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Abstract

Modelling the evolution of complex life history traits and behavioural patterns
observed in the natural world is a challenging task. Here, we develop a novel com-
putational method to obtain evolutionarily optimal life history traits/behavioural
patterns in population models with a strong inheritance. The new method is based on
the reconstruction of evolutionary fitness using underlying equations for population
dynamics and it can be applied to self-reproducing systems (including complicated
age-structured models), where fitness does not depend on initial conditions, however,
it can be extended to some frequency-dependent cases. The technique provides us
with a tool to efficiently explore both scalar-valued and function-valued traits with
any required accuracy. Moreover, the method can be implemented even in the case
where we ignore the underlying model equations and only have population dynam-
ics time series. As a meaningful ecological case study, we explore optimal strategies
of diel vertical migration (DVM) of herbivorous zooplankton in the vertical water
column which is a widespread phenomenon in both oceans and lakes, generally con-
sidered to be the largest synchronised movement of biomass on Earth. We reveal
optimal trajectories of daily vertical motion of zooplankton grazers in the water col-
umn depending on the presence of food and predators. Unlike previous studies, we
explore both scenarios of DVM with static and dynamic predators. We find that the
optimal pattern of DVM drastically changes in the presence of dynamic predation.
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Namely, with an increase in the amount of food available for zooplankton grazers, the
amplitude of DVM progressively increases, whereas for static predators DVM would
abruptly cease.

1 Introduction

Complex behavioural responses and sophisticated life history traits of individual
organisms observed in the natural world should have a great influence on ecological
processes (reproduction, competition, mortality, etc.), and we often need to incorporate
them in our population and ecosystem models to be able to improve their forecasting
power. Currently, there exist various modelling frameworks to reveal behaviours and
life history traits emerged as a result of long-term evolution. For example, the con-
ventional paradigmatic idea is that one needs to optimise a certain initially prescribed
criterion such as the ratio between the growth and mortality rates of an organism
(Gilliam and Fraser 1987; De Robertis 2002; Sainmont et al. 2015), the individual
reproductive value (Mangel and Clark 1988; McNamara et al. 2001; Fiksen and Car-
lotti 1998), some generalised entropy function (Levich 2000) or some particular life
history trait, for example mortality or the growth rate (Han and Straskraba 1998, 2001).
Behavioural patterns can also be modelled via different game-theoretical approaches,
where we assume that organisms maximise their gain described via a certain pay-off
matrix which is related to some ecological rates (Hofbauer and Sigmund 1998; Broom
and Rychtar 2013). The potential difficulty of the above approaches is that the choice of
the criterion (or the corresponding pay-off matrix) which we need to optimise is often
subjective and may entirely depend on the personal choice of the modeller (Morozov
and Kuzenkov 2016).

The main alternative to the maximisation of a certain prescribed criterion is the use
of underlying models of population dynamics, which is realised in several well-known
approaches. For example, in the classical adaptive dynamics (based on the so-called
canonical equation) the evolutionary outcome emerges as a result of a large number of
consecutive small-sized and rare mutations, their further invasion and replacement of
the resident population (Geritz et al. 1998; Kisdi and Geritz 2010; Kisdi and Priklopil
2011). Using adaptive dynamics, it was shown that under some rather strict assump-
tions about environmental feedback, the evolutionary outcome can be found by no
more than maximisation of invasion fitness (Gyllenberg and Service 2011; Gyllen-
berg et al. 2011). Another class of generic modelling techniques known as genetic
algorithms is designed to imitate long-time evolutionary dynamics including the pro-
cesses of mutation, crossover, selection and replacement (Hamblin 2013; Sumida et al.
1990). Some advanced computational approaches include agent-based modelling (or
individual-based modelling) by describing movement, competition and reproduction
of each individual through space and time to be able to accurately predict evolution
(Hellweger et al. 2016); however, due to high computational cost (even for modern
computers) their practical application in large-scale ecosystem models is not clear
(Sainmont et al. 2015; Hamblin 2013).

The choice of an appropriate modelling framework to reveal the evolutionarily
optimal strategy would depend on the system complexity (e.g. particular species and
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the surrounding environment), time and space scales involved. On the other hand, we
cannot often derive the optimal strategies analytically directly from model equations or
theoretically prove convergence to optimal strategies in the course of evolution due to
consecutive mutations (Parvinen et al. 2006): in this case, we should rely on numerical
techniques. For example, we still need simple and reliable computational methods for
obtaining optimal strategies in population models including several developmental
stages and in the situation where the phenotype is determined by complex behaviour
mathematically described by a set of functions (function-valued traits). Note that
genetic algorithms of evolutionary modelling are generally inefficient to deal with
function-valued traits since they simulate discrete-valued problems (Hamblin 2013).
Finally, our methods should allow us to consider large (i.e. not only small) mutations
in the genotype space.

Here, we suggest a new computational method of finding the evolutionarily optimal
strategy/life history trait which is based on an approximation of evolutionary fitness
derived from the underlying model equations of population dynamics. The method can
be applied to population models for which a global fitness function exists (conditions
of implementation of the method are formulated in Sect. 2). By considering long-term
population dynamics of several competing subpopulations having different traits and
ordering them according to their competitive ability, we can reconstruct the fitness
function as a function of model parameters and eventually find the evolutionarily
optimal behaviour as the maximal value of fitness subject to possible trade-offs. The
method allows us to work both with scalar and function-valued traits. Interestingly, our
approach can be applied in the case where we ignore the underlying model equations,
i.e. by only using data on population dynamics.

As a meaningful biological illustration, we implement our computational method
to find patterns of optimal diel vertical migration (DVM) of zooplankton in the ocean
and lakes which is considered to be the largest synchronised movement of biomass
on Earth (Hays 2003; Kaiser 2005). Using a stage-structured model with static and
dynamic visual predators, we construct an optimal daily trajectory of zooplankton in
the water column, which can be considered as a function-valued trait. We show that
including a dynamic predator of zooplankton (e.g. the own predator biomass depends
on the amount of zooplankton consumed) would produce different predictions of DVM
as compared to the situation with static predators when the amount food (phytoplank-
ton) available for zooplankton grazers in surface layers progressively increases. This
confirms the importance of considering dynamical feedback from the environment
in evolutionary modelling and highlights limitations of the conventional approach of
modelling DVM of zooplankton via maximisation of the reproductive value (Fiksen
and Carlotti 1998; Sainmont et al. 2015).

The paper is organised as follows. Section 2 introduces the general methodology
of approximation of fitness function(al) for a population model with inheritance. We
state the assumptions under which the fitness function can be constructed. In Sect. 3,
we describe the model settings for the structured zooplankton population model with
a dynamic predator, where ecological rates (reproduction, mortality, maturation) are
functions of DVM. In Sect. 4, we give examples of optimal DVM trajectories con-
structed for the model introduced in Sect. 3 and explore their dependence on key model
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parameters. Finally, in Sect. 5, we discuss the general applicability of our method and
consider its possible advantages.

2 General Methodology
2.1 Defining the Fitness Function

Consider a generic self-replicating system, where different species are described in
terms of an inherited strategy (or a trait) v belonging to a certain space V. In particular,
v can be a function-valued trait. We assume that v belongs to a compact domain in
a metric space V equipped with a Borel measure u*. (The measure is required to
rigorously quantify sets of hereditary strategies).

The presence of each strategy v in the system at time ¢ is characterised by a non-
negative quality p (v, ) which is a continuous function of ¢ and v. Thus, p(v, t) is
a function on the space V integrable with respect to measure pu*. In the case where
the strategy v is absent, we have p(v, t) = 0 and if it is present in the system, we
have p (v, t) > 0. Biologically, p(v, ) can be the population size, biomass, population
density or some functions of them, for instance, this can be a positive power of the
population size. We postulate that the extinction of v will correspond to these charac-
teristics approaching zero. We assume that the population is uniformly bounded, i.e.
the integral of p(v, t) over the space V is smaller than a certain positive constant.

For the sake of simplicity, we assume that our system has the property of strong
(clonal) inheritance, i.e. the strategy v only produces offspring with the same strategy.
Thus, the case p(v, fp) = 0 would signify that p(v,7) = O for all + > 1y. We will
discuss the possibility of including mutations in our framework in Sect. 5.

Consider a typical situation where the dynamics of p (v, ¢) depends on a finite set of
parameters ﬁ(v) = (M1(v), ..., M,(v)), each of which is defined by the strategy v
as a certain function (for a scalar life history trait) or a functional (for function-valued
traits). The dynamics of p(v, t) is given by

dp(v, 1)

= Fy(p.t. M 1
at - U(p’t’ (U)), ( )

where F,(p,t) is a certain function that will be specified by choosing a concrete
population model (see Sect. 3 for a case study example).
We introduce the following definition of ranking ordering.

Definition 1 (Ranking order) We state v > w, that is, strategy v is more advantageous,
or fitter, than strategy w if the ratio between the densities tends to zero uniformly in
some vicinities O (v) and O(w) of v and w, i.e.

p(w', 1)

A D =0,Yv' e O(v), w € O(w). 2)

For fixed initial conditions, Definition 1 establishes a partial ranking order in the
space V; in other words, the introduced relation satisfies axioms of transitivity (from
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v > w and w > u it follows that v > u) and anti-reflexivity (an element cannot be
better than itself). We should stress that the above-introduced order is a partial one,
i.e. for some elements the limit in expression (2) can be a positive number; in this
case, both strategies may coexist or may both go extinct. Note that here we focus
on the scenario where the introduced ranking order does not depend on the initial
condition. In this case, when randomly generating several strategies, the probability
that some strategies show coexistence will be zero (for detail see next subsection). We
also briefly consider a model study case where the ranking order can depend on the
initial conditions (Sects. 2.3 and 4.2).

In the case of existence of uniform long-term average per capita rates R, and Ry,
of strategies u and v, respectively, the condition R, > R,, guarantees v > w (see
Kuzenkov and Ryabova 2015a for details).

T
R, — 1 pz(v,t)dt=<pt(v,t)>
T—oo T Jo p(v,1) p(v,1)
T
- lim l/ pt(w,t)dt=<pt(w,t)>=Rw’ @)
T—oo T Jo p(w, 1) p(w, 1)

where p; denotes differentiation with respect to ¢ and convergence in the above limits
is uniform in V; angle brackets denote time averaging. Note that v > w does not
necessarily imply R, > Ry,.

Assumption 1 We suppose that the introduced ranking order does not depend on initial
conditions.

Remark We should admit that Assumption 1 may be difficult to verify analytically
for an arbitrary model. One can always apply extensive numerical simulations by
exploring various combinations of initially present strategies and their initial densi-
ties; however, this can be computationally costly. Note that there are some classes of
models where the existence of fitness independent on initial conditions can be jus-
tified (Kuzenkov and Morozov 2019). In particular, this includes single population
models with stage/age structuring including both discrete and continuous approach
(Kuzenkov and Morozov 2019) as well as the famous Lotka—Volterra model (Moro-
zov and Kuzenkov 2016). Interestingly, for some models as the predator—prey model
with a logistic prey growth (Sects. 2.3 and 4.2)—which have a frequency-dependent
selection and Assumption 1 is not satisfied—we may still apply our computational
method. This is explained in more detail in Sects. 2.3 and 4.2 as well as in the supple-
mentary material.

From the above assumption, it is clear that the remaining strategy (or several strate-
gies) will be the one which has the highest ranking with respect to the introduced order
with nonzero initial densities.

The concept of maximisation of fitness which is fundamental for our method comes
from the following assumption:

Assumption 2 We suppose that Assumption 1 holds. We also assume that the (minor)
restrictions of the existence of a functional Y (v) reflecting the introduced ranking order
hold (for detail on restrictions see Krantz et al. 1971),i.e. Y (v) > Y(w) if v > w.
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Remark The function(al) Y (v) stated in Assumption 2 mathematically expresses pop-
ulation (evolutionary) fitness.

Temporal dynamics of p(v, ) in equation(s) (1) are determined by parameters
ﬁ = (M1(v), ..., M,(v)), which are function(al)s of strategy v, thus ¥ will be
a multi-variable function of M, i.e. Y(v) = J(M (v)). In the case where we have
an analytical expression for ¥ as a function of M and we also know mathematical
formulations of ﬁ as function(al)s of v, we can fully determine the fitness Y as
a function(al) on space V and finally determine the evolutionarily optimal strategy
which maximises this functional.

The concept of evolutionary fitness is explained in Fig. 1, where Y is assumed to
depend on 2 parameters M, for simplicity. Increasing the value of ¥ would correspond
to transition to better strategies. On the other hand, the global maximum of Y(ﬁ)
would not necessarily correspond to the best possible strategy in the system. This
is the case where parameters are related by some trade-off dependence and/or are
bounded (see Fig. 1a). In the case, where v is a function (or components ﬁ are not
related by trade-offs), the overall span of strategies V can generate a bounded domain
in space ﬁ which might not contain the global maximum of Y (ﬁ), thus the optimal
strategy is achieved at the boundary (Fig. 1b).

In practice, finding the fitness function (provided such a function exists for the
given model) consists of reconstructing or approximating the shape of Y as a function
of model parameters M by considering a limited number of competing strategies in
a way that the approximation of ¥ would preserve the introduced ranking order of
strategies. To be able to do that efficiently we make the final assumption.

Assumption 3 The function Y(ﬁ) is a sufficiently smooth function (k times differ-
—
entiable) of model parameters M .

Under the above assumption, we can approximate Y via the following Taylor expan-
sion around a certain point My which is assumed to be close to the optimal strategy
M (v*) but does not necessarily coincide with it.

— — — — 1= 5, > — . —
Y(M) = Y(Mo)-}-DY(M())cSM—i-E(SMD J(Mp)(SM)" +---+o(|ISM]")

n n n
—9
=const+ZBiMi+ZZCijMiMj+~-~+0(||3M||k). (4)
i=1

i=1i<j

Thus, to find evolutionary fitness we need to estimate the coefficients B;, Cjj, etc.,
in the above Taylor expansion. We can also remove the constant since we are interested
not in finding the absolute value of the maximum of Y but in obtaining the strategy
v* which realises this maximum.

The generic algorithm of approximating fitness function Y and finding the evolu-
tionarily optimal strategy is provided in the next section.
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1

Fig. 1 Fitness function Y plotted as a multi-variable function of model parameters M: a higher value of
Y signifies a higher competitive order. The maximal value of fitness (under constraints on the domain) is
denoted by Ymax. Upper panel: values of parameters are related via a trade-off mechanism. Lower panel:
possible values of M are continuously distributed within a certain compact domain

2.2 The Algorithm of Computing the Evolutionarily Optimal Strategy
Our algorithm consists of the four steps discussed in detail below.
2.2.1 Step 1: Approaching the Vicinity of the Maximal Fitness

Although Assumption 3 allows us to consider as many terms in the Taylor series (4)
as possible, for practical reasons it is convenient to stick to the quadratic or even to the

@ Springer



4708 S.K.Sandhu et al.

linear part. In this case, it is important to stay in the vicinity of the optimal strategy.
The main goal of Step 1 is to approach/localise the vicinity of the maximum point of
Y, and there exist different ways to achieve this goal.

In this paper, we use Monte-Carlo simulations (Zhigljavsky and Zilinskas 2008).

We generate random parameters ﬁ (by generating an everywhere dense sequence of
points) taking into account possible constraints on parameters and trade-offs. Among
them are obvious requirements of positivity for the growth rates, mortality terms, etc.
However, a more complicated situation arises in the case where v is a function and its

variation would result in a restriction in terms of M (v). To overcome this difficulty,

. . . - .
one can first estimate the boundary of the domain of feasible parameters M by varying
functions v, for example by considering different combinations in few first coefficients
of the Fourier (or Taylor) series (see an illustrative example in SM4).

For the randomly generated points ﬁ, we simulate their joint long-term dynamics
using (1). Then, we rank competing strategies based on their per capita growth rates,
and then, using this ranking we approximate the location of the best point with the
maximal fitness. Here, we assume that we do not have the situation where strategies
coexist, i.e. to have strategies with equal fitness. This signifies that we do not have
neutral evolution, where a set of points of equal fitness in the considered n-dimensional
parametric space may have a nonzero measure. For example, for n = 2 the curves of
equal fitness should be smooth.

We only need to find the vicinity where our approximation of fitness in the next steps
becomes satisfactory (this can be checked by the implementation of the procedures
from the next steps). To avoid potentially missing the global maximum and sticking to
alocal one, we need to take a sufficient number of points for Monte-Carlo simulations,
which can be estimated based on the size of the domain and the required accuracy
(e.g. SM 2). We should stress, however, that there exists no general recommendation
about choosing the number of points since this would strongly depend on a particular
fitness function. (Obviously, for a function with a sharp maximum, one will need more
points.)

We should stress that choosing a sufficiency large number of points in Step 1 would
potentially allow us to find the optimal parameters without proceeding to further steps.
However, in the case of a large number of parameters and in the situation where the
strategy v is a function (or a vector of functions) with a complicated shape probably
including discontinuity, the required number of random points to accurately approx-
imate such a strategy will be extremely large (e.g. exceeding computer memory). In
this case, we will need to proceed to a semi-analytical approach given by steps 2 and
3.

2.2.2 Step 2: Approximating the Fitness Function

Once we have a set of strategies that are close to the optimal one, we can approximate
fitness Y using (4). We consider those N strategies which are most closely located
to the optimal strategy (using the results of simulations obtained in step 1). We rank
the strategies based on their long-term average per capita growth rates. Let us denote
already ordered strategies by j = 1,2, ..., N and their respective per capita growth
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rates by R;. For the growth rates, we have the following inequalities Ry > Ry >
R3 > --- > Ry which is equivalent to the system of N — 1 inequalities for the fitness
function Y

— —
Y(My) —Y(Myn-1) <O,

— P (&)
Y(M3) —Y(M>) <O,

— —5
Y (M) —Y(M;) <O.

We can use our approximation of fitness to obtain the inequality conditions for the

coefficients B;, C;; in Eq. (4). We reduce the number of unknown coefficients by setting

one of the coefficients to be 1; for example, we can take B; = 1 or, alternatively, we

can require that the sum of all coefficients be 1. Therefore, system (5) can be reduced
to

- - — — - = — T
BMy—-—My_1)+MNC(My)' —My_1C(My_1)" <O,

(6)

|

— — — = o= -
B(M3— M)+ M3C(M3)" — M,C(M»2)" <0,

E— — — =", = -
B(My— M)+ MC(M3)" — M1C(M1)" <0.

The above inequalities provide estimates for B; and C;;. In fact, any set of coefficients
satisfying the system of equations (6) can be chosen as its solution. This uncertainty
can be reduced by taking the number N of generated strategies to be high; in this case,
the size of the domain restricted by the system of equations (6) would shrink, thus
choosing any coefficients satisfying the system would provide similar results for the
approximation of Y. On the other hand, the use of a large number of strategies N may
cause the system to have no solution, i.e. to be inconsistent. This can occur since the
quadratic approximation does not coincide with the true fitness function which has
infinitely many Taylor terms. To obtain B;, C;;, in this case, one can consider higher
order terms in the approximation of Y or reduce the size of the domain. Technically,
system (6) is solved via the Simplex method by using standard software (e.g. MAT-
LAB), where the objective functional can be taken as a certain arbitrary linear function
of coefficients; for example, this can be the sum of the B;s. However, one can also use
some more advanced method, for example, the Nelder—Mead simplex algorithm.

2.2.3 Step 3: Finding the Optimal Fitness

After completion of the previous steps, we arrive at the following approximation of ¥

Y(0) & Y BiMi()+ )Y CijMi(w)M;(v), (7
i=1

i=1i<j

where fitness is now considered as a function(al) depending on strategy v. We can now
search for the best strategy v* which maximises expression (7) and belongs to space
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V. The advantage of using the above quadratic (or sometimes linear) form is that we
can solve the optimisation problem semi-analytically even if v is a function (which
was not possible using the approximation G in step 1). The technique of solving
the optimisation problem semi-analytically (related to the model in Sect. 3) is briefly
described in Supplementary material SM3.

2.2.4 Step 4: Increasing the Accuracy of our Solution (Optional)

After finding the approximation of the best strategy v* in step 3, we may check
(if needed) the accuracy by generating some additional strategies in the vicinity of
this point and repeating steps 1-3. We expect the convergence of the method for a
sufficiently smooth fitness function since the overall ideology of the method is similar
to that of gradient methods (with a vast literature existing on the topic).

2.3 Constructing evolutionary fitness depending on initial conditions (an
insightful example)

The above numerical algorithm suggests the independence of fitness from initial
conditions (as stated in Assumptions 1 and 2) and this restricts a straightforward imple-
mentation of the method. We should say, however, that in some cases the algorithm
can be implemented even if fitness and the ranking order depend on initial conditions.
Below, we provide an insightful example where fitness can be numerically constructed
for a model where Assumptions 1 and 2 do not hold. (Similar principles are used to
deal with the more complicated predator—prey model in Sect. 4.2.) However, we must
stress that this should be only understood as a starting point of research (rather than
an exhaustive study) which demonstrates that the method allows extensions beyond
Assumptions 1 and 2.

Consider the following classical predator—prey model with multiple prey species
and a single predator. Here, V is the space of possible strategies v of prey, z(v, t) is
the prey density corresponding to the strategy v, and F'(¢) is the population size of the
predator. The model equations for z and F are given by

z;(v, 1) = r(w)z(v, t) — c(v)z(v, 1) F(t) — z(v, t)/ z(v, Hu*(dv), ®)
1%

Fi(t) = F(1) /V c()z(v, Hu*(dv) — F (@), &)

where r and ¢ are, respectively, the reproduction coefficient and the attack rate of
the predator. For simplicity, the mortality rate of predator and the food conversion
coefficient are set to be one. We consider that the strategy v determines the values of r
and c; we can consider the space Q consisting of pairs (r, ¢). In the above equations,
the measure p* can be understood as the classical Lebesgue measure meaning the area
in Q. However, we can also consider u* to be concentrated in a finite set of points
(atomic measures): in this case, the above integrals will transform into sums over a
finite number of genotypes.
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For the above model, the ranking order given by Definition 1 depends on initial
conditions; in particular, it will be determined by the set Qq, where z(c,r,0) > 0.
Indeed, the average per capita rate for z(c, r, t) is defined as

<z[(c,r,t)

z(e,r,t)

)=r—c(F) - /Q 2e,r, (@),

which is equivalent to the following expression

<Zz(C’ T ’)> =r —c[F@)).

z(c,r, t)

Here, the long-term average value of F(¢) (shown in angle brackets) is determined
based on the survived prey. (Technically, it can be found by calculating the equilibrium
values.) Let us consider the situation where only one strategy survives (denoted by
(co, ro)). We have

ro 1
(Fo)=2 - .
co (o
We now introduce the following function of four arguments
o 1
Ve o) =r—e(2 - ). (10)
0 CO

which we will call the fitness associated with the strategy (co, o). Note that this
function is continuous in the compact set O x Q = QZ. The strategy (co, ro) will be
the best in Q¢ with respect to any other strategy if for any (c, r) from Qg we have

7o 1 ro 1 1
Yi(e,r,co,r0) =r — C(— - —2) <ro— Co(— - —2> = — = Yi(co, ro, co, 0).
o < co e (&)

Y
For a different Qy, the best strategy will be in general different and this will change
both the fitness function and the associated ranking order.
Another scenario assumes the survival (with further mutual coexistence) of more
than one strategy. It can be easily seen that for survival of two strategies (cy, ;) and
(c2, r2), it is required that

r 1 1 r 1 1
r —cl(———2) > —,r2—cz(— ——2) > —,
[65) c2 2 Cl c2 C1l

In other words, it is required that Y1 (c, , ¢2, 2) > Y1(c2, 12, 2, 12) and Y1 (¢, 12, c1,
r1) > Yi(c1, 11, c1, r1). Simple computation gives (F (1)) = (rp —r1)/(c2 —c1). We

can now use the following function associated with the strategies (c1, r1) and (c2, 12)

n—=r

Yz(rvcvrlrcl9r2502)=r_c )
2 —C
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In the case of survival of two different strategies, for all other strategies in Q¢ we should
have Y»>(r,c,r1, c1, 12, ¢3) < Ya(ry, c1,r1,c1, 12, c2) = Yo(ra, ca, 11, C1, 12, C2).

Note that survival of two distinct strategies becomes impossible if the set Q is
strictly convex. Indeed, in a strictly convex set there will always be some points
located on both sides of the line connecting the points (cy, r1) and (cz, r2) (wWhich
we assume to be the best) and there will be always a point (c,r) such that
Yo(r,c,ri,c1,r2,¢2) > Yo(ry,cy1,r1,c1,1r2,¢2) = Yo(rp, 2,11, C1, 12, c2) Which
contradicts our assumption that (cy, 1) and (c2, 1) are the best (and the only surviv-
ing) strategies. Note that survival of three (or more) strategies in this model can only
occur if Yp(r, c, ry,c1, 12, c2) = Ya(ry, c1,ri,c1, 12, ¢) = Ya(rp, c2, 11, C1, 12, C2)
which is structurally unstable: any small perturbation of Qg results in extinction of a
strategy.

We will further assume that the set Q is strictly convex: in this case, evolutionary
fitness will be given by the function Y (¢, r, ¢*, r*) defined by (10) where (¢*, r*) is the
best (and unique) point of Q. For we have Y1(c*, r*, ¢*, r*) = maxg Yi(c, r, c*, r").
Note that the fitness defined by Y (c, r, ¢*, r*) generally depends on initial condition.
Our main goal is to estimate (c*, r*). Below, we show that the numerical algorithm
suggested in Sect. 2.2 remains valid for the given model (as well as for the extension
of this model considered in Sect. 4.2).

Indeed, Step 1 of the method consists in covering of the set O by a set of Qy
of N randomly chosen points with a further simulation of joint long-term dynamics
using (8)—(9). As a result, one can determine the best point (cg, r9) in Q y which will
correspond to the maximum of Yi(c, r, co, r9) across the given set of finite points.
The accuracy can be improved by adding a larger number of points as in the standard
Monte-Carlo method. The proposition below provides the theoretical basis for the
use of Monte-Carlo method for reaching the vicinity of the best point (c*, r*) for a
sufficiently large N.

Proposition 1 We assume that in model (8)—(9) the feasible (allowed) domain Q of
parameters (c, r) is strictly convex. Generating a sequence of points which is every-
where dense will eventually (with a probability of one) result in the landing of at least
one point into any € vicinity of the best point (¢*, r*) of the maximal evolutionary
fitness.

The proof of the above proposition is given in the supplementary material (SM1).
The proposition states that by generating a sufficiently large number of points N,
we will approach the best point (¢*, 7*) with any required accuracy € > 0. The
average critical number of points N, can be easily estimated (see SM2 for detail).
Note that estimate for the N, provided in SM2 has a straightforward extension to be
implemented to the more complicated model in Sect. 4.2 with stage structuring in the
prey population.

Proposition 1 solves the problem of localisation of the best point in the model
(Step 1) in the space of model parameters. Further steps of the computation approach
(similar to those in Sect. 2.2) will be needed to find a more accurate approximation
of (¢*, r*) and eventually the best element v* in the underlying space of strategies V.
Note that in the given model, the fitness function will be linear (in terms of ¢ and r)
and we can efficiently use optimisation techniques involving various gradient methods
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which results in a fast convergence. (The convergence of gradient methods is largely
discussed in the literature.)

3 Modelling Diel Vertical Migration of Zooplankton

Here, we apply the above method to a particular ecological case study, which is the
regular daily vertical migration of zooplankton.

3.1 Diel Vertical Migration (DVM) of Zooplankton

Regular diel vertical migration (DVM) of zooplankton is often considered to be the
largest synchronised movement of biomass on our planet (Hays 2003; Kaiser 2005). It
was reported that DVM greatly affects the biogeochemical cycles in the ocean, as they
impact the vertical transport of microparticles and some dissolved gases (Bianchi 2007)
serving as an efficient carbon pump (Hansen and Visser 2016). Typically, the pattern
of DVM consists of organisms ascending to surface waters rich in phytoplankton for
feeding at night, then descending to deeper depths and remaining there during the day
(Ohman 1991; Hays 2003). It is currently believed that zooplankton performs DVM
to avoid visual predation (by planktivorous fish) by spending daylight hours in the
deeper and darker areas and migrating up at night when visual predators cannot see
them (Ohman 1991; Lampert 1989; Fortier et al. 2001; Pearre 2003). However, along
with the predator avoidance hypothesis, some other reasons for DVM have been cited,
such as saving energy in deep waters due to the lower temperatures or avoiding solar
radiation (Mangel and Clark 1988; Pearre 2003). Despite the phenomenon of DVM
being extensively studied, we still have a poor understanding of the key factors that
DVM depends on (Pearre 2003; Ringelberg 2003).

The existing models of DVM assume that the optimal behaviour would signify max-
imisation of a certain function which is postulated a priori in the literature. For example,
this can be the expected individual reproductive value (Mangel and Clark 1988; Fik-
sen and Carlotti 1998; Sainmont et al. 2015), the ratio of energy gain/mortality known
as Gilliam’s rule (De Robertis 2002; Sainmont et al. 2015; Hansen and Visser 2016)
or the so-called ‘venturous revenue’ (Liu et al. 2003, 2006), which is the product of
the food intake and the survival probability. In some models of DVM, it is postulated
that the organisms should instantaneously minimise their predation pressure (Han and
Straskraba 1998, 2001). Other modelling approaches use game theory stating that
organisms should maximise their gain described by a certain pay-off matrix; how-
ever, the choice of such matrices can vary from model to model (Gabriel and Thomas
1988; Iwasa 1982). The major shortcoming of the above approaches is fixing a priori
a specific rule/function which we further need to maximise, which seems to ignore the
dynamic feedback between the environment and the zooplankton population dynam-
ics. Here, we implement our new computational method to find optimal trajectories
of DVM from the underlying equations for population dynamics.
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3.2 Population Dynamics Equations

We explore patterns of DVM in zooplankton using a generic predator—prey model with
structured prey: in our model, the prey is zooplankton and the predator is planktivorous
fish. For simplicity, we only include two stages of zooplankton which we refer to as
adults and juveniles and use the same model structure as in Kuzenkov and Kuzenkova
(2012), Morozov and Kuzenkov (2016). The model can be easily extended by including
more developmental stages of herbivorous zooplankton. The model equations read

A, 1) = pW)J (v, 1) =sW) AW, 1) = p1AW, DI (1) = fa@)Av, ) F (v, 1),

(12)
Ji(v, 1) = bo(W)A(v, 1) — p(v)J (v, 1) — q(v)J (v, 1)
=2 J (v, )I(@) — fr(w)J (v, ) F(v, 1), (13)
Fi(v,t) = —mpFv,t)+eF(v,1) /(fA(v)A(v, 0+ fr()J (v, )u*(dv),
(14)

where A(v,t) and J (v, t) are the densities of adults and juveniles, respectively, in
the subpopulation using strategy v of DVM and F (¢) describes the population density
of the predator. In our previous terminology (see Sect. 2), the set of parameters ﬁ
which depend on DVM strategies v is given by (p, s, ¢, bo); the other parameters are
considered to be strategy-independent.

The integral term 1 (1) = fv @J (v, t)+KA(v, 1)) * (dv) represents the intraspecific
competition of subpopulations across possible strategies and that of adults and juve-
niles, where integration is done across all possible strategies; ¢ and ¢, are introduced
to describe the different levels of competition for adults and juveniles. The weights 6
and « describe the relative contributions of juveniles and adults in competition.

The reproduction by adults is described by the term by(v) A (v, t) in Eq. (12), with
bo being the reproduction coefficient. The term p(v)J (v, t) in Egs. (12) and (13) gives
the transition rate from juveniles into adults. The terms s(v) and g (v) are the mortality
rates of adults and juveniles due to natural reasons and consumption by other visual
predators which are not included in F'. We assume that the density of these predators
is constant, and we call them ‘static’ predators in contrast to the dynamic predator F'.

The predation is modelled via the linear (i.e. Holling type I) functional response
fr)J (v, t)F(v,t)and fa(v)A(v, t)F (v, t), where the coefficients f; and f4 model
the corresponding predator attack rates. However, one can extend the same system by
considering more complicated functional responses with saturation. We consider the
generic scenario where the predator can consume both adult and juvenile zooplankton
grazers. mp is the rate of mortality of the predator, and e is the food conversion
coefficient.

3.3 Specification of Model Coefficients

In our model, strategy v describes a periodic change of depth by adults and juveniles
v = (xA(7), x7 (7)) that the zooplankton takes every 24 h due to DVM, where t = 0
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corresponds to 6am, T = 0.5 corresponds to 6pm, and T = 1 corresponds to 6am the
following day. The depth of migration is scaled following (Morozov and Kuzenkov
2016), where an average depth of 0 corresponds to the middle of the euphotic zone,
i.e. a positive depth represents shallower food-rich waters, whereas a negative depth
represents deeper darker waters.

In parameterising the model, we follow (Morozov and Kuzenkov 2016). The repro-
duction is given by

1
bo = €a f (@a(tanh(o:x4) + 1) — Ba(xy)? — 84 cosh(Exa))dr,
0

where €4 describes the conversion rate of food gain into the newly produced juveniles,
B4 is the metabolic cost of migration (we suggest energy losses are due to resistance
forces, Fiksen and Giske 1995), a4 is proportional to the amount of food available for
adults, and o characterises the steepness of the vertical gradient in the distribution of
food. The function tanh(o x) 4 1 mimics a typical vertical distribution of phytoplank-
ton: it is highest in surface waters and becomes very low in deep waters. The last term
describes losses in fecundity in very deep waters (due to low temperatures or oxygen
depletion) as well as when approaching surface waters; & characterises the width of
the habitat; §4 gives the strength of the fecundity loss.
The mortality terms s and g are parameterised as follows:

1
s = / ya(tanh(ox) 4+ 1)(sin(2rt) 4 1)dr,
0

1
q = / yy(tanh(oxy) + 1)(sin(2rt) + 1)dr.
0

Here, we follow the assumption from Morozov and Kuzenkov (2016) that the vertical
distribution of the ‘static’ predators of zooplankton follows the same distribution as
that of phytoplankton; however, this assumption is not essential. We consider that the
mortality caused by visual predators follows the variation of light intensity throughout
the day. In the above expressions, y4 and y; are products of the density of static
predators and the attack rates.

The parameter p with the meaning of the inverse time of transition from juveniles
to adults is described by a Monod-like equation

with L being the energy gain per day by the juveniles given by

1
L= / (aj(tanh(oxy) 4+ 1) — Bs(x,)* — 8; cosh(£x))dz,
0
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where 8 has the same meaning as 84 in the above expression for by, §; describes
losses of energy in very deep and surface waters, 7 is the highest transition rate, and
k is the half saturation constant.

The dependence of attack rates by the dynamic predator on time of day is given by

1
fa= f yr, (tanh(oxa) + 1)(sin(2w7) + 1)dr,
0
1
fr = / yF, (tanh(ox,;) + 1)(sin(2r7) + 1)dr,
0

where yr, and yr, are the predation attack rates for adults and juveniles, respectively.

We used the same range of model parameters «, 8, y, § as in Morozov and Kuzenkov
(2016) to be able to compare the previous results with those obtained via the new
computational method. We approximate the trajectories in (x4 (t), x7(7)) using the
two first terms of Fourier series. Our simulation shows that for the considered values
of parameters (see the next section) adding extra terms in Fourier series results in only
a small improvement of about 2%.

4 Revealing Optimal Trajectories of Zooplankton DVM

We will separately consider two scenarios: (i) static predation on the zooplankton (the
level of predation does not depend on the population densities of the zooplankton)
and (ii) dynamic predators which density depends by the amount of zooplankton
consumed. Note that in case (i) Assumptions | and 2 are satisfied, whereas in case (ii)
is not generally true.

4.1 DVM Under the Static Predator Scenario

We set F = 0 and include static predators in coefficients s(v) and ¢ (v). Ecologically,
this describes situations where the predator (planktivorous fish) density is mostly
controlled by higher predator levels (e.g. piscivorous fish), or static predators can be
generalists, where migrating zooplankton species constitute only a small part of their
diet. Note that for F = 0 Assumptions 1 and 2 are satisfied and we can implement the
computational method.

We start with a comparison of our approximation of fitness using the new com-
putational method and a simple analytical expression for fitness derived in Morozov
and Kuzenkov (2016), for a particular case where ¢; = ¢» (Morozov and Kuzenkov
2016)

Y() = =s(v) = p(v) —q) + \/4bo(v)p(v) + (p(V) + @) —s@)*.
Using methodology from Sect. 2, we construct an approximation of Y in the vicinity of

the optimal strategy v*. The coefficients obtained based on the approximation are then
compared to the Taylor expansion of the above analytical expression (see Table 1).
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Table1 Comparing the Taylor expansion terms (up to the second order) of the analytical expression of fitness
from Morozov and Kuzenkov (2016) with its numerical approximation based on the new computational
method (Sect. 2). The model parameters are the same as those listed in Fig. 2 caption with ¢1 = ¢ =1

Terms in approximation Coefficients for Coefficients of
exact fitness approximated fitness

Constant term 0.8747 0.8747

bg 0.0278 0.0230

s —0.8343 —0.6880

q —1.1657 —1.1904

p 33.8488 34.7378

b} —0.0002 —0.00004
by *x s —0.0023 —0.0182

by * g 0.0023 0.0008

by * p 0.5199 0.5926

52 0.2449 0.5156
sxq —0.4899 —0.4909
s®p —3.4120 —4.2630

q% 0.2449 0.2553
q*p 3.4120 3.8865

p? —305.6119 —329.8416

Note that we re-scaled our approximation to have the same constant term as in the
analytical expression and the same maximal value of fitness. From the table, one can
see that our method provides a good approximation of Y.

Moreover, we found that both analytical and computational methods produce close
optimal trajectories for adults and juveniles. For the given set of parameters, the dif-
ference in terms of the corresponding Fourier coefficients is less than 0.5% of the
absolute values, which highlights the efficiency of the method.

Next, we consider a more complicated case of non-symmetric competition terms
¢1 # ¢2. We explore the dependence of optimal DVM trajectories on the strength of
competition between adults and juveniles described by varying ¢, . Figure 2 shows how
variation in ¢»» would affect the amplitude and the average depth of vertical migration of
both stages. For most trajectories, the model predicts night time feeding of zooplankton
in the surface water and them staying in their refuge during the daytime. From the
figure, one can see that an increase in ¢, results in a raise in the average depth of adults,
whereas their amplitude decreases; for juveniles, the average depth decreases and the
amplitude decreases only slightly. We can also see from the graphs that increasing
¢» has a greater effect on adults than juveniles; in fact, there is a sharp change in the
behaviour of the adult zooplankton; they abruptly move from a medium average depth
and amplitude to a very shallow average depth with a very small amplitude, i.e. DVM
almost ceases. Thus, a non-symmetric increase in intraspecific competition of adult
zooplankton reduces their DVM.
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Fig. 2 The dependence of the optimal trajectories of DVM on the competition coefficient ¢, under the
static predation scenario (F = 0). We considered the following values ¢p = 0.01,¢p = 0.25,¢p =
0.5, 2 = 0.6, o = 0.75 and ¢ = 1 for the model described by Eqgs. (12), (13) and (14) with parameters
p1=1,e4=3,6=1,0=1,04 =10,y =1.1,4 =0.05, 87 = B4/5,84 =0.1,8) = 84,74 =
08,74 =y

To investigate this jump further, we looked at how the main parameters are affected
when we vary ¢», i.e. we explored the reproductive rate by and total mortality rates of
both adults and juveniles including the constant level of predation and the mortality
due to intraspecific competition. We found that staying in surface waters by adults
results in a large increase in by which can compensate an increase in their mortality
(graphs are not shown for the sake of brevity). Increasing the reproductive rate leads to
a greater number of juveniles entering the system, which has a negative effect on the
adults due to the intraspecific competition; however, it is compensated by a positive
effect since more juveniles will eventually mature and become adults resulting in a
greater number of reproducing adults. We conclude that overall it is advantageous
for the adults to increase the reproductive rate and stay in surface waters despite an
increase in predation.

Variation of the total food level available for zooplankton results in major changes
in patterns of optimal DVM. To demonstrate the dependence of trajectories on the
availability of food, we independently varied o4 and «;. The resultant optimal tra-
jectories for an increase in a4 are shown in Fig. 3. From the figure, one can see that
initially increasing o4 causes the adults subpopulation to move to shallower waters,
but at some point between o4 = 10 and w4 = 12 there is a drastic jump in behaviour
as it is more advantageous for the adult zooplankton to stay in very shallow water and
migrate very little. The observed jump is actually a result of coexistence of two points
of maxima of Y: initially, the maximum corresponding to pronounced migration has
a higher value of Y. A progressive increase of food density makes another peak of Y
emerge, and with high o4 this peak eventually becomes dominant. Increasing o4 fur-
ther, we observe that adults move to even shallower waters and reduce their amplitude
even further, and DMV cases. On the contrary, for juveniles, increasing o4 causes
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Fig.3 The dependence of the optimal trajectories of DVM on « 4 under the static predation scenario (F = 0).
We considered the following values ¢y = 6,04 = 8,04 = 10,0y = 12,04 = 16 and oy = 18. The
other parameters are ¢1 = 1, ¢ = 0.6,e4 =3, =1,0 = 1,05 =1.1,84 =0.05, 85 = Ba/5,84 =
0.1,8y =84, vA=08,ya=vy

their average depth to very slightly increase and only slightly decrease their amplitude
of migration. Variation of «j produces a similar effect. (The graphs are not shown for
brevity).

4.2 DVM with Dynamic Predation

Including dynamic predators may largely alter patterns of DVM. It is important to
stress that Assumptions 1 and 2 are not always satisfied in this system and fitness may
depend on initial conditions. However, by using similar reasoning as in Sect. 2.3 we can
show that the numerical method can be still applied in these cases as well. In particular,
the domains of feasible (allowed) parameters are strictly convex in the subspaces of
parameters describing life history traits of juveniles and adults, where fitness function
becomes linear (see SM4). An estimate of the number of points required for Step 1
gives 300 points (calculated in a similar way as in SM2).

Here, we mostly focused on the realistic case where the predator consumes both
adult and juvenile zooplankton, with a smaller level of predation on juveniles than
adults, so yr,, yr, # 0 with yr, > yr,. Our simulations, however, show that in other
cases (e.g. yr, = 0 or yr, = 0) optimal patterns of DVM behave in a similar way.

We explore the dependence of DVM on the amount of food available for adults
described by a4 to compare the results to the case of static predators. The optimal
patterns of DVM are plotted in Fig. 4. From the figure, one can see that by increasing
the level of food for zooplankton « 4 has only a small impact on the DVM of juveniles.
However, the trajectory for adults is strongly affected by « 4. Indeed, increasing a4
decreases the average depth and enlarges the amplitude of DVM to ensure that during
dark hours when visual predators are not effective, the adults stay in surface waters
to consume enough phytoplankton and therefore have enough energy to migrate and
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Fig. 4 The dependence of the optimal trajectories on the available food for adults o4 under the dynamic
predator scenario. We consider the following values oy = 6,04 = 8,0g4 = 10,04 = 12, 04 = 16 and

o4 = 18. The other parameters are e = 0.5, mp = 0.01, yp, =0,yp, =0.5,¢1 =0.5,¢2 = ¢1,€4 =
3,%’ =1,0= 1,0{] = 1.1,,3,4 :0.05,/3] :,BA/S,(SA 20.1,51 :‘SA»)’A :O‘SandyA =YJ

reproduce. Interestingly, with the addition of a dynamic predator, we no longer observe
the jump in behaviour as in Fig. 3. Thus, the positive effect of consumption of a large
amount of phytoplankton (cf. Fig. 3) by adults staying in shallow waters would be
negligible as compared to a disproportional increase in predation pressure: the fish
density F' will increase with the overall amount of phytoplankton. These conclusions
are also supported by numerically plotting optimal values of the reproductive and the
mortality rates for both adults and juveniles for increasing « 4. (The results are not
shown here for the sake of brevity.)

Finally, we checked the influence of a gradual increase of a4 on patterns of optimal
DVM in the case where the dynamic predator only consumes one zooplankton stage:
juveniles or adults. Surprisingly, we found very similar patterns of the dependence of
DVM on a4 as those shown in Fig. 4, i.e. when F can feed on both A and J. We do
not show the results for the sake of brevity.

5 Discussion and Conclusions

In this paper, we introduce a new method of computation of the evolutionarily optimal
life history traits and behavioural patterns which is based on the approximation of
the fitness function(al). Defined in Sect. 2, fitness describes the mutual hierarchy of
competitive advantage orders of organisms’ strategies. This idea is close to the well-
known generic concept of fitness in evolutionary biology: it is often assumed that
natural selection should result in an increase of the organism’s fitness (this is known
as a ‘hill-climbing’ process); the evolutionarily optimal behaviour would correspond
to a maximum of the fitness function subject to some trade-offs (Wright 1932; Roff
1992; Davies et al. 2012; Birch 2016). The new method allows us to reconstruct fitness
directly from underlying population dynamics equations based on the comparison of
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the ranking order of a relatively small number of strategies. (Of course, this number
would depend on the complexity of the model.) Among the advantages of our method
is the possibility to find optimal strategies for function-valued traits (see SM3). More-
over, by considering a large number of points in Step 1 we can make sure to reach
the global maximum of fitness function thus avoiding the situation of getting stuck
at some local maximum. Overall, the idea of our method is somewhat close to the
optimisation principle in adaptive dynamics using maximisation of the invasion fit-
ness of a mutant into a resident population (Gyllenberg and Service 2011; Gyllenberg
et al. 2011). However, the formal correspondence between our method and the one in
adaptive dynamics still needs to be established. For example, in the adaptive dynamics
framework, evolutionary outcomes can be calculated through pure optimisation only
when there is but a single feedback variable.

Among the possible advantages of our method are the following. This method
seems to be efficient in the case where the strategy v is a function-valued trait and it is
expected to have a complicated shape including several maxima/minima or some points
of discontinuity. Also, the method seems to be practical in the situation with population
structuring: in this case, v becomes a vector of functions. For example, it is well known
that marine herbivorous zooplankton often includes up to 6 developmental stages
(Huntley and Brooks 1982). In the above-mentioned situation, one needs to use an
analytical or semi-analytical technique to reconstruct functions included in the vector
v, for example, using calculus of variations or optimal control. Our method allows
the implementation of such semi-analytical tools using the explicit approximation of
the fitness functional (see SM3). Implementation of other approaches, for example,
adaptive dynamics may be less efficient. For example, deriving the invasion fitness
in adaptive dynamics for a population model with a large number of developmental
stages usually gives an implicit expression which one should use to further derive Euler
equations. Although in principle we are still able to write cambersome expressions for
the optimal strategies, they will be most likely analytically intractable and are hard to
be solved numerically. Note that in the case of the population dynamics attractors are
non-stationary (e.g. limit cycles or chaotic attractors), we are generally unable to apply
analytical techniques, and our method of numerical reconstruction of fitness might be
useful in this case. We should stress that our method is designed to work along with
the existing methods of search for optimal strategies rather than to replace them.

Interestingly, our numerical method can be used in the case where we do not know
the exact underlying model equations, for example, when we have empirical times
series of long-term population dynamics of similar competing species. In this case,
we assume that the underlying system is such that we can construct a fitness function
(this fact, however, can be hard to verify for an insufficient amount of data). To apply
the method, we need to first choose the key characteristics of species (e.g. foraging
rate, mortality, maturation time, etc.). Further, one needs to go through step 2 in Sect. 2,
by using data-based estimates of growth rates and re-ordering species according to the
growth rates. Realistically, based on a limited number of species, we should expect
to use a linear rather than a quadratic function to approximate the generalised fitness.
Finally, using the obtained fitness function it can be possible to predict the fate of a
new species with known characteristics. Note that the same idea can be implemented
in economics and business modelling when deciding whether or not a new product will
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be competitive with respect to the existing products based on the known dynamics on
sales numbers and products’ characteristics. The ranking order can be derived based
on the comparison of the dynamics of sales rates.

We should admit that the method itself has some restrictions to its applicability. In
particular, it is mainly applicable to models where the ranking order does not depend
on initial conditions and their fitness is frequency independent. The class of such
models can be narrow (as compared to all possible population models in mathematical
biology). However, this class does include a number of biologically meaningful models
as a single-species population model with age structure [Model (12)—(13) with a static
predator], models with continuous age of von-Foerster equation type (Kuzenkov and
Morozov 2019) or a Lotka—Volterra predator—prey model (Morozov and Kuzenkov
2016). Note that verification of the assumptions in Sect. 2 can be done numerically
by running simulations with different initial conditions; however, in practice this can
require running a large number of simulations. Interestingly, the method can be still
implemented to some models which have formally frequency-dependent fitness (i.e.
their fitness depends on initial conditions). An example of such a situation is given
in Sects. 2.3 and 4.2, where fitness can be well approximated in the vicinity of its
maximum. Note that at the moment, the limits of applicability of the method are an
open question. In particular, the possibility of its implementation for a frequency-
dependent fitness may depend on the shape of the domain of viable parameters; for
example, in Sects. 2.3 and 4.2 we suggest that parametric domain is strictly convex.
We admit that further research is needed to explore the limits of applicability of the
method to models where fitness depends on initial conditions.

In the initial framework, we assumed the system to have a strong inheritance with no
mutations. In this case, all possible strategies in the system will be those with nonzero
initial conditions p(v, 0) > 0. We can easily extend this framework by allowing the
introduction of mutants with any strategy (which should still respect our trade-offs)
which can also be considered as an invasion of the system by similar subspecies from
other ecosystems. In the case where rates of introduction of mutants are low, the
resultant evolutionary outcome will always be the same as in the system with a strong
inheritance: the surviving strategies will be the ones which maximise fitness.

As the study case, we implemented our technique to reveal the optimal patterns of
DVM of zooplankton in oceans and lakes using a population model of stage-structured
zooplankton with a dynamic visual predator, i.e. when the biomass of the predator is
determined by the strategy that its prey (zooplankton) uses. The previous models of
DVM only considered a static predator and constant environment (see references in
Sect. 3.1 for details). Our findings show that considering static and dynamic predator
scenarios can result in completely different conclusions in terms of the amplitude of
DVM (cf. Figs. 3, 4). The fact that zooplankton intensifies DVM in a food-rich envi-
ronment in the system with a dynamic predator, whereas animals stop migrating in
the case of static predators can be easily explained. In the case of the dynamic preda-
tor, an increase in food for zooplankton results in an increase in the population size
of predators consuming them. Thus, staying and feeding by zooplankton in surface
waters would result in a further increase of the numbers of predators which would
not compensate for the increase in zooplankton reproduction rate. In this case, the
best strategy will be staying away from the surface as much as possible (see Fig. 4).
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For the static predator, the staying and grazing of zooplankton in surface food-rich
waters would compensate for their high mortality in the absence of DVM (see Fig. 3).
Interestingly, empirical observation of DVM in a food-rich environment for zooplank-
ton grazers is contradictory: some studies point to a reduction in the amplitude of
migration in the case that food is abundant (Gliwicz 1986; Gabriel and Thomas 1988),
whereas others point out the opposite behaviour, i.e. a pronounced increase in DVM
under food-rich conditions (Huntley and Brooks 1982). Using our modelling results,
we can hypothesise that the difference in responses of DVM to the food abundance
may be explained due to the long-term prevalence of a particular type of predation:
dynamic or static in the considered ecosystems in the past. Another new finding in
DVM is an abrupt switch between migrating and non-migrating strategies (Figs. 2,
3) which was not reported in previous models. We can explain this phenomenon as a
result of the occurrence of several maxima of fitness in the space of strategies and the
switching between them when an external parameter is gradually changed.

Note that we explored DVM using a simple two-stage model of zooplankton dynam-
ics as an illustrative example. The model coefficients specified in Sect. 3.3 were
obtained based on simple parameterisations from Morozov and Kuzenkov (2016).
Our framework allows us to include more developmental stages and to incorporate
more realistic functions for vertical profiles of phytoplankton, temperature, oxygen
and salinity as well as more accurate descriptions of daily predator activity (Mangel
and Clark 1988). Also, one can consider saturation in the functional response of the
visual predators; this can cause oscillations of species densities as in the classical
Rosenzweig—MacArthur model (Roy and Chattopadhyay 2007), thus the ordering of
species in terms of their per capita growth rates given by (3) should be done via aver-
aging over the period of oscillations. This would be an interesting extension of the
current work.
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