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CXCR2 intrinsically drives the
maturation and function of
neutrophils in mice
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Karl Balabanian2,3 and Gwendal Lazennec1,2*

1CNRS, UMR9005, Sys2Diag-ALCEN, Cap delta, Montpellier, France, 2CNRS, GDR 3697
“Microenvironment of tumor niches”, Micronit, France, 3Université Paris-Cité, Institut de Recherche
Saint-Louis, INSERM U1160, Paris, France
Neutrophils play a major role in the protection from infections but also in

inflammation related to tumor microenvironment. However, cell-extrinsic

and -intrinsic cues driving their function at steady state is still fragmentary.

UsingCxcr2 knock-outmice, we have evaluated the function of the chemokine

receptor Cxcr2 in neutrophil physiology. We show here that Cxcr2 deficiency

decreases the percentage of mature neutrophils in the spleen, but not in the

bone marrow (BM). There is also an increase of aged CD62Llo CXCR4hi

neutrophils in the spleen of KO animals. Spleen Cxcr2-/- neutrophils display a

reduced phagocytic ability, whereas BM neutrophils show an enhanced

phagocytic ability compared to WT neutrophils. Spleen Cxcr2-/- neutrophils

show reduced reactive oxygen species production, F-actin and a-tubulin
levels. Moreover, spleen Cxcr2-/- neutrophils display an altered signaling with

reduced phosphorylation of ERK1/2 and p38 MAPK, impaired PI3K-AKT, NF-kB,
TGFb and IFNg pathways. Altogether, these results suggest that Cxcr2 is

essential for neutrophil physiology.
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Introduction

One of the first line of defense against pathogens such as bacteria, fungi, or parasites

involves neutrophils, which are key mediator of innate immunity and inflammation.

Neutrophils use different ways to clear the infection, including bacterial uptake

(phagocytosis), phagolysosomal degradation of bacteria with a cocktail of

antimicrobial factors and reactive oxygen species (ROS) (oxidative burst) or release of

granules to neutralize extracellular pathogens (degranulation) (1). In addition, when

intruders are too large or have escaped the other microbial killing processes, neutrophils

can extrude a physical barrier to pathogen dissemination, called a neutrophil extracellular

trap (NET), containing DNA, histones and granule proteases (2).
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Neutrophils are the most abundant circulating leukocytes,

representing 50% to 70% of all circulating leukocytes in humans

and about 10 to 25% in mice (3). Neutrophils are relatively short

lived cells (4), even if recent studies have questioned this aspect

and it is now believed that human and murine neutrophils could

have a half-life of 5 days or 18h, respectively (5).

Neutrophils arise from granulocyte–monocyte progenitors

(GMPs), mostly within the bone marrow (BM) during

hematopoiesis in response to several cytokines, principally

granulocyte colony–stimulating factor (G-CSF) (6), but also

from extramedullary tissues such as spleen (7–9). The first

progenitor that is ‘neutrophil committed’ is the neutrophil

promyelocyte (10), which then maturates through granulocyte-

committed precursors comprising myeloblasts, promeylocytes

and myelocytes, to a post-mitotic or transition pool of

metamyelocytes, band cells and segmented neutrophils (11).

Mature post-mitotic neutrophils are released from the BM into

the peripheral blood, extravasate from circulation into the tissues

under the coordinate regulation of various adhesion molecules

and chemokines (12). They are involved not only in the control

of inflammation following infections or injuries but have also

pro or anti-tumoral actions as tumor associated neutrophils

(TANs) (13–15). In inflammatory sites, neutrophils fight the

injury or infection and undergo apoptosis and are phagocyted by

macrophages, once inflammation has been resolved (16).

Senescent neutrophils can also home back to the BM in a

Cxcr4-dependent mechanism (17). The terminal differentiation

of neutrophils in the BM, before release into the bloodstream, is

still a subject of debate, as some steps of maturation could occur

in other organs such as the spleen (9) and in the same line,

neutrophil progenitors have been found in the spleen (18).

Maturation markers of neutrophils are also currently

discussed, but classically Ly6G, Cd101, Cxcr4 and Cxcr2 are

used in mice (8, 12).

Cxcr2 appears as one of the key chemokine receptor

expressed by neutrophils both in mice and humans (19, 20).

Cxcr2 binds the chemokines Cxcl1, 2, 3, 5, 6, 7 and 8 in human,

which all have pro-angiogenic properties and are located in a

short cluster of chromosome 4 (21–23). Cxcr2 ligand action is

conditioned by its interaction with proteoglycans (24) and Cxcr2

signals through multiple pathways including PI3K and Src (25).

In addition, recent work has highlighted the role of Cxcr2 in

tumorigenesis, in particular through tumor-associated

neutrophils (14, 23, 26, 27), but also in the effects microbiota

on pituitary function (28). Cxcr2 knockout mice have been

generated and are characterized by a splenomegaly due to an

increase of metamyelocytes, mature neutrophils and B

lymphocytes (29). These mice also display a defect in

neutrophil recruitment after infection (30).

So far, the mechanism of Cxcr2 action in neutrophils

remains poorly understood. In this study, we have investigated

the role of Cxcr2 in mouse neutrophils in the spleen and the BM,
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taking advantage of Cxcr2-/- mice. Our data show that Cxcr2

impairment in neutrophils affects differently spleen and BM

neutrophils in terms of maturation, phagocytosis and ROS

production. Moreover, we analyzed at the transcriptomic level

the pathways that were altered by Cxcr2 deletion in neutrophils.

Altogether, these results suggest that proper Cxcr2 expression

and function is required for maturation and effector functions of

peripheral neutrophils.
Materials and methods

Animal models and housing

All animal experiments conformed to our animal protocols

that were reviewed and approved by the Institutional Animal

Care and Use Committee. Cxcr2-/- mice (29) were obtained from

the Jackson Laboratory. Cxcr2-/- mice were backcrossed in FVB

genetic background for more than 12 generations. Control (WT)

mice were also in a FVB background. All mice were housed in a

SOPF (Specific and Opportunistic Pathogen Free) animal facility.
Isolation of cells

Cells from the BM were isolated by centrifugation from the

femurs and tibias of the animals, whereas spleens were mashed

on 100 µm nylon cell strainer. After centrifugation, red blood

cells were eliminated by treatment with ACK buffer (0.155 mM

NH4Cl, 1 mM KHCO3, 0.1 mM EDTA) and filtered on a 40 µm

nylon cell strainer. After ACK treatment, cells were filtered on a

40 µm nylon cell strainer. For neutrophil isolation, a first

enrichment with EasySep™ Mouse CD11b Positive Selection

kit (StemCell technologies, Grenoble, France) was performed

followed by cell sorting of CD45+ CD11b+ Ly6G+ F4/80- cells

on an ARIA IIu FACS sorter (Becton Dickinson, Le Pont-de-

Claix, France).
Flow cytometry

Flow cytometry experiments were performed with the

following conjugated antibodies from Biolegend (London,

United Kingdom): anti-mouse CD11b (clone M1/70), CD45

(clone 30-F11), Cxcr2 (clone SA044G4), Ly6G (clone 1A8),

CD62L (clone MEL-14) or BD Biosciences (BD Biosciences, Le

Pont-de-Claix, France): Cxcr4 (clone 2B11), or Ebiosciences

(Fisher Scientific, Illkirch, France): CD101 (clone Moushi101),

Fixable viability dye (65-0866). Flow analysis was performed on

live singlets with a LSR II Fortessa flow cytometer (Becton

Dickinson, Le Pont-de-Claix, France). Data were analyzed

using FlowJo (Tree Star).
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Intracellular flow cytometry

Cells were first stained with antibodies directed against

extracellular markers (CD45, CD11b, Ly6G) and then

permeabilized with Cytofix/Cytoperm and Permwash buffer

(BD Biosciences). Intracellular staining of F-actin was

performed with Phalloidin, Fluorescein Isothiocyanate Labeled

(Sigma-Aldrich, ref P5282), whereas a-tubulin was labeled with

a-Tubulin antibody (clone 11H10, Cell Signaling, ref 2125)

followed by secondary an anti-rabbit IgG antibody coupled to

Alexa Fluor 555 (ThermoFisher, ref A27039). Phospho-p42/44

MAPK ERK1/2 (Thr 202/Tyr 204) (Cell signaling, ref 4370)

followed by secondary an anti-rabbit IgG antibody coupled to

Alexa Fluor 555 (ThermoFisher, ref A27039) was used to detect

Phospho-p42/44 MAPK ERK1/2. p-p38 MAPK (Thr 180/Tyr

182) coupled to PE (cell Signaling 6908), was used to detect

phospho-p38 MAPK.
Annexin V staining and measure
of mortality

To determine the proportion of apoptotic and dead cells,

fresh neutrophils were stained with Annexin-FITC and

propidium iodide (PI) according to manufacturer instruction

(Invitrogen, ref V13242).
Phagocytosis assay

CD45+ CD11b+ Ly6G+ neutrophils were incubated for

various times at 37°C with E. coli Red Phrodo bioparticles

(ThermoFisher, Illkirch, France) at a concentration of 15 µg/

ml and analyzed in a kinetic manner by flow cytometry with a

LSR II Fortessa flow cytometer (Becton Dickinson, Le Pont-de-

Claix, France). Data were analyzed using FlowJo (Tree Star).

When opsonized particles were used, they were opsonized for 1h

at 37°C with opsonizing reagent (E2870, ThermoFisher, Illkirch,

France), according to manufacturer instructions.
Reactive oxygen species and
mitochondrial superoxide quantification

Reactive oxygen species and mitochondrial quantification

was performed by labelling fresh CD45+ CD11b+ Ly6G+

neutrophils for 20 min at 37°C, using CellRox Orange reagent

(ref. C10443) and Mitosox reagent (ref. M36008) respectively,

following the manufacturer’s instructions (Molecular Probes,

ThermoFisher Scientific).
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RNA extraction and RNA-seq
data processing

Total RNA was isolated using TRIzol reagent (Fisher

Scientific, Illkirch, France), as described by the manufacturer.

RNA integrity and quality were verified using RNA ScreenTape

kit and Tapestation 2200 apparatus from AGILENT (Les Ulis,

France). cDNA libraries were synthesized using NEBNext® rRNA

Depletion and Ultra™ II Directional RNA Library Prep Kit (New

England Biolabs, Evry-Courcouronnes, France). Library quality

was checked on Tapestation 2200 apparatus from AGILENT (Les

Ulis, France) with DNA 1000 ScreenTape. Samples were

sequenced on Novaseq 6000 (Illumina) with an average

sequencing depth of 30 million of paired-end reads. Length of

the reads was 150 bp. Each 24 Plex Samples was sequenced on one

Illumina SP FlowCell (2*800 million of 150bases reads). Raw

sequencing data was quality-controlled with the FastQC program.

Low quality reads were trimmed or removed using Trimmer

(minimum length: 120 bp). Reads were aligned to the mouse

reference genome (mm10 build) with the Star tool. Gene counts

were obtained by read counting software Htseq. Normalization

and differential analysis were performed with the DESeq2 package

with Benjamini-Hochberg FDR multiple testing correction (p <

0.05; 1.5-fold or higher change) comparing WT and KO animals.

The data discussed in this publication have been deposited in

NCBI’s Gene Expression Omnibus (31) and are accessible through

GEO Series accession number GSE209860 (https://www.ncbi.nlm.

nih.gov/geo/query/acc.cgi?acc=GSE209860).
Bioinformatic analysis

To assess biological interpretation of the most differentially

expressed genes, we used Gene ontology (GO) enrichment

analysis. A gene set enrichment analysis (GSEA) was performed

using signatures from GSEA collections. A normalized

enrichment score (NES) was calculated for each gene set and

only gene sets with an adjusted p value < 0.05 were selected.
Statistics

Statistical analyses were carried out using unpaired Mann-

Whitney test.
Results

Cxcr2 invalidation affects the maturation
of neutrophils

To evaluate the impact of Cxcr2 knockout on neutrophil

distribution and function, we first measured the presence of
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CD45+ CD11b+ Ly6G+ neutrophils in the BM and the spleen by

flow cytometry (Figure 1A). Ly6G+ neutrophils were composed

of two subpopulations with high (Ly6Ghi) or low (Ly6Glo) levels

of Ly6 (Figure 1A). In BM, the percentage of total Ly6G+

(Ly6Ghi + Ly6Glo) neutrophils was increased by about 30% in

Cxcr2-/- compared to WT animals, and this was much more

pronounced in the spleen, with more than 8 - fold more

neutrophils in Cxcr2-/- animals (Figure 1B). Of particular

note, the percentage of CD45+ cells was not different in WT

and KO spleens, whereas it slightly increased (88.7% vs 95.2%) in

KO BM compared to WT BM (Supplemental Figure 1). No

major change in FSC and SSC distribution was observed for

Ly6G+ neutrophils (Supplemental Figure 2). In terms of

absolute numbers, we observed a 5-fold increase of the total

number of CD45+ cells and CD45+ CD11b+ Ly6G+ neutrophils

in the spleen of Cxcr2-/- animals, whereas minimal differences

between and Cxcr2-/- and WT animals was seen in BM (no

change of the number of CD45+ cells and less than 30% increase

for CD45+ CD11b+ Ly6G+) (Supplemental Figure 3). This

obviously creates a bias in the analysis of any type of

subpopulation and for this reason, we decided to continue to

look at percentage of subpopulations of neutrophils among

neutrophils, to avoid this.

The level of Ly6G expression has been correlated with the

degree of maturation of neutrophils with Ly6Ghi neutrophils being

the most mature (32). In BM, there was a slight reduction of the

percentage of immature Ly6Glo neutrophils among total Ly6G+ in

Cxcr2-/- animals, whereas there was an increase by 2-fold of

immature Ly6Glo neutrophils in Cxcr2-/- spleen (Figure 1C). To

strengthen these results, we used the CD101 marker, which

characterizes mature neutrophils (8). Among neutrophils, we

observed a reduction of CD101+ mature neutrophils in the

spleen, but an increase of mature neutrophils in BM

(Figures 1D, F). Next, we also looked at Cxcr4 expression in

neutrophils, which is correlated not only to immaturity of

neutrophils (8), but also to aged neutrophils (33). The

percentage of Cxcr4+ neutrophils increased twice in the spleen,

but was unaffected in the BM (Figures 1E, G), confirming the

increase of the proportion of immature neutrophils in the

neutrophil fraction of the spleen. To assess more precisely

whether these neutrophils corresponded to immature or aged

neutrophils in the spleen of KO animals, we used the marker

CD62L (L-Selectin), in addition to CXCR4 to identify “aged”

CD62Llo- CXCR4hi neutrophils, as previously described (33). We

observed that the proportion of aged CD62Llo- CXCR4hi cells

among neutrophils increased in KO spleen compared to WT, but

there was no significant change in BM (Supplemental Figure 4).

To further assess the nature of neutrophils, we isolated by cell

sorting CD45+ CD11b+ Ly6G+ neutrophils from WT and KO

BM and spleen and colored them with Giemsa (Supplemental

Figure 9). WT BM neutrophils displayed a condensed round

nucleus, with a small cytoplasm, whereas KO BM neutrophils

seem to have a larger ring-shaped nucleus, which could suggest
Frontiers in Immunology 04
that they are more mature. In the spleen, WT neutrophils had a

strongly colored ring-shaped nucleus. Spleen KO neutrophils

exhibited a larger nucleus with a less pronounced staining and

also a cytoplasmic center, which could be reminiscent of band

neutrophils (34). These morphological differences suggest that

WT and KO neutrophils might have distinct features.
Cxcr2-/- neutrophils display altered
phagocytic ability

Phagocytosis is one of the major function of neutrophils to

eliminate infections. Thus, we analyzed the phagocytic abilities of

BM and spleen neutrophils. Kinetics of phagocytosis showed that

BM Cxcr2-/- neutrophils had an enhanced phagocytic ability

compared to WT neutrophils (Figure 2A), whereas spleen Cxcr2-/-

neutrophils were less phagocytic than spleen WT neutrophils

(Figure 2B). We have also performed an additional analysis, by

separating Ly6Ghi and Ly6Glo neutrophils (Supplemental Figure 5).

Similar results were obtained for Ly6Ghi neutrophils as for Ly6G+

neutrophils, which is an increase of phagocytosis for BM KO

neutrophils and a decrease of phagocytosis for spleen KO

neutrophils. Concerning Ly6Glo neutrophils, they were less

phagocytic than Ly6Ghi neutrophils, both in the spleen and BM.

Moreover, BM KO Ly6Glo were also more phagocytic than BMWT

Ly6Glo neutrophils. On the other hand, no difference was seen for

spleen Ly6Glo neutrophils between WT and KO animals. In

addition, when using opsonized bioparticles (Supplemental

Figure 6), we obtained the same trend of difference between WT

and KO neutrophils as for non-opsonized particles.

To better understand the mechanisms underlying these

changes in phagocytic ability, we looked at ROS production

and to actin-tubulin cytoskeleton organization of neutrophils,

which are essential for phagocytosis (35). We observed a strong

reduction in the production of cytoplasmic ROS (Figures 3A, B)

and mitochondrial superoxide (Figures 3C, D) of spleen Cxcr2-/-

neutrophils, whereas no difference could be measured between

BM WT and Cxcr2-/- neutrophils. Spleen Cxcr2-/- neutrophils

had also lower levels of F-Actin (Figures 4A, B) as well as tubulin

(Figures 4C, D) compared to WT, but BM neutrophils were

unaffected by Cxcr2 impairment. These results of decreased levels

of F-actin and tubulin were also confirmed, when comparingMFI

values for F-actin and tubulin for the different types of

neutrophils (Supplemental Figure 7). Altogether, these results

could account for the lower phagocytic ability of spleen Cxcr2-/-

neutrophils, which is in agreement with a lower maturity.
Spleen Cxcr2-/- neutrophils have a
higher viability

Neutrophil are short term living cells, so we wondered

whether Cxcr2 could modulate their survival ability. We
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observed that the percentages of apoptotic or dead cells were

reduced for spleen Cxcr2-/- neutrophils (Figures 5A–C,

respectively), whereas it was similar for WT and Cxcr2-/- BM

neutrophils. So, this suggests that the reduced phagocytic ability
Frontiers in Immunology 05
of spleen Cxcr2-/- neutrophils is not a consequence of an

impaired survival. We have also measured apoptosis and death

after a 2h incubation at 37°C, and obtained similar results

(Supplemental Figure 8), which suggests that an increased
B C

D

E

F G

A

FIGURE 1

Cxcr2 knock-out decreases the percentage of mature neutrophils in the spleen. (A) Representative dot plots of the gating strategy of CD45+ CD11b
+ Ly6Ghi and CD45+ CD11b+ Ly6Glo neutrophils among CD45+ cells in WT and Cxcr2-/- bone marrow (BM) and spleen (SP). (B) Quantification of
the percentage of the total neutrophils (CD11b+ Ly6G+: sum of Ly6Ghi and Ly6Glo) in the CD45+ fraction. (C) Quantification of CD11b+ Ly6Ghi cells
(left panel) and CD11b Ly6Glo (right panel) in the CD11b+ Ly6G+ (Ly6Ghi and Ly6Glo fractions) population. (D) Gating strategy to identify CD101+
neutrophils in the CD45+ CD11b+ Ly6G+ fraction. (E) Gating strategy to identify CXCR4+ neutrophils in the CD45+ CD11b+ Ly6G+ fraction.
(F) Percentage of mature CD101+ neutrophils in the CD11b+ Ly6G+ fraction. (G) Percentage of CXCR4+ neutrophils in the CD11b+ Ly6G+ fraction.
Data represent the mean ± SEM of at least 6 animals (Mann-Whitney test, NS: non-significant, *p < 0.05, **p < 0.01).
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apoptosis or death after 2h incubation does not affect the

phagocytosis ability of neutrophils.
Transcriptomic analysis confirms the
impaired maturation of spleen
Cxcr2-/- neutrophils

We next focused on spleen neutrophils to decipher whether

and how Cxcr2 deficiency impacts their molecular identity.

RNAseq analyses of WT and Cxcr2-/- spleen neutrophils showed

that more than 2,500 transcripts were up-regulated and about the

same number down-regulated in Cxcr2-/- spleen neutrophils

(Figures 6A–C). We then focused on their maturation using the

neutrophil maturation signature reported by Xie and collaborators

(36). GSEA analysis confirmed that spleen Cxcr2-/- were less

mature than their WT counterparts (Figures 6D, E), with down

regulation of genes encoding Cathepsin D (Ctsd), JunB or IL-1b
involved in Netosis (2), Arginase-2 (Arg2) controlling extra-urea

cycle arginine metabolism and nitric oxide synthesis (12), C-type

lectin receptor Clec4d crucial for bacteria elimination (37) or

Selplg (CD162), important for the rolling of neutrophils (38).

In addition, there was a cluster of GSEA Biological process (BP)

signatures showing a down-regulation of the chemotaxis and
Frontiers in Immunology 06
migration of spleen Cxcr2-/- neutrophils (Figure 6F), suggesting a

decrease in the migration ability of these neutrophils.
ERK and p38 MAPK pathways are down-
regulated in spleen Cxcr2-/- neutrophils

To look at the signaling that were affected in spleen Cxcr2-/-

neutrophils, we first focused on ERK and p38 MAPK signaling,

which are known to modulate the migration and adhesion of

neutrophils (39, 40). RNAseq data showed that both ERK1 and

ERK2 cascade (Figures 7A, C), as well as p38MAPK cascade

(Figures 7B, D), were down regulated in spleen Cxcr2-/-

neutrophils. Concerning ERK1/2 cascade, there is in particular

a down-regulation of the AP-1 Transcription Factor Jun, of the

Cyclic AMP-Dependent Transcription Factor Atf-3, IL1b, growth
factors such as TGFb1 and IGF1, multiple chemokines such as

Ccl3, 4, 15, 18, 23 and of a number of kinases such as Ptk2b

(Protein Tyrosine Kinase 2 Beta), the tyrosine-protein kinase Syk,

Csk (C-Terminal Src Kinase) or the serine/threonine protein

kinase BRAF (Figure 7C). For p38MAPK cascade, we observed in

particular a down regulation of Mitogen-Activated Protein

Kinase 14 (Mapk14), Mitogen-Activated Protein Kinase Kinase

Kinase 3 (Map3k3), Map3k5, and cytokines such as IL1b, HGF.
BA

FIGURE 2

spleen Cxcr2-/- neutrophils have an impaired phagocytosis ability. (A) To measure phagocytosis, BM CD11b+ Ly6G+ neutrophils were incubated
with Red E. coli Phrodo bioparticles at 37°C for 0, 30 min, 1h or 2h and analyzed by flow cytometry. Upper panel: Gating strategy to identify
phagocytic neutrophils (Phago+) in the CD11b+ Ly6G+ fraction at 2h time. Lower panel: Percentage of phagocytic Ly6G+ neutrophils. (B) Same
experiment with spleen neutrophils. Results are expressed as the percentage of phagocytic neutrophils in the CD11b+ Ly6G+ population and
represent the mean ± SEM of at least 6 animals (Mann-Whitney test, *p < 0.05, **p < 0.01, ***p < 0.001).
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To confirm these results, we measured by flow cytometry the

intracellular content of Phospho-p42/44 MAPK ERK1/2 and

phospho-p38 MAPK (Thr 180/Tyr 182). The mean of

fluorescence (MFI) of p-ERK1/2 and p-p38 were down-

regulated by about 50% in spleen Cxcr2-/- neutrophils

compared to WT neutrophils (Figures 7E, F, respectively)

confirming the alterations of these pathways.
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Several pathways are impaired in spleen
Cxcr2-/- neutrophils

To further investigate the mechanisms involved in the

changes observed in spleen Cxcr2-/- neutrophils, we explored

the main pathways that were affected at the transcriptomic level.

GSEA analysis showed a reduction of PI3K-AKT signaling
B

C D

A

FIGURE 3

spleen Cxcr2-/- neutrophils display reduced ROS and superoxide levels. (A) Gating strategy to measure cytoplasmic Ros levels using CellRox
Orange in CD11b+ Ly6G+ neutrophils. (B) ROS levels were quantified in spleen and BM CD11b+ Ly6G+ neutrophils using CellRox Orange probe.
Results are expressed as the percentage of ROS-positive neutrophils in the CD11b+ Ly6G+ population and represent the mean ± SEM of at least
6 animals (Mann-Whitney test, NS: non-significant, **p < 0.01). (C) Gating strategy to measure Mitochondrial superoxide levels using Mitosox in
CD11b+ Ly6G+ neutrophils. (D) Measure of the percentage of mitochondrial superoxide –positive CD11b+ Ly6G+ neutrophils using Mitosox
reagent. Data represent the mean ± SEM of at least 6 animals (Mann-Whitney test, NS: non-significant, **p < 0.01).
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(Figure 8A), TNFa signaling via NFkB (Figure 8B), NIK-NFkB
signaling (Figure 8C), as well of the cellular response to IL-1

(Figure 8D) and TGFb signaling (Figure 8E) and signaling by

IFNg (Figure 8F) signatures in spleen Cxcr2-/- neutrophils

compared to WT neutrophils. Among the genes involved in

PI3K-AKT pathway, we observed a down-regulation of

Phosphatidylinositol-4,5-Bisphosphate 3-Kinase Catalytic

Subunit Alpha, Delta and Gamma (Pik3ca, Pik3cd and

Pik3cg), and Phosphoinositide-3-Kinase Regulatory Subunit 1,

2 and 5 (Pik3r1, Pik3r2, Pik3r5), Janus Kinase 1 (Jak1), Glycogen
Frontiers in Immunology 08
Synthase Kinase 3 Beta (GSK3b), and Kras, which are crucial for

this pathway.

NF-kB pathway was also impaired with in particular down-

regulation of genes such as NF-kB Subunits p52 (Nfkb2), Relb,

C-Rel (Rel), TNF Alpha Induced Protein 2 and 3 (Tnfaip2 and

Tnfaip3), Tnfaip3 Interacting Protein 1 (Tnip1), TNF Receptor-

Associated Factor 1, 3 and 5 (Traf1, Traf3, Traf5) or TNF

Receptor Superfamily Member 10b (Tnfrsf10b).

Upstream of NF-kB activation, cellular response to IL-1 was

also altered, with a down-regulation of IL-1 itself, but also of
B

C D

A

FIGURE 4

Decrease of Actin+ and Tubulin+ levels in spleen Cxcr2-/-. (A) Gating strategy to measure F-Actin levels (Actin+) in CD11b+ Ly6G+ neutrophils.
(B) Percentage of CD11b+ Ly6G+ expressing Actin (mean ± SEM of at least 6 animals; Mann-Whitney test, NS: non-significant, **p < 0.01).
(C) Gating strategy to measure a-Tubulin levels (Tubulin+) in CD11b+ Ly6G+ neutrophils. (D) Percentage of CD11b+ Ly6G+ expressing Tubulin.
(mean ± SEM of at least 6 animals; Mann-Whitney test, NS: non-significant, **p < 0.01).
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Interleukin 1 Receptor Type 1 (Il1r1). Two other pathways were

also linked to PI3K/Akt, ERK, p38 and NF-kB signaling, namely

TGFb and IFNg signaling. TGFb signaling was impaired with a

decrease in Transforming Growth Factor Beta 1 (Tgfb1),

Transforming Growth Factor Beta Receptor 1 and 2 (Tgfbr1

and Tgfbr2), and Smad2, 3, and 4. IFNg signaling is also acting

through ERK and MAPK and PI3K signaling and exhibits in

particular a down-regulation of Janus kinase 2 (Jak2), suppressor

of cytokine signaling protein 1n and 3 (Socs1, Socs3), Signal

transducer and activator of transcription 4 (Stat4), Intercellular

adhesion molecule-1 (ICAM-1) and Integrin Subunit Beta

7 (ITGB7).
Discussion

Although the role of neutrophils in general inflammation

but also tumor microenvironment inflammation is growing, the

factors controlling their function are still not completely

identified. In particular, the involvement of Cxcr2 in

neutrophil physiology and features, as well as its impact on

signalization in neutrophils is still a matter of debate. In this

study, we report that impairment of Cxcr2 leads to a modest

increase of the percentage of neutrophils in the BM, but a strong
Frontiers in Immunology 09
one in the spleen, in agreement with previous studies (29). We

also show that Cxcr2 differentially affects the maturation

state of neutrophils in the spleen and the BM. More precisely,

based on the maturation markers Ly6G (32) and Cd101 (8)

expression, Cxcr2 deletion led an increase of Ly6Glo or CD101-

immature neutrophils in the spleen, but to a decrease

of immature neutrophils in the BM. The presence of resident

immature neutrophils in the spleen is thought to serve as a

reservoir of neutrophils, which will undergo a rapid proliferation

and mobilization in case of infection to increase the number of

active mature neutrophils (18, 32). Spleen is also a site of

accumulation and destruction of neutrophils in human (41),

so the presence of a high number of immature neutrophils could

correspond to both resident and recruited neutrophils. On the

other hand, considering that the BM is the main site of

production of neutrophils, this would suggest that Cxcr2

impairment does not alter the maturation process on

neutrophils in the BM, or that there could be a retention of

mature neutrophils in BM. This latter hypothesis is unlikely, as

we did not see any difference in the percentage Cxcr4+

neutrophils in the BM. Cxcr4 is indeed crucial for the

retention of neutrophils in the BM (17), even though other

studies have shown that the CXCR4 antagonist plerixafor did

not mobilize neutrophils from the BM, but rather enhanced the
B C

A

FIGURE 5

spleen Cxcr2-/- neutrophils exhibit a reduced apoptosis and mortality. (A) Gating strategy to identify alive, dead and apoptotic cells based on
Annexin V and PI staining. Control plot corresponds to cells labelled with cell surface markers, but not with Annexin V and PI (B) Measure of the
percentage of apoptotic neutrophils in the spleen and BM of WT and Cxcr2-/- animals by annexin V staining. (C) Same measure of dead cells by
PI staining. Results are expressed as the percentage of CD11b+ Ly6G+ neutrophils and represent the mean ± SEM of 6 animals; Mann-Whitney
test, NS: non-significant, **p < 0.01.
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FIGURE 6

Cxcr2-/- neutrophils display decreased maturity at the transcriptomic level. (A) Volcano plot showing the global changes in RNA expression
patterns for spleen neutrophils isolated from Cxcr2-/- (SP KO) versus WT (SP WT) animals. Data represent analysis of cpm estimates with a log
of fold change of more than 1.5 fold and p< 0.05 of 4 animals per group. Grey dots: NR: non-regulated genes; Green dots: genes with a log of
fold change of more than 1.5 fold; blue dots: genes with a p-value <0.05; red dots: genes with a log of fold change of more than 1.5 fold and p<
0.05. (B) Number of differentially regulated genes for the spleen neutrophils. Up: genes up-regulated in spleen isolated from Cxcr2-/- versus
WT animals. Down: down-regulated genes. NR: non regulated genes. (C) Simplified Heatmap of spleen Cxcr2-/- versus WT neutrophils.
(D) Normalized enrichment score (NES) after GSEA analysis of the transcriptome of spleen neutrophils isolated from Cxcr2-/- versus WT animals
according to Neutrophil maturation of Xie et al. (36). (E) Heatmap of the significantly regulated genes (p<0.05) of Neutrophil maturation
signature. (F) Cluster of chemotaxis and migration GSEA analysis from Cxcr2-/- versus WT animals according to Biologic process GO: Cell-
chemotaxis (NES= -1.64; q= 0.0002), Leukocyte-chemotaxis (NES= -1.62; q= 0.001), Granulocyte chemotaxis (NES= -1.53; q= 0.029),
Regulation of Chemotaxis (NES = -1.46; q = 0.013), Granulocyte migration (NES= -1.54; q=0.025), Myeloid-leukocyte-migration (NES= -1.50;
q= 0.012), leukocyte-migration (NES = -1.48; q= 0.003).
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FIGURE 7

ERK and p38 pathways are down-regulated in Spleen Cxcr2-/- neutrophils. (A) NES after GSEA analysis of the transcriptome of spleen
neutrophils isolated from Cxcr2-/- versus WT animals according to ERK1 and ERK2 cascade signature. (B) Same analysis for p38-MAPK
signature. (C) Heatmap of the significantly regulated genes (p<0.05) of GO-BP ERK1 and ER2 cascade signature. (D) Heatmap of the significantly
regulated genes (p < 0.05) of GO-BP p38 MAPK cascade signature. (E) Phospho-p42/44 MAPK ERK1/2 (Thr 202/Tyr 204) was analyzed by flow
cytometry in spleen CD11b+ Ly6G+ neutrophils. Left panel: representative Mean of Fluorescence (MFI) of WT (red line) and KO (blue line) Ly6G+
neutrophils. Results are expressed as MFI of phospho-ERK positive neutrophils in the CD11b+ Ly6G+ population and represent the mean ± SEM
of at least 6 animals (Mann-Whitney test, *p < 0.05). (F) Phosphorylation of p38MAPK on Thr180/Tyr182 was analyzed by flow cytometry in the
same conditions (Mann-Whitney test, ***p < 0.001).
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release of neutrophils in the circulation from the marginated

pool present in the lung (42). In contrast, the percentage of

Cxcr4+ neutrophils was increased 2-fold in the spleen, which

could account for several features: this could be the sign of more

immature, since Cxcr4 expression is high in proliferating

immature neutrophils (8). However, high levels of Cxcr4

can also be seen in senescent or aging neutrophils (17, 43). To

clarify this point, we analyzed the presence of aged CD62Llo –
Frontiers in Immunology 12
CXCR4hi neutrophils as defined previously (33). This shows that

there is an increase of aged CD62Llo – CXCR4hi neutrophils in

the spleen of KO animals, but no change in BM. In addition,

we also observed that the percentage of apoptotic or dead

neutrophils was reduced among spleen Cxcr2-/- neutrophils

compared to WT, whereas no difference was seen in BM.

Overall, our data suggest that spleen Cxcr2-/- neutrophils are

distinct from BM neutrophils, as they are healthier and have
B

C D

E F

A

FIGURE 8

Multiple pathways are down-regulated in Spleen Cxcr2-/- neutrophils. GSEA analysis of the following signatures: (A) WIKI-PI3K-AKT signaling.
(B) Hallmark-TNFa signaling via NFkB. (C) GO-BP NIK-NFkB Signaling (D) GO-BP Cellular response to IL-1 (E) WP-TGFb signaling pathway
(F) Hallmark IFNg-response.
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more immature features (Ly6Glo Cd101- Cxcr4+) than their

WT counterparts.

To go further in the understanding of the effects of Cxcr2

impairment, we have observed that spleen Cxcr2-/- neutrophils

exhibited a reduced phagocytic ability than WT neutrophils. On

the other hand, BM Cxcr2-/- neutrophils had a higher

phagocytic ability than the WT. This difference between spleen

and BM neutrophils might be explained by their difference of

maturation mentioned above. This is also true for basal

phagocytic ability of WT neutrophils, which is higher in the

spleen than in the BM. This might be due to a higher proportion

of mature CD101+ neutrophils in WT spleen compared to WT

BM (Figure 1F), as we have also shown that Ly6Ghi neutrophils

had a better phagocytic ability than Ly6Glo neutrophils

(Supplemental Figure 5).

To explore the difference in phagocytic ability of WT and

Cxcr2-/- neutrophils more thoroughly, we looked at ROS

production and actin and tubulin cytoskeleton, which are key

elements in phagocytosis (35, 44). The percentage of cells with

high cytoplasmic ROS, mitochondrial superoxide, F-actin and

a-tubulin was reduced among spleen Cxcr2-/- neutrophils

compared to WT, but was not modified in BM neutrophils.

This reduction could explain part of the reduced phagocytic

ability of spleen Cxcr2-/- neutrophils, although one can also

notice that decreased phagocytic ability of WT BM neutrophils

compared to WT spleen neutrophils is not correlated to their

actin levels, suggesting that other parameters might be involved.

It is interesting to notice that aged neutrophils are resistant to

infections and display also a reduction of actin levels (43).

Moreover, it has also been shown that in some cases,

immature neutrophils could produce less ROS (8).

It was essential to analyze the mechanisms underlying the

differences between spleen Cxcr2-/- and WT neutrophils.

RNAseq analysis of both types of isolated neutrophils

confirmed the defect in maturation of spleen Cxcr2-/-

neutrophils, with in particular a down regulation of genes

involved in Netosis (Cathepsin D, JunB or IL-1b) (45), of

Arginase-2 controlling extra-urea cycle arginine metabolism

and nitric oxide synthesis, of Clec4d implicated in bacteria

elimination (46) or Selplg (CD162), essential for the rolling of

neutrophils (47). Several GO pathways of migration and

chemotaxis constituted a down-regulated cluster, suggesting

also an impairment of spleen Cxcr2-/- chemotaxis. This could

explain an accumulation of neutrophils in the spleen, with a

weak ability to migrate to other tissues. Earlier studies have

shown that in inflammatory conditions, Cxcr2 was essential for

the recruitment of neutrophils (48).

In terms of signaling, we report a down regulation of ERK

and p38 MAPK pathways, both at the transcriptomic level, but

also when assessing the phosphorylation of ERK and p38 at the

protein level. The ERK and p38 MAP kinases are strongly

stimulated in neutrophils upon activation by G-protein
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coupled receptors agonists. Moreover, p38 MAPK is critical

for the release of primary and secondary granules, but not that

of secretory vesicles by neutrophils (49). p38 inhibition has been

shown to delay apoptosis of neutrophils (50), which is in

agreement of the reduced rate of apoptosis that we observed in

spleen Cxcr2-/- neutrophils. Moreover, p38 MAPK promotes

chemotaxis towards fMLP by interfering with GRK2-mediated

desensitization, whereas ERK MAPK is inhibiting it (51, 52).

However, the role of ERK MAPK pathway in neutrophil

functions remains unclear, due to contradictory studies (37).

In addition, PI3K-Akt, TNFa signaling and NF-kB
signaling, were also altered. TNFa is essential to trigger

neutrophil activation and phagocytic activity (53). It is

interesting to note that in neutrophils, the production of ROS

is dependent on PI3K and ERK (54). Moreover, PI3K, ERK and

p38 are necessary for efficient phagocytosis (55). It has also been

reported that PI3Kg-/- neutrophils display a defect in migration

towards fMLP, C5a, Cxcl8 or Ccl3 and respiratory burst upon

activation by C5a or fMLP (56), but another study suggests that

PI3K is not required for chemotaxis towards fMLP (51).

Cellular response to IL-1 was also reduced. IL1a and IL1b
are very potent mediators of inflammation response, but their

role in neutrophils remains poorly understood. Their main effect

on neutrophils could be to increase their survival (37).

We also observed a down-regulation of TGFb and IFNg
pathways. In the steady state situation, the role of TGFb on

neutrophil function is poorly understood. However, in cancer

context, TGFb is responsible for promoting the generation of

pro-tumoral type N2 neutrophils (57), whereas type IFNb and

IFNg might favor anti-tumoral type N2 neutrophils (58, 59). In

non-cancerous situation, IFNg has also been shown to enhance,

or prime, increased ROS production in combination with a

secondary stimulus and to promote phagocytosis (60), which

could account for the decrease in ROS and phagocytosis that we

observed in spleen Cxcr2-/- neutrophils. As treatment of PMNs

with IFNg increases the production of TNFa and IL-1b (61), this

could also account for the down-regulation of TNFa and IL1b
signaling that we report.

In conclusion, this work highlights the multiple roles played

by the chemokine receptor Cxcr2 in neutrophils and reinforces the

importance of localization of neutrophils in terms of action and

features. The identification of the pathways that are dependent on

Cxcr2 and their further investigation will be essential to

understand the roles of Cxcr2 in neutrophils in the steady state

or inflammatory situation but also in the tumoral context.
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