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Abstract

Background: The Werner protein (WRNp), a member of the RecQ helicase family, is strongly associated with the nucleolus,
as is nucleolin (NCL), an important nucleolar constituent protein. Both WRNp and NCL respond to the effects of DNA
damaging agents. Therefore, we have investigated if these nuclear proteins interact and if this interaction has a possible
functional significance in DNA damage repair.

Methodology/Principal Findings: Here we report that WRNp interacts with the RNA-binding protein, NCL, based on
immunoprecipitation, immunofluorescent co-localization in live and fixed cells, and direct binding of purified WRNp to
nucleolin. We also map the binding region to the C-terminal domains of both proteins. Furthermore, treatment of U2OS
cells with 15 mM of the Topoisomerase I inhibitor, camptothecin, causes the dissociation of the nucleolin-Werner complex in
the nucleolus, followed by partial re-association in the nucleoplasm. Other DNA damaging agents, such as hydroxyurea,
Mitomycin C, and aphidicolin do not have these effects. Nucleolin or its C-terminal fragment affected the helicase, but not
the exonuclease activity of WRNp, by inhibiting WRN unwinding of G4 tetraplex DNA structures, as seen in activity assays
and electrophoretic mobility shift assays (EMSA).

Conclusions/Significance: These data suggest that nucleolin may regulate G4 DNA unwinding by WRNp, possibly in
response to certain DNA damaging agents. We postulate that the NCL-WRNp complex may contain an inactive form of
WRNp, which is released from the nucleolus upon DNA damage. Then, when required, WRNp is released from inhibition and
can participate in the DNA repair processes.
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Introduction

The nucleolus is a nuclear domain long known to play a central

role in ribosome biogenesis and RNA metabolism [1,2,3]. A key

nucleolar protein is nucleolin, a RNA binding phosphoprotein [4],

that plays a major role in nucleolar organization and function,

especially ribosome genesis [5]. Nucleolin is found not only in the

nucleolus, but also in the nucleus, cytoplasm and cell surface [6,7].

It has recently become apparent that the nucleolus has other

crucial functions beyond RNA genesis and manipulation [8].

Indeed, recent proteomic analyses of the nucleolus have shown

that there are well over 500 nucleolar proteins, of which 12% are

unconnected to nucleic acid metabolism or processing and over

30% are novel proteins of unknown function [9,10,11].

Recently, a new function of nucleolin has emerged, as a

responder to cellular stress. Nucleolin rapidly translocates from the

nucleolus to the nucleoplasm in response to heat shock [12,13],

can increase its RNA binding activity in response to UV and

ionizing radiation [14], and can inhibit Nucleotide Excision

Repair [15].

Nucleolin is an emerging stress response protein that also has

homologous strand pairing activity and interacts with a number of

DNA recombination complexes that are involved in homologous

recombinational repair [12,14,16]. For example, nucleolin inter-

acts with Replication Protein A (RPA) and the tumor suppressor

p 53. While RPA binds single stranded DNA, p 53 regulates the

DNA strand-transferase activity of Rad51 [17,18]. Recent reports

indicate that both nucleolin and WRN bind to Rad51 [16,18]. It is

thus likely that nucleolin participates in and modulates homolo-

gous recombinational repair of DNA.

Werner Syndrome protein, WRNp, is a major stress-response

protein associated with human nucleoli. Werner syndrome (WS) is
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a rare autosomal recessive genetic disorder characterized by

premature onset of aging symptoms and a higher incidence of

cancer [19]. The WRN gene product is a 160 kDa protein of the

RecQ DNA helicase family [20], a family of proteins involved in

maintaining genomic stability [21]. Werner protein (WRNp)

exhibits three enzymatic activities: 39 to 59 RNA and DNA

helicase, ATPase, and exonuclease [22,23,24,25]. WRNp has a

nuclear localization signal (NLS) near the C-terminus of the

protein and has been detected in both the nucleoplasm and

nucleolus [26,27]. A nucleolar targeting sequence has been found

in WRNp [28]. The WRN protein forms functional complexes

with several cellular proteins, some of which stimulate its helicase

activity, such as RPA [29,30] and TRF2 [31]. Nucleolin and

Werner protein exhibit dynamic trafficking from the nucleolus to

nuclear foci in response to DNA damage. We sought to determine

if there is a physical interaction between nucleolin and WRNp and

what would be the functional significance of this interaction in the

context of nucleolar biology and nuclear trafficking of nucleolin

and WRNp.

Materials and Methods

Proteins, Antibodies, Oligonucleotides and Cell Lines
The cloning and expression of GST-tagged WRN fragments,

His6-WRN and full-length WRN has been described previously

[30,32]. GST tagged DN-NCL and Nucleolin fragments used were

described by us [14]. RFP-WRN [33] was a kind gift of Dr. Marek

Rusin, Maria Sklodowska-Curie Memorial Institute, Gliwice,

Poland; GFP-NCL constructs are described below.

The following antibodies were purchased from Santa Cruz

Biotechnology (Santa Cruz, CA): Rabbit anti-GST, rabbit anti-

GFP mouse monoclonal anti-nucleolin (C23) antibody (MS-3),

rabbit anti-nucleolin (H250), rabbit anti-WRN (H-300). Additional

antibodies purchased were mouse monoclonal anti-nucleolus

(Calbiochem, San Diego, CA), mouse monoclonal anti-nucleolin

(MBL), rabbit anti-WRN1 (Novus, Littleton, CO), mouse anti-

WRNp mAb (BD Transduction Laboratories, San Diego, CA).

Horseradish peroxidase-, Cy2 and Cy3-conjugated secondary

mAbs were purchased from Jackson Immunoresearch Laborato-

ries (West Grove, PA). Alexa 488-conjugated secondary mAbs and

the DNA stain 49,6-diamidino-2-phenylindole dihydrochloride

(DAPI) were purchased from Molecular Probes (Eugene, OR).

Normal rabbit or mouse IgG (Sigma or Santa Cruz) was used as a

negative control.

TERT-1604 (telomerase-immortalized normal fibroblasts were

generously provided by Dr. Jerry W. Shay), HeLa, Saos-2,

MO59K, MO59J and U2OS were grown in Dulbecco’s modified

Eagle’s medium supplemented with 10% fetal bovine serum,

2 mM L-glutamine, 100 IU/ml penicillin, 100 mg/ml streptomy-

cin, 1% vitamins and 1% amino acids (BRL-GIBCO Life

Technologies, Inc). The SV40-transformed normal human cell

line, GM00637D fibroblasts, WRN 2/2 transformed human

AG11395 fibroblasts, human primary fibroblast MRC-5 and

WRN 2/2 primary fibroblast AG03141C (all from Coriell Cell

Repositories) were grown in minimum essential medium supple-

mented as above.

Oligonucleotides used to produce tetraplex DNA were pur-

chased from The Midland Certified Reagent Company, Inc

(Midland, Texas, USA). Radioactively labeled [c32-P]dATP was

purchased from Amersham.

Immunoprecipition, SDS-PAGE and Immunoblot
Nuclear extracts of TERT-1604 or HeLa cells were prepared as

described previously [34]. Whole cell extracts (WCE) were

prepared with 56106 cells for each experimental point. The cells

were washed with PBS and incubated with lysis buffer containing

150 mM NaCl, 50 mM Tris-HCl pH 7.5, 0.5% NP-40 and

proteinase inhibitor cocktail at 4uC for 30 min. The WCE were

then centrifuged at 14,0006g for 20 min. Supernatants were

collected and processed for immunoprecipitation, immunoblotting

and detection as described previously [35].

Care was taken to minimize the presence of nucleic acids in

lysates, nuclear extracts and purified proteins. We employed salt

concentration, DNA binding columns and addition of nuclease in

order to reduce nucleic acid concentration to below detectable

levels, as judged by absorbance.

In Vitro Binding
ELISA assays were performed exactly as described in Indig et

al., 2004, with purified WRN, GST-DN-NCL and GST-nucleolin

fragments at 100 ng/ml. Experiments were repeated at least six

times.

In vitro pull down assay was performed basically as described in

[31,36]. GST-WRN fragments were incubated with TERT-1604

or HeLa nuclear extract, while GST-nucleolin fragments were

incubated with His6-WRN (approximately 1 mg each). Reactions

were then immunoprecipitated with anti-GST, separated on 4–

15% polyacrylamide gels and immunoblotted as described above.

The resulting signal was visualized by chemiluminiscence (ECL

Plus, Amersham Biosciences). Experiments were repeated at least

three times.

GFP-NCL Constructs and Immunoprecipitation
The full-length human nucleolin and the fragments containing

amino acids 1 to 283 and 284 to 707 were cloned by PCR into the

pEGFP-C3 vector (Clontech) at the Xho1/BamH1 sites. The

plasmids were transiently transfected with Fugene HD at a 4:1

ratio in 80% confluent HeLa cells. The next day, transfection

efficiency was verified by fluorescence microscopy and the cells

were harvested in cold PBS. Proteins were extracted in lysis buffer

(150 mM NaCl, 50 mM Tris-HCl pH 7.5, 0.5% NP-40) and

proteases inhibitor cocktail (Roche)) at 4uC for 30 min, centrifuged

at 14000 xg for 20 min at 4uC. The supernatant was used for

immunoprecipitation.

Immunoprecipitation was performed as described before [34].

Briefly, 2 mg of protein extracts were incubated at 4uC with WRN

antibody for 1 h. Protein G coated magnetic beads were then

added and the reaction was allowed to proceed over night at 4uC.

The proteins were then washed in lysis buffer and twice in cold

PBS before being eluted and loaded on SDS-PAGE. Western blot

was performed with GFP Ab (Santa Cruz).

DNA Damage Treatment, Indirect Immunofluorescence
and Microscopy

Cells were grown on cover slips or CC2-coated slide flasks

(Nunc Nalge) for 24 h and then incubated with the following DNA

damaging agents for the indicated time period: Mitomycin C

(0.1 mg/ml for 12 h), H2O2 250 mM for 30 min, hydroxyurea

100 mm for 16 h, bleomycin 2.5 mg/ml for 2 h, 4NQO (0.1 mg/ml

for 12 h) and CPT 15 mM for 12 h. Coverslips were processed for

indirect immunofluorescence as described previously [34], except

that those examined by confocal microscopy were incubated with

primary antibodies for 16 h at 4uC, and secondary antibody

conjugated with fluorescence dye for 1 h at room temperature.

After washing three times (10 min each), the coverslips were

mounted in Vectashield (Vector Laboratories) and viewed under a

laser scanning confocal microscope (Zeiss 410) in separate
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channels (green, 488 nm; red, 561 nm). The images were then

overlaid and analyzed with Metamorph imaging system 4.1

(Universal Imaging Corp.). Experiments were repeated at least

three times. Approximately 30 cells were analyzed for each

treatment.

Co-Transfection and Live Cell Microscopy
U2OS cells (50 K) were plated onto MatTek dishes. After

overnight growth, sub-confluent cells were transfected in serum-

free medium using the Fugene 6 (Roche) reagent according to

manufacturer’s instructions. The following ratio produced the best

results:mg GFP-NCL:mg RFP-WRN:ml Fugene 6 1:1.5:18. Cells

were imaged 40–66 hours post-transfection with a Zeiss 710

confocal equipped with a temperature-controlled and humidified

CO2 chamber and with a definite focus system. Time series (2–12

hours) were obtained from cells treated with either 1 or 15 mM

CPT by scanning every 30–120 seconds. Still images or movies

were obtained from these series using the Zeiss Zen software.

Experiments were repeated at least three times.

Exonuclease Assay
Exonuclease assay reaction mixtures (10 ml) contained 40 mM

Tris (pH 7.4), 5 mM MgCl2, 1 mM dithiothreitol, 0.1 mg/ml

BSA, 1 mM ATP, and WRNp full-length recombinant protein

(16 nM) in the presence or absence of DN-NCL. The amount of

the double-stranded exonuclease substrate in the reaction mixture

was approximately 3 fmol. Reactions were initiated by the

addition of WRN protein and incubated at 37uC for 60 min.

Reactions were stopped by the addition of an equal volume of

formamide loading buffer (80% formamide, 0.56Tris-borate

EDTA, 0.1% bromphenol blue, and 0.1% xylene cyanol). The

digestion products of these reactions were separated on 15%

denaturing polyacrylamide gels, visualized using a PhosphorIma-

ger (Molecular Dynamics), and quantitated using ImageQuant

software (Molecular Dynamics). Experiments were repeated at

least three times.

WRN Helicase Assay
A 34 bp forked duplex oligonucleotide [37] was used to assay

WRN helicase activity in the presence of DN-NCL and nucleolin

fragments.

Proteins and radiolabeled DNA substrates were incubated in

helicase reaction buffer (50 mM Tris-HCl pH 7.5, 4 mM MgCl2,

2 mM ATP, 2 mM DTT and 0.1 mg/ml BSA) in a final volume

of 20 ml. Reactions were incubated at 37uC for 20 min, then

terminated by the addition of 3X stop dye (0.05 M EDTA, 40%

Glycerol, 1% SDS, 0.05% bromophenol blue, and 0.05% xylene

cyanol) to a final concentration of 1X. Products were resolved on a

12% native polyacrylamide gel, visualized using a PhosphoImager

and quantitated using Image-Quant software (Molecular Dynam-

ics, Palo Alto, CA). The percentage of single-stranded substrate

produced by helicase activity was calculated with the following

formula:

% Single-stranded = 1006P/(S+P).

Where P is the product, and S is the substrate. The values for P

and S have been corrected after subtracting the background values

in the no enzyme control. Experiments were repeated at least five

times.

UvrD Helicase Assay
The helicase reaction contained 0.5 nM32P-end labeled forked

DNA duplex and the indicated concentration of proteins in

50 mM Tris-HCl pH 7.5, 4 mM MgCl2, 2 mM ATP,

2 mM DTT, and 0.1 mg/ml BSA. The reactions were initiated

by addition of 10 fmol UvrD protein [38]. Reactions were

analyzed as above. The percentage of single-stranded substrate

was calculated using the same formula as in WRN helicase assay.

Experiments were repeated at least three times.

G4 Tetraplex Unwinding
G4 DNA was prepared essentially as described by Sen and

Gilbert [39], but omitting the potassium salt during folding.

The G4 DNA unwinding assay was performed essentially as

described by Huber and co-workers, [40]. We used the 39-mer

OX1-T DNA (Oxytricha sp. telomeric) or the 49-mer TP-G4

DNA with similar results. Experiments were repeated at least six

times. Phosphorimager images were contrast-enhanced using

Adobe Photoshop.

G4 Tetraplex Electrophoretic Mobility-Shift Assay (EMSA)
DNA-protein binding was assessed using EMSA, essentially as

described in [36] and [31]. Experiments were repeated at least

three times. Phosphorimager images were contrast-enhanced using

Adobe Photoshop.

Results

Werner Helicase and Nucleolin Co-Precipitate
Anti-WRN and anti-NCL antibodies reciprocally co-immuno-

precipitate the two proteins from nuclear extracts of TERT-1604

cells (Figure 1). Similar results were obtained with other anti-NCL

and anti-WRN antibodies (Figure S1A). Thus, WRNp (160 kDa)

and NCL (100 kDa) are present in the same protein complex

immunoprecipitated from nuclear extracts of TERT-1604 cells.

The amount of co-precipitating NCL and WRN is only a fraction

of the total amount of these proteins present in the extracts, as seen

in Figure 1. This is unsurprising, as both NCL and WRN are

multi-functional proteins that participate in several different

protein complexes at the same time, and thus, only a fraction of

each protein is present in each complex. When we immunopre-

cipitated WRNp with rabbit anti-WRN from cell extracts of six

other cell lines (Figure S1B), NCL was detected in all precipitates.

Both proteins were absent from anti-WRN precipitates of extracts

from a WS cell line, Ag11395, producing a mutant WRN protein

truncated at a.a. 369 [27], which is not precipitated by the anti-

WRN.

In Vitro Binding of WRNp and NCL and Mapping of the
Interaction to the C-Termini of Both Proteins

In order to verify the protein-protein interaction between

WRNp and NCL that was indicated by the immunoprecipitation

experiments, we conducted in vitro binding experiments using

purified proteins (Figure 2). ELISA plates were coated with WRNp

or various GST-NCL fragments (see Figure 2D). Purified WRNp

preferentially bound to the immobilized RGG fragment of NCL in

ELISA immunoassays (Figure 2A). When immobilized WRN

protein was incubated with GST-NCL fragments, the RGG

fragment was found to bind WRNp to a greater extent than the

other NCL fragments (Figure 2B).

In order to map the reciprocal binding regions of NCL and

WRN, we performed GST pull-down experiments. Utilizing eight

GST-fused WRN fragments (Figure 2C) mixed with nuclear

extract, we found that only two WRN fragments pulled down

NCL: the HRDC+(WRN residues 1072–1432) and C-terminal

(WRN residues 949–1432) fragments. As neither the RQC

fragment (WRN residues 949–1092), nor the RQC+fragment

(WRN residues 949–1236) pulled-down NCL, this result indicates

Nucleolin Inhibits Werner Helicase Activity
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that the helicase’s RQC domain is probably not involved in NCL

binding. Thus, the likely NCL-interacting region of WRNp maps

to WRN residues 1236–1432, which appears to constitute the

main nucleolin binding region (NBR). However, as both the

HRDC+and C-terminal fragments extend N-terminal to residue

1236, we cannot rule out the possibility that the WRN region

1092–1236 might also participate in this interaction.

To verify this finding, GST-NCL fragments were mixed with

purified His6-WRN. These experiments clearly show that only the

C-terminal NCL domain, present only in the RGG and DN-NCL

fragments, binds WRNp (Figure 2D). The internal RBD 1–2 and

RBD 3–4 domains were unable to pull down WRNp in this assay.

To determine if WRNp interaction was through the NCL N-

terminal domain, we used a third fusion system. As the very acidic

NCL N-terminal end prevents efficient expression of full-length

nucleolin in the bacterial expression system, we produced GFP

fusion proteins in human cells. The GFP-NCL fusion constructs

were expressed in HeLa cells, and cell extracts were immunopre-

cipitated with anti-WRN. Only the construct containing the C-

terminal NCL domain, GFP-DN-NCL, was found to bind WRNp

(Figure 2E, right panel). These data, together with the data in

Figures 2A-D, indicate that the NCL N-terminal (residues 1 to

283) is not required for WRNp interaction and that the NCL

RGG domain is sufficient for optimal binding.

Camptothecin Induces Translocation of Nucleolin and
WRNp from the Nucleolus to the Nucleoplasm and the
Formation of Nuclear NCL-WRN Foci

Werner Syndrome cells (mutated Werner protein) are hyper-

sensitive to the Topoisomerase I inhibitor, camptothecin [41,42].

We have previously noted the remarkable effects of camptothecin

on nucleolar protein complexes [34]. When U2OS cells were

treated with camptothecin and several other DNA damaging

agents, we found that only in the presence of camptothecin did we

observe NCL (green) in the nucleoplasm (Figure 3A). Mitomycin

C, bleomycin, aphidicolin (not shown) and hydrogen peroxide (not

shown) did not redistribute nucleolin from the nucleolus to the

nucleoplasm, although all agents caused the Werner helicase (red)

to translocates from the nucleolus to the nucloplasm. Camptothe-

cin treatment results in the formation of numerous nuclear NCL

foci, some of which co-localized with WRNp foci in the

nucleoplasm (Figure 3A). That only a fraction of NCL and

WRN co-localize is not surprising, as both proteins interact with

many other proteins and participate in several protein complexes

at the same time.

Since WRNp and NCL were found to be in the same protein

complex in untreated cells and nuclear extracts (Figure 1 and

Figure S1), we examined the effect of DNA damaging agents on

the WRNp-NCL complex (Figure 3A and 3B). Whole-cell extracts,

prepared from U2OS cells that were treated with various DNA-

damaging agents, were precipitated with anti-NCL. In cells treated

with hydroxyurea (HU) or bleomycin only trace amounts of

WRNp were precipitated with NCL. In untreated control cell

lysates and in lysates from cells treated with CPT or 4NQO, more

WRNp was precipitated by anti-NCL (Figure 3B). Thus, there is

dissociation of immunoprecipitable WRN-NCL complexes in the

cells treated with HU and Bleomycin, but not in cells treated with

CPT, where some detectable WRN-NCL complexes remain.

These results confirm that the effects of CPT on the WRN-NCL

complex are specific and different from the other DNA damaging

agents examined.

We also investigated the timing of the CPT-induced trafficking

of NCL and WRNp using end-point immunofluorescence

experiments (Figure 3C). U2OS cells were treated with CPT,

washed and then fixed at time-points indicated. After treatment

with CPT, both WRNp (red) and NCL (green) have mostly

translocated from the nucleoli. At 2 hours post-treatment we

observed an increase of signal intensity of co-localizing WRN/

NCL (yellow) compared to the other time points, with numerous

small foci containing both proteins. By 8 hours post-treatment

both NCL and WRNp appear to have partially returned to the

nucleoli, with several large co-localizing foci remaining in the

nucloplasm. Full recovery of the pattern observed in non-treated

cells (co-localizing WRNp and NCL in nucleoli) occurs between 8

and 24 hours.

The half-life of camptothecin is 17 minutes at these incubation

conditions [43]. Thus, the original concentration of CPT is

reduced to less than 2% within 2 hours. Therefore, we would

expect to observe a more rapid response to CPT treatment than

was observed in the indirect immunofluorescence experiments. To

verify this possibility, we observed live U2OS cells that were

transfected with both GFP-NCL and RFP-WRN, and then treated

with 15 mM CPT (Figure 4, Movie S1). As can be seen in

Figures 4A and 4B, significant amounts of RFP-WRN and GFP-

NCL translocate from the nucleolus to the nucleoplasm in less

than 1 hour. Furthermore, these proteins co-localize in nuclear

foci after CPT treatment (Figures 4C and 4D), confirming the

indirect immunofluorescence experiments. We repeated these

experiments with a lower concentration of CPT, 1.0 mM (Figure

S2). We observe results similar to those obtained with the higher

CPT concentration of 15 mM. A dynamic proteomics analysis

showed a similar rapid nucleolar reduction of certain nucleolar

proteins, including nucleolin, after CPT treatment [44]. We also

observed that in approximately one half of the cells expressing

both GFP-NCL and RFP-WRN, nuclear foci can be clearly

observed (Table S1) with both proteins co-localizing. There was a

Figure 1. WRNp and NCL reciprocally co-immunoprecipitate.
Whole cell extracts were immunoprecipitated and immunoblotted as
described in Materials and Methods. Briefly, equal amounts of HeLa
extract were immunoprecipitated with rabbit anti-WRN (H300, Santa
Cruz, top panel), or rabbit anti-NCL (H250, Santa Cruz, lower panel).
Mouse antibodies were used to detect precipitated proteins and blots
were visualized with TrueBlot Western Blot kit. Control normal rabbit
IgG (IgG, Santa Cruz) was used as a negative control.
doi:10.1371/journal.pone.0035229.g001
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Figure 2. In vitro binding of WRNp and NCL. A-B. The WRNp binding domain of nucleolin is in the C-terminus. Indirect ELISA was performed as
described in Materials and Methods. Purified GST-nucleolin fragments (A) or purified His6-Werner proteins (B) were coated onto 96-well microtiter
plate wells. Coated protein was incubated with His6-Werner protein (A) or GST-nucleolin (B). Results shown were derived from a single plate, with
samples analyzed in quadruplicate and error bars showing the standard deviation from the mean. The co-efficient of variation was usually less than
10%. Experiments were replicated at least three times with similar results. See section D for nucleolin fragment names and mapping. BSA, plate
coated with only BSA; Ab, plate coated with only anti-WRN antibody. C. Different GST-WRN fragments were used to pull down nucleolin from nuclear
extract as described in the Materials and Methods section. Upper panel shows the detection of nucleolin only in the WRN fragments *HRDC+(amino

Nucleolin Inhibits Werner Helicase Activity
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slightly higher incidence of co-localizing foci when cells were

treated with 15 mM CPT compared to 1.0 mM CPT (average of

63% vs. 43%, respectively).

Nucleolin Inhibits Werner Helicase Activity
As we have established the possibility of a physical interaction

between WRNp and NCL, we next examined whether NCL

affected the enzymatic activity of WRNp upon known WRN

substrates. The Werner protein is both a DNA helicase [22,23]

and exonuclease [24,29] and we examined the effect of adding

NCL to WRN activity assays. The helicase activity of WRN on a

22 base pair partial duplex fork substrate was efficiently inhibited

by NCL. Under the conditions used, 5 fmol WRN converted 80–

90% of the duplex (40 fmol) to single-strand form within 20

minutes at 37uC (Figure 5A). This conversion was inhibited by

about 50% when DN-NCL was present at a molar ratio of 25:1 vs

WRN. The RGG fragment, which contains the putative WRNp-

NCL interacting region (Figure 2), had an even greater inhibitory

effect on WRNp, with over 60% inhibition of helicase activity at a

10:1 ratio and 90% inhibition at 25:1 (Figure 5A). Other proteins

or NCL fragments, such as GST, RBD 1–2 and RBD 3–4 (not

shown), had no, or only minimal (about 20%) effect on WRN

unwinding of the duplex substrate at a molar ratio of 50:1.

In contrast, we observed that NCL had no effect on WRN

exonuclease activity upon a typical WRN substrate, a 39-recessed

DNA substrate (Figure 5B). To confirm the specificity of the NCL

interaction with the WRN helicase, we examined a non-RecQ

acid (a.a.) residues 1072–1432) and **C-terminal (a.a. residues 949–1432), but not in other fragments. NBR is the likely Nucleolin Binding Region of the
Werner protein. Membrane was stripped and immunoblotted with anti-GST antibody (lower panel). MW in kDa are indicated at right for each panel.
D. Different GST-nucleolin fragments were used to pull down full length purified His6-WRN. In the upper panel WRNp is present only in the nucleolin
fragments containing the RGG domain- RGG and DN-NCL. Same membrane was stripped and immunoblotted with GST antibody (lower panel). MW
in kDa are indicated at left for each panel. E. WRNp does not bind to NCL N-terminal domain. Constructs were transfected into HeLa cells, which were
extracted and immunoblotted as detailed in Materials and Methods. (A) Western Blot analysis of Nucleolin fragments from HeLa cells transiently
transfected with either pEGFP (lane 1), GFP-NCL 1–283 (N-terminal domain, lane 2) and GFP-NCL 284–707 (DN-NCL, lane 3). (B) Immunoprecipitation
with anti-WRN antibody of the above HeLa cell extracts, and detection with anti-GFP. Lanes as above. Only in lane 3 (GFP-DN-NCL) is a GFP signal
detected.
doi:10.1371/journal.pone.0035229.g002

Figure 3. Camptothecin induces translocation of nucleolin and Werner helicase. A. Confocal microscope images of WRNp (red) and NCL
(green) distribution after U2OS cells were treated with different DNA damaging agents as detailed in Materials and Methods. Fixed cells were stained
simultaneously with Rabbit anti-WRN (Novus) and Mouse anti-nucleolin (Santa Cruz). Note that WRNp re-localized from the nucleolus in all treatments
while nucleolin re-localized only after CPT treatment. Merged images show co-localization (yellow) of WRNp and NCL. Images are of representative
cells; At least 30 cells were analyzed for each treatment, which was repeated at least three times. B. Cells treated as above were immunoprecipitated
with anti-NCL and immunoblotted as described in the legend for Figure 1. Mito C- mitomycin C, HU- hydroxyurea, CPT- camptothecin, 4NQ0-4-
nitroquinoline-1-oxide, Control- untreated U2OS (WRN plus) cells; WRN cells- Ag11395 WS cells (abnormal WRN), Mo IgG- negative control mouse IgG
precipitate; Control input-10% of whole cell extract used for IP. C. U2OS cells were treated with 15 mM CPT for 12 h and then washed with complete
medium. Cells were fixed at times from start of treatment as indicated at the left of the images, and processed for confocal microscopy as detailed in
Materials and Methods.
doi:10.1371/journal.pone.0035229.g003
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helicase, UvrD, for NCL effect. We found that a 40-fold molar

excess of NCL or RGG over UvrD had comparatively little effect

(about 20%) on UvrD activity- see Fig. 5C. A similar concentra-

tion of NCL or RGG inhibited WRN helicase activity by 2-to 4-

fold (Figure 5A). As nucleolin had no effect on WRN exonuclease

activity, or on a non-RecQ helicase, this indicates that NCL has a

specific effect on the WRN helicase activity.

Nucleolin Inhibits Werner Helicase Activity on a G4
Tetraplex DNA Substrate

Most helicases of the RecQ family are able to unwind G4

tetraplex structures. We next sought to examine the effect of

nucleolin on WRN unwinding of G4 tetraplex DNA. Under the

conditions used, 5 fmol WRN converted 30–50% of the G4 DNA

(40 fmol) to single-strand form within 20 minutes at 37uC
(Figure 6, lanes 8 and 18). For comparison purposes, this

unwinding by WRNp was defined as ‘‘100% single-stranded’’, as

seen in Figure 6. As with the forked duplex substrate, the presence

of DN-NCL at a 25:1 ratio was sufficient to inhibit 80% (lane 10)

of this conversion and a similar ratio of RGG inhibited 60% of the

reaction (lane 17). Again, as with the duplex fork helicase

substrate, the presence of GST, RBD 1–2 and RBD 3–4 fragments

had little (less than 20%) or no effect on G4 DNA unwinding by

WRN.

Nucleolin and the NCL RGG Domain Bind G4 DNA
Utilizing electrophoretic mobility shift assays (EMSA), we

determined that WRNp, DN-NCL and the RGG domain could

Figure 4. GFP-NCL and RFP-WRN co-localize in the nucleoplasm after CPT treatment. U2OS cells were transfected with GFP-NCL (green)
and RFP-WRN (red) as described in Materials and Methods. Cells were treated with 15 mM CPT and immediately imaged in a time series obtained with
a Zeiss 710 confocal. A. Still images from a 120 minute time series at 0, 30 and 120 minutes after the addition of CPT. B. Still images from a 14 hour
time series at 0, 44 and 360 and 600 minutes after the addition of CPT. C. A 3x zoom on two cells from the 120 minute time series, comparing the
distribution of GFP-NCL and RFP-WRN at 0 and 30 minutes. Arrows point to co-localizing WRN-NCL foci (orange-yellow) in the nucleoplasm. D. A 4x
zoom on a cell from the overnight time series, comparing the distribution of GFP-NCL and RFP-WRN at 0, 44 and 360 minutes. Arrows point to co-
localizing WRN-NCL foci (orange-yellow) in the nucleoplasm. Note the intense co-localization of NCL and WRNp in the nucleoli at 0 min, and that
most of the WRNp and some of the NCL have translocated to the nucleoplasm within 30 (A) and 44 (B) minutes, where co-localizing NCL-WRN foci
can be already detected (C and D).
doi:10.1371/journal.pone.0035229.g004
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bind to G4 tetraplex DNA (Figure 7). WRNp in the presence of

ATP converts the G4 form to single-strand DNA (Figure 6, lanes 8

and 18; Figure 7, lane 4). A high molecular weight (HMW) slowly-

migrating G4 DNA, interpreted as a WRN/G4 complex, can also

be seen in Figure 7, lane 4 and in all lanes where WRNp is

present. Increasing the amount of WRNp increases the WRN/G4

DNA complex signal in a dose-responsive manner (lanes 5–7). The

introduction of DN-NCL reduces the WRN-G4 DNA complex

signal (lanes 9–10), decreases the amount of free G4 DNA present

and introduces a new band, interpreted as DN-NCL-G4 DNA

complex, that can be seen also when WRN is not present (lane 8).

These data indicate that both WRNp and DN-NCL can bind G4

DNA when both proteins are present (lanes 9,10, 12–14) or when

only WRNp (lanes 4–7) or NCL (lanes 9–10) were added to the

substrate. When we add the RGG fragment instead of DN-NCL in

the absence of WRNp, a new band, interpreted as RGG-G4 DNA

complex appears (lane 11). Increasing the quantity of RGG

present reduces the WRN/G4 DNA signal in a dose-responsive

manner (lanes 12–14), indicating that RGG out-competes WRNp

for G4 DNA. It is also possible that RGG and WRNp bind G4

DNA and supershift it, resulting in the reduced G4-WRN signal of

lanes 13 and 14. Furthermore, increasing the amount of RGG

Figure 5. NCL inhibits WRN helicase activity but not WRN exonuclease activity. A. WRN unwinding of a helicase substrate, 22 base pair
partial duplex fork substrate (shown at left), was performed as described in Materials and Methods. Purified WRNp (5 fmol) was incubated with
40 fmol substrate and 50, 125, or 200 fmol of DN-NCL (lanes 12–15) or RGG fragment (lanes 5–8). Controls are GST protein (200 fmol, lane 10), RBD 3–
4 fragment (200 fmol, lane 9), W, only WRNp protein (lanes 4 and 11), B- only reaction buffer (lane 3), D- heat denatured substrate (lane 2), Oligo-
unreacted substrate (lane 1). In Lanes 5 and 13 the WRN protein was omitted from the reaction. Green circles point out the inhibitory effect of RGG
(lane 8) or DN-NCL (lane 15) on WRN helicase activity. B. WRN protein (100 fmol) was incubated with the exonuclease substrate (39-recessed DNA
substrate, represented at the top of the figure) in the presence of increasing amounts of DN-NCL (25, 50, 100, 200, 400 fmol) under exonuclease
reaction conditions for 1 h at 37uC, as described in Materials and Methods. Once the reactions were stopped, DNA products were resolved by
denaturing polyacrylamide gel electrophoresis. Controls are only reaction buffer (lane 1), only 400 fmol DN-NCL (lane 2), only WRN protein (lane 3)
and D- heat denatured substrate (lane 9). C. E. coli UvrD protein (10 fmol) was incubated with the Mix 4/3 substrate (represented to the right of the
figure) in the presence of increasing amounts of DN-NCL (100, 250, 400 fmol) under UvrD helicase reaction conditions for 1 h at 37uC, as described in
Materials and Methods. Once the reactions were stopped, DNA products were resolved by native polyacrylamide gel electrophoresis. Controls are
only reaction buffer (lane 1), WRN helicase (5 fmol, lane 2), 250 or 400 fmol DN-NCL without helicase (lane 10–11), RGG protein without helicase (lane
12–13) and D- heat denatured substrate (lane 14).
doi:10.1371/journal.pone.0035229.g005
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leads to a shift of the RGG-G4 complex signal from a faster

migrating position (lane 11) to a slower migrating one (lane 14),

possibly due to the increase in the number of RGG molecules

binding each G4 DNA molecule (G4-RGG(n)).

Discussion

These studies show that nucleolin is physically associated with

the Werner helicase in the nucleolus and nucleus. This conclusion

is based on the specific and reciprocal co-immunoprecipitation of

these proteins, in vitro binding assays and co-localization by

indirect immunofluorescence in confocal optical sections, and in

live cells transfected with both proteins. We have identified the C-

terminal domains of both proteins as the interacting regions, and

have determined that WRNp has a nucleolin binding domain,

probably in the region of aa residues 1236–1432. Furthermore,

treatment of cells with camptothecin causes the dissociation of

both nucleolin and WRNp from nucleolar complexes, followed by

their translocation to the nucleoplasm, where we find WRNp and

NCL in the same protein complexes. This dynamic process of

protein relocation from the nucleolus following DNA damage is

clearly seen in live cells transfected with GFP-NCL and RFP-

WRN. Our data further suggests that NCL and WRNp both

participate in complexes that include G4 tetraplex DNA.

Nucleolin co-localizes with WRNp in the nucleoli of untreated

cells. This nucleolar complex was dissociated by treatment with

the DNA-damaging agent, camptothecin. CPT is a DNA

topoisomerase I inhibitor that blocks topoisomerase I kinase

activity [45] and causes DNA strand breaks [46,47]. Cells and cell

lines derived from Werner Syndrome patients were shown to be

sensitive to the genotoxins camptothecin and 4-NQO [41,48,49].

We observed that other genotoxic agents, such as mitomycin C

and bleomycin did not dissociate nucleolin from the nucleolus as

did CPT. WRNp had increased nuclear signal after treatment with

bleomycin, mitomycin C and CPT, but only CPT increases

nuclear dispersion of nucleolin, while possibly retaining the

WRNp-nucleolin interaction. Similarly, topoisomerase I was

shown to dissociate from nucleoli after treatment with the CPT

Figure 6. NCL inhibits WRN unwinding of G4 tetraplex DNA.
The preparation of G4 tetraplex substrate was performed as described
in Materials and Methods. Purified WRNp (5 fmol) was incubated with
40 fmol G4 DNA substrate and 125 or 200 fmol DN-NCL (lanes 9–10) or
40, 125 or 200 fmol RGG fragment (lanes 15–17). Other lanes contain
controls-DN-only DN-NCL (40 fmol, lane 3), 1-1-RBD 1–2 fragment
(200 fmol, lanes 4, 11and 12), 3-4-RBD 3–4 fragment (200 fmol, lanes 5,
13 and 14), GST- GST protein (200 fmol, lane 19), Only WRN protein on
lanes 8 and 18, B-only reaction buffer (lane 2), D- heat denatured
substrate (lane 1). Reactions were terminated after 20 min at 37uC and
run out on 8% polyacrylamide gels. A representative intact gel is shown.
doi:10.1371/journal.pone.0035229.g006

Figure 7. NCL competes with WRN binding of G4 tetraplex DNA. Electrophoretic mobility shift assay (EMSA) was performed for the 49-mer
TP-G4 DNA with only WRNp (lanes 5–7:5, 10, 20 fmol) and 10 fmol WRNp in the presence of DN-NCL (lanes 9–10:25, 40 fmol) or RGG (lanes 12–14:25,
40, 80 fmol). Reactions were incubated for 20 min at 37uC and run out on 5% polyacrylamide gels at a cross-linker ration of 19:1 acrylamide:bis. Gels
were run at 6.5 V/cm for 4–6 h at room temperature. Control lanes: D- heat denatured substrate (lane 1); C, C’-only reaction buffer, at 4uC (lane 2) or
37uC (lane 3); ATP-10 fmol WRNp plus ATP (all other lanes contain ATPcS); Lanes 8 and 11 contain only 25 fmol DN-NCL or RGG, no WRNp,
respectively. The position of the oligonucleotide or oligonucleotide-protein complex is indicated at the right. A representative intact gel is shown.
doi:10.1371/journal.pone.0035229.g007
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derivative, topotecan, while hydroxyurea had no effect [50]. We

have previously shown that CPT dissociates nucleolar protein

complexes containing WRNp and topoisomerase I [51] and also

dissociates the interaction between WRNp and the AAA ATPase

VCP in the nucleolus [34]. It is possible that CPT dissociated

WRNp from the nucleolus, but not from nucleolin, and that

WRN-NCL translocate together to the nucleoplasm. However,

our immunofluorescence and fluorescent protein data (Figure 3C,

Figure 4 and Figure S2) argue against this. It is more likely that the

events unfold as seen in the live cell experiments- after CPT

treatment, both WRNp and NCL translocate to the nucleoplasm

and can subsequently form complexes seen as co-localizing foci.

In addition, we note that WRNp and NCL are co-precipitated

from nuclear extracts of non-treated cells and CPT-treated U2OS

cells, but not from CPT-hypersensitive Werner Syndrome cells or

from hydroxyurea or bleomycin treated U2OS cells. These

molecular data are consistent with the observation that CPT has

a specific effect on the survival of WS cells [19] when compared to

other DNA damaging agents, such as UV irradiation, hydroxy-

urea, bleomycin and alkylating agents [19]. These results

underline the complex nuclear protein trafficking that commences

after the cell is exposed to DNA damaging agents.

CPT not only increased the extra-nucleolar presence of WRNp

and nucleolin, but also induced the formation of multiple

nucleoplasmic foci where WRNp and nucleolin co-localize. This

interaction can be detected within 30 minutes after CPT treatment

and the number of nuclear complexes peaks at 2–4 hours after

CPT treatment and are largely gone from the nucleus after 8–24

hours of recovery, indicating that the WRNp/NCL foci are

consistent with CPT-induced damage repair complexes. We

should caution that this timeline is tentative, as some variability

in cell response to CPT has been observed and that the details

require further investigation.

The translocation of WRNp after treatment with topoisomerase

I inhibitors has been observed previously with other WRNp-

associated proteins. CPT induced WRNp translocation to

intranuclear repair foci that included the repair proteins Rad50

and RPA [52]. Nucleolin was found to inhibit replication in

response to stress conditions by binding RPA [53]. Interestingly,

heat-shock also translocates nucleolin to the nucleoplasm, where it

binds RPA for about two hours after treatment [13] and inhibits

DNA replication initiation [54]. WRNp also translocated from the

nucleolus to the nucleoplasm after treatment with the genotoxic

agent 4NQO [26] and under serum starvation [55]. Thus, certain

kinds of damage (CPT-induced DNA breaks, for example), prompt

the release from the nucleolus of many proteins involved in DNA

repair.

G4 tetraplex structures are found in rDNA, telomeric DNA and

IgG DNA, regions that have abundant nucleolin [56,57]. These

complex structures are unwound in vitro by the RecQ helicase

family members BLM, WRNp and Sgs1p [40,58,59]. Nucleolin

can also bind to G4 DNA with a kD = 0.4 nM [60], and is known

to promote the formation of c-MYC G4 DNA ([61]). Indeed, we

can see in our results that nucleolin efficiently prevents the

unwinding of G4 DNA by WRNp. WRNp probably binds G4

DNA via its RQC domain, similar to BLM and Sgs1p [62], and

binds the NCL C-terminal to the HDRC region (between residues

1236–1432), where we have located the nucleolin-binding region

of WRNp. Our EMSA results indicate that both WRNp and NCL

bind to G4 DNA, and that the RGG fragment of nucleolin shows

a high affinity to G4 DNA. Indeed, increasing RGG amounts

seem to reduce WRNp bound to G4 DNA, while increasing

amounts of nucleolin does not seem to have that effect. As

nucleolin appears to utilize its RGG region in order to bind both

G4 DNA and WRNp, the nucleolin-G4 DNA interaction is

perhaps stronger than the NCL-WRNp interaction, and that is

why nucleolin is unable to dislodge WRNp as can RGG. These

observations indicate a possible competitive mechanism for the

regulation of WRNp function by nucleolin: NCL binding to the

WRN nucleolar binding region might prevent WRN helicase

activity; subsequently, when the NCL-WRN complex is dissoci-

ated, for example, by NCL binding to a preferred substrate such as

G4 DNA, WRN helicase function is released from inhibition.

What sense can we make of the nucleolar to nucleoplasm

trafficking of these proteins in response to genomic stress? The

nucleolus was found to contain over 500 proteins [63], many of

which are unconnected to nucleic acid metabolism or processing

[9]. In response to several types of stress, the nucleolus is

depopulated of proteins, and there is a sharp increase in the

amount of these proteins in the nucleoplasm, as we have noted for

WRNp and NCL. We have previously suggested that the nucleolus

serves as a convenient depot for many proteins involved in the

response to DNA damage [34,64]. DNA damage activates these

quiescent proteins, perhaps via phosphorylation, and the nucleolar

complexes are rapidly disassociated, perhaps by VCP in an ATP

dependent process. In support of this scenario we note that both

WRNp and VCP are tyrosine phosphorylated in the nucleolus

after hydrogen peroxide treatment [26,65].

Rapid nucleolar protein complex dissociation after DNA

damage from CPT, for example, and dispersal to the nucleoplasm,

enables DNA damage response proteins such as WRNp and

nucleolin to greatly and rapidly increase in the nucleoplasm, where

they can be engaged in the formation of DNA repair foci in the

proper hierarchical sequence. We propose that nucleolin may

inhibit WRNp action in the nucleoplasm until it is required in the

DNA repair event. Thus, we find new WRNp-nucleolin complexes

(Figure 4 and Figure S2) or WRNp-topoisomerase complexes in

the nucleoplasm [51]. The relocation mechanism is a specific

response to CPT-induced stress. For example, in cells treated with

actinomycin D, both NCL (C23) and Nucleophosmin (B23)

remain in the nucleolus, while DNA helicase II left the nucleolus

[66,67]. Therefore, the specific effects on WRN and NCL caused

by CPT induced damage (DNA breaks), in which NCL and WRN

translocate from the nucleolus to the nucleoplasm and subse-

quently interact, is neither seen after transcriptional perturbation

(Actinomycin D), nor after inhibition of DNA synthesis (HU). We

have shown three lines of evidence that the WRN helicase and

nucleolin interact: reciprocal immunoprecipitation, immunofluo-

rescent co-localization and in vitro binding of purified proteins.

Furthermore, our results indicate that this interaction is probably

via their C-termini. In addition, we have examined the possible

role of NCL on WRN function utilizing WRN in vitro functional

assays. We show that NCL can inhibit the WRN helicase, but not

exonuclease function, and that they may co-regulate G4 DNA

unwinding in the response to certain DNA damaging agents such

as CPT. We have postulated that the NCL-WRNp complex may

be the inactive form of WRNp that is released from the nucleolus.

After increasing in the nucleoplasm and reaching a critical mass,

WRNp is released from inhibition and can participate in the DNA

repair processes at the required time and sequence. The precise

specificity and timing of this response to DNA damage will be the

focus of our future research.

Supporting Information

Figure S1 WRNp and NCL reciprocally co-immunopre-
cipitate. Nuclear extracts (A) or whole cell lysates (B) were

immunoprecipitated and immunoblotted as described in Materials
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and Methods. A. Equal amounts of TERT-1604 nuclear extract

were immunoprecipitated with anti-NCL mAb (lanes 1 and 7-

CalBiochem), or goat anti-WRN (lanes 2 and 8). Rabbit anti-

WRN (lanes 1 4) or rabbit anti-NCL (lanes 5 9) were used to

detect precipitated proteins and blots were visualized by enhanced

chemiluminescence. Control Rabbit IgG (rb IgG, Sigma) precip-

itates are shown in lanes 4 and 9. Lys-Nuclear pellet proteins

extracted by Triton X-100 solubilization (lanes 3 and 5); Pellet-

Triton6-100 insoluble fraction (lane 6). MW in kDa are indicated

at left. B. Cells as indicated were solubilized with Nonidet NP-40

and equal amounts of lysates were immunoprecipitated with rabbit

anti-WRN. Mouse anti-WRN (top) or mouse anti-NCL (bottom)

were used to detect precipitated proteins and blots were visualized

by enhanced chemiluminescence. AG11395 is a Werner Syn-

drome cell line that contains abnormal WRNp, which is not

precipitated by the anti-WRN. WB- Western blot; IP- immuno-

precipitation.

(TIF)

Figure S2 GFP-NCL and RFP-WRN co-localize in the
nucleoplasm after 1.0 mM CPT treatment. U2OS cells were

transfected with GFP-NCL (green) and RFP-WRN (red) as

described in Materials and Methods. Cells were treated with

1.0 mM CPT and immediately imaged in a time series obtained

with a Zeiss 710 confocal. Still images from a 120 minute time

series at 0, 3, 10 and 114 minutes after the addition of CPT. An

enlarged image of the same nucleoplasmic foci is shown below

each frame, illustrating the dynamic nature of the interaction.

(TIF)

Table S1 U2OS cells were transfected as described in Materials

and Methods and treated with either 1.0 or 15.0 mM CPT, and

images were collected as time series of a single field of cells or

multiple fields using the Tile function of the Zeiss Zen software.

Double-transfected cells were examined for the appearance of

nuclear foci containing both NCL (green) and WRN (red). These

cells were counted as ‘‘Nuclear Foci Coloc.’’, in which foci are

non-nucleolar foci in which co-localization was observed in CPT-

treated nuclei.

(DOC)

Movie S1 GFP-NCL and RFP-WRN co-localize in the
nucleoplasm after CPT treatment. A movie of the 240

minute time series of images captured after addition of 15 mM

CPT to U2OS cells that were previously transfected with NCL

and WRN. Time series was converted with Zen software (Zeiss) to

AVI format at 6 fps. Each frame represents 2 minutes. The still

images in Figure 4A and 4C were taken from this series.

(AVI)
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