagnostic biomarker useful both for diagnosis and therapeutic monitoring of
the disease [174]. Moderate activation of microglia by acute neuroinflammation is thought
to have beneficial effects in removing neurotoxins, cellular debris, or dying cells and also
in promoting neuronal survival [175]. IL-1ra, a glycosylated protein antagonizes the cell
activating action of IL-1. Furthermore, TNF-α has been reported to possess neuroprotec-
tive effects [176]. TGF-β is capable of converting an active site of inflammation into one
dominated by reparations [177]. Kitazawa et al. described that blocking IL-1 signaling in
3xtg AD mice with an IL-1 receptor blocking antibody was beneficial since it leads to a
decrease in certain Aβ fibrillar forms and plaques [27].

It has been suggested that a blockade of the ongoing inflammatory processes may
delay the progression of AD [178]. Studies suggest lesser incidents of developing AD in
arthritis patients receiving NSAIDs, regularly [179,180]. The fact that COX-2 mRNA is
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upregulated in the AD brain further supports this claim. Therefore, receptors for hematopoi-
etic growth factors expressed on neurons provide novel targets for drug discovery in the
search for agents that can reverse the progression of AD.

It is interesting to observe that peripheral phagocytes can effectively clear plaques and
therapeutic strategies aiming at favoring the recruitment of these cells into the CNS are
actively being pursued [80]. In a mouse model, the BDNFs have improved AD conditions
by delaying synaptic loss, improving cell signaling, and enhancing cognition and spatial
learning [181]. GCSF and analogs have proven neuroprotective activity, which may possi-
bly be used therapeutically. In vivo intraperitoneal VEGF administration reduced cognitive
impairment in a mice model of AD [53]. As discussed earlier, NGFs are potential candi-
dates for significant improvement of cognitive functions. Biogenetic exosome-mediated
activation of microglia and deregulation of microRNA can be useful to fight against neu-
roinflammation [182]. Erythropoietin, together with NF-κB can prevent neuronal injury
triggered by Aβ toxicity [183]. Inhibitors of TNF-α have exhibited potential promise to
slow down the progress of AD-associated cognitive decline [183]. Experimentally delivered
mature NGFs into the AD brain showed potential for improving AD condition [56]. ApoE4-
centric treatment approaches are gaining interest in recent times since ApoE4 is involved
in more than 50% of AD cases [184]. M2 microglia are generally engaged in the restoration
of homeostatic balance after an inflammatory insult by releasing anti-inflammatory fac-
tors. Thus, the therapeutic promise is there to prevent and treat neuroinflammation with
protective functions of microglia [185–187]. Another potential strategy might be to inhibit
BACE1 to reduce the production of Aβ, however, clinical success is yet to be achieved [188].
Recently, multitarget-directed ligand-based treatment strategies have started to evolve
centering on inhibition of GSK-3β, a crucial enzyme for TAU hyperphosphorylation, and
some other CNS-specific signaling pathways [119]. Nowadays, in the war against AD and
associated disorders, researchers are focusing more on regulating neurotransmitters, lipid
metabolism, autophagy, circadian rhythm, gene therapy, etc. [189].

10. Conclusions

In this review, ample evidence reflects the potential roles of cytokines and growth
factors in the pathogenesis of AD or pathologically related to AD-like neurodegenerative
conditions. It helps us to understand the propensities and action of cytokines and growth
factors regulating their effects on neurons upon neurodegeneration. Altogether, evidence
evinced in previous research on the rather novel concentration on the topic of cytokines
in neuroimmune system responses and their role in inflammation. These two factors
possibly preceding neurotoxicity and intrathecal generation of immune molecules and
cytokine-producing cells show that cytokines mediate and even activate innate neuroim-
mune agents. Cytokines regulate the response of pro-inflammatory and anti-inflammatory
signals to maintain CNS machinery homeostasis [190]. Pro-inflammatory cytokines induce
inflammation in AD and AD-like pathogenesis in response to the apoptotic scenarios.
Some growth factors are implicated in the expression of cytokinetic reactions to activate
microglia that cause inflammation in AD. Cytokines and growth factors such as NGF,
VEGF, TNF-α, and IL-1 additionally impact intricate molecular processes necessary for
balance and homeostasis in cognitive mechanisms. To conclude, there exists ample scope
of improvement regarding clinically useful strategies to mitigate AD.
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