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Abstract

To characterize the proteomic signature of chronological age, 1,301 proteins were

measured in plasma using the SOMAscan assay (SomaLogic, Boulder, CO, USA) in a

population of 240 healthy men and women, 22–93 years old, who were disease‐
and treatment‐free and had no physical and cognitive impairment. Using a

p ≤ 3.83 × 10−5 significance threshold, 197 proteins were positively associated, and

20 proteins were negatively associated with age. Growth differentiation factor 15

(GDF15) had the strongest, positive association with age (GDF15; 0.018 ± 0.001,

p = 7.49 × 10−56). In our sample, GDF15 was not associated with other cardiovas-

cular risk factors such as cholesterol or inflammatory markers. The functional path-

ways enriched in the 217 age‐associated proteins included blood coagulation,

chemokine and inflammatory pathways, axon guidance, peptidase activity, and apop-

tosis. Using elastic net regression models, we created a proteomic signature of age

based on relative concentrations of 76 proteins that highly correlated with chrono-

logical age (r = 0.94). The generalizability of our findings needs replication in an

independent cohort.
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1 | INTRODUCTION

Older age is the main risk factor for a myriad of chronic diseases,

and it is invariably associated with progressive loss of function in

multiple physiological systems. In some individuals, the combined

effect of physiological decline and diseases leads to physical and

cognitive disability. Despite its importance for health, most epidemi-

ological research considers aging merely as a confounder, a nuance

dimension to be accounted for and then discarded, under the

assumption that aging is unavoidable and unchangeable (Fried &

Ferrucci, 2016). This view is now changed. As the intrinsic biological

mechanism of aging is slowly revealed, there is hope that interven-

tions that slow aging and prevent or delay the onset of chronic dis-

ease and functional impairments can be discovered (Kennedy et al.,

2014; Lopez‐Otin, Blasco, Partridge, Serrano, & Kroemer, 2013).

A critical goal in the field of aging biomarkers is to identify

molecular changes that show robust patterns of change with normal

aging, with the assumption that departures from this “signature” pat-

tern provide not only information regarding future risk of pathology

and functional decline but also clues on compensatory mechanisms

by which our organism counteracts the effects of aging (Sierra,
*Members of the CHI consortium are listed in Appendix 1.
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Hadley, Suzman, & Hodes, 2009). Such a signature could be used

both to identify individuals in the trajectory of accelerated aging and

to track the effectiveness of interventions designed to slowdown

biological aging.

A challenge in this field is the need to differentiate between

aging and diseases. Most participants enrolled in epidemiological

studies include a significant number of individuals affected by

pathology or disability, and the proportion of such individuals

increase with age. Thus, it is difficult to dissect changes in biomark-

ers of normal aging from those of disease pathology.

DNA methylation and gene expression have been used to

develop molecular markers or signatures associated with chronologi-

cal age (Bocklandt et al., 2011; Hannum et al., 2013; Horvath, 2013;

Lin et al., 2016; Weidner et al., 2014). The “epigenetic clock,” a bio-

marker index that combines weighted information of a subset of

DNA methylation sites raised great interest because it is both

strongly associated with chronological age across multiple tissues

and populations and independent of age, predicts multiple health

outcomes, including cardiovascular disease, cancer, and mortality

(Chen et al., 2016; Levine et al., 2015; Perna et al., 2016). These

findings suggest that aging is associated with stereotyped and repro-

ducible molecular changes that can potentially be used to identify

individuals who are aging faster or slower than the average popula-

tion. However, the underpinnings of these molecular changes have

not been fully elucidated, at least in part because the effect of

methylation on DNA function, locally and distally from the methyla-

tion site, remains unclear (Declerck & Vanden Berghe, 2018).

A promising alternative to current methods may be to construct

a similar aging biomarker clock based on circulating proteins. Pro-

teins are attractive because they directly affect phenotypes and pro-

vide direct information on biological pathways that can be involved

in many of the physiological and pathological manifestations of

aging. However, performing discovery proteomics is challenging

because of the wide dynamic range of plasma proteins and because

of the interference from large, multiply charged proteins such as

albumin, apolipoprotein A1, and C‐reactive protein (Geyer, Holdt,

Teupser, & Mann, 2017). Attempts to address this challenge by

depletion of highly abundant proteins from plasma samples have

generated conflicting results, with some suggestions that proteins in

depleted samples are no longer representative of the those in the

original sample (Bellei et al., 2011). An alternative approach is to use

the SOMAscan assay, a technology that uses slow off‐rate modified

aptamers (SOMAmer)‐based capture to quantify multiple proteins in

human biological liquids, including plasma (Baird, Westwood, & Love-

stone, 2015; Di Narzo et al., 2017; Menni et al., 2015). Previous

studies using this approach were conducted in convenience samples

originally collected for purposes other than studying aging, and

included people affected by multiple diseases (Di Narzo et al., 2017).

It is not clear to what extent the results of those studies reflect age

independently of disease.

To address this issue, we conducted proteomic analyses using

the version of the SOMAscan assay that measured 1,301 proteins in

240 adults aged 22–93 years, free of major chronic diseases,

cognitive, and functional impairment. The goal was to identify pro-

teins associated with chronological age avoiding as much as possible

the effect of clinically detectable disease, examine their association

with several clinical characteristics, and further compare our results

to previous proteomic profile analyses that used the same technol-

ogy. We further constructed a proteomic signature of age to begin

exploring to what extent the proteome can predict chronological

age.

2 | RESULTS

2.1 | Association of proteins with chronological age

Proteomic profiling was conducted on 240 healthy men and women

between the ages of 22–93 years. The basic characteristics of the

subjects are displayed in Table S1. The association of 1,301 SOMA-

mers with chronological age was examined. There were 217 proteins

(20 negatively associated, 197 positively associated) associated with

age (p < 3.83 × 10−5) in the basic model adjusted for sex, study (Bal-

timore Longitudinal Study of Aging [BLSA] or Genetic and Epigenetic

Signatures of Translational Aging Laboratory Testing [GESTALT]),

race, and batch (Tables 1 and S2, Figure 1). Further adjustment for

body mass index (BMI), and serum creatinine resulted in 210 (22

negative, 188 positive) age‐associated proteins (Table S2). To explore

whether some of the proteins had nonlinear relationship with age,

we fitted a model that included an age square term (age2) to account

for nonlinearity. The proteins were then ranked by the variance

explained by the age term for proteins that were linearly correlated

with age, or the variance explained by the age plus age2 terms for

proteins that had evidence of nonlinearity (i.e., had significant age2

term). The proteins ranks based on p‐values in the linear model were

highly correlated with the protein rankings based on a mix of linear

and nonlinear models (r = 0.96). We concluded that overall, the lin-

ear model was adequate for our purpose. The protein with the

strongest age association was GDF15 (β[SE] = 0.018[0.001],

p = 7.49 × 10−56, Figure 2a) that showed positive association with

age. To validate the result obtained with GDF15, its plasma level

was measured in a subset of 88 subjects using ELISA. GDF15 level

assessed by ELISA strongly correlated with age (Figure 2b, β[SE] =

0.024[0.002], p = 3.83 × 10−20) confirming the results from the

SOMAscan. The correlation between GDF15 abundance measured

by the two methods was 0.821 (Figure 2b). Besides GDF15, the top

10 most significant proteins included pleiotrophin (PTN), ADAM

metallopeptidase with thrombospondin type 1 motif 5 (ADAMTS5),

follicle‐stimulating hormone (FSH; CGA, FSHB), SOST, chordin‐like
protein 1 (CHRDL1), natriuretic peptide B (NPPB), EGF‐containing
fibulin‐like extracellular matrix protein 1 (FBLN3), matrix metallopep-

tidase 12 (MMP12), and cathepsin V (CTSV) (Tables 1 and S2).

Studies have shown that the number of senescent cells increases

with aging in multiple human tissues, including circulating T cells (Liu

et al., 2009). Senescent cells are characterized by senescence‐associ-
ated secretory phenotype (SASP) that release inflammatory media-

tors, proteinases and other molecules in the surrounding niche, from
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where they are eventually released into circulation. Of a list of SASP

proteins reported in the literature, 72 were targeted by SOMAmers

(Table S3), and 21 of the 72 SASP SOMAmers were significantly

associated with chronological age, with an overall significant SASP

enrichment (p = 0.007; Figure S1).

2.2 | Proteomic signature of age

To create a proteomic predictor of chronological age, we fitted an

elastic net regression model to select a parsimonious cluster of

proteins of the 1,301 proteins measured that best predicted chrono-

logical age. We started by randomly splitting the study population

into two equally sized groups of 120 participants. The first group

was used as a training set and the second as a validation set. From

the randomly selected training set of 120 subjects, the elastic net

regression selected 76 proteins (Table S4). Of the 76 proteins

selected, 37 proteins were among the 217 age‐associated proteins.

In the validation set, the correlation between the fitted proteomic

age predictor and chronological age was r = 0.94 (Figure 3). The cor-

relation between predicted and observed age did not differ by sex

(data not shown). To determine the minimum number of proteins

required to create a meaningful a proteomic predictor, we fitted a

series of models in which we constrained the maximum number of

variables to be selected for the calculation of the age predictor in

the elastic net regression model (Table 2). This resulted in the gener-

ation of predictors with progressively fewer proteins. A total of 13

proteomic age predictors were created ranging from a model with

76 predictor proteins to only one protein, which was the GDF15

(Tables 2 and S4). The precision of the proteomic age predictor was

very high even with few proteins, with a correlation of 0.92 between

predicted and observed age with as few as 8 proteins. In fact, a pre-

dictor including just GDF15 had a relative high correlation with

chronological age at r = 0.82. The accuracy of the prediction, how-

ever, declined substantially when the number of proteins included in

the predictor was reduced (Table 2). With the full 76 protein predic-

tor, the mean absolute difference between predicted and observed

age was 5.7 years, while the 8‐protein model had a difference of

13.1 years, and the GDF15 only model had a difference of

16.6 years (Table 2). In the 76‐protein age predictor model, only half

of the proteins were among significant age‐associated proteins. As

the number of proteins included in the predictor decreases, higher

percentage of the selected proteins was associated with age, and for

predictors with <9 proteins, all the selected proteins were associated

with age in univariate analysis.

To evaluate how well the proteomic age predictor reflects age,

we examined the association of 76 proteins, 8 proteins, and GDF15

TABLE 1 Top 10 most significant SOMAmers associated with age

SomaId Gene ID UniProt Target

Model 1a Model 2b

Beta SE p Beta SE p

SL003869 GDF15 Q99988 MIC‐1 0.0177 0.0008 7.49E‐56 0.0174 0.0008 6.87E‐55

SL002704 PTN P21246 PTN 0.0128 0.0008 2.76E‐38 0.0127 0.0008 1.40E‐37

SL004626 ADAMTS5 Q9UNA0 ADAMTS‐5 0.0125 0.0008 3.77E‐36 0.0127 0.0008 6.60E‐36

SL000428 CGA FSHB P01215 P01225 FSH 0.0378 0.0025 8.17E‐36 0.0377 0.0026 8.15E‐35

SL007631 SOST Q9BQB4 SOST 0.0164 0.0011 7.00E‐34 0.0162 0.0011 1.32E‐33

SL009400 CHRDL1 Q9BU40 CRDL1 0.0119 0.0008 1.99E‐33 0.0118 0.0008 1.22E‐34

SL002785 NPPB P16860 N‐terminal pro‐BNP 0.0266 0.0022 2.25E‐26 0.0261 0.0022 7.49E‐26

SL006527 EFEMP1 Q12805 FBLN3 0.0071 0.0006 2.52E‐26 0.0070 0.0006 8.16E‐26

SL000522 MMP12 P39900 MMP‐12 0.0144 0.0012 7.59E‐26 0.0142 0.0012 4.25E‐25

SL006910 CTSV O60911 Cathepsin V −0.0116 0.0010 4.61E‐25 −0.0113 0.0010 5.61E‐24

Notes. aModel 1: log(SOMAmer)~age + sex + race + study + batch.
bModel 2: Model 1 + BMI + inverse of serum creatinine.

F IGURE 1 Associations of proteins with age. Volcano plot
displaying the association of 1,301 proteins with chronological age.
Protein values were log‐transformed and associations with age were
tested using a linear model adjusting for sex, race, study (BLSA or
GESTALT), and batch. The figure displays the effect size (beta
coefficient from the linear model), against significance presented as
the −log10 (p‐value)
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proteomic age predictors with 13 age‐associated clinical variables

(Table 3). With a few exceptions, all three proteomic age predictors

were associated with the clinical parameters in a direction consistent

with the associations observed with chronological age. When the

associations between proteomic age predictors and clinical parame-

ters were adjusted for chronological age, the associations were no

longer significant suggesting that the proteomic age predictors are a

good proxy of chronological age.

2.3 | Sex‐specific age associations

For eight proteins, the correlation with age was different between

sexes (Table S4, Figure 4). Not surprisingly, half of these proteins

were sex hormones (luteinizing hormone [LH], FSH, human chorionic

gonadotropin, sex hormone‐binding globulin [SHGB]). There was a

greater positive association of FSH, LH, and SHGB with age in

women compared to men (Table S5). There was a positive associa-

tion of SHGB with age that was significant only in men. The associa-

tion of tissue factor pathway inhibitor, vitamin K‐dependent protein

S, and insulin‐like growth factor binding protein 7 was positively

associated with age in women but not significant in men. At last,

netrin‐4 had a significant negative association with age in men but

not women.

2.4 | Functional annotation and enrichment analysis

The 217 age‐associated proteins were examined for patterns of

functional enrichment. The Kyoto Encyclopedia of Gene and Gen-

omes (KEGG) pathways enriched were “cytokine–cytokine receptor

interactions,” “complement coagulation cascades,” and “axon guid-

ance” (Table 4). There were many gene ontology (GO) biological pro-

cess (30), cellular component (14), and molecular function (12) terms

that were enriched among the 217 proteins (Table S6), many of

which had shared sets of proteins.

To better understand the patterns of co‐occurrence of proteins,

a functional annotation clustering analysis was conducted using

DAVID. There were five clusters of GO terms with enrichment

scores >3 (Table S7; Figure 5). The first cluster included four GO

terms and was defined by 19 proteins (Figure 5a), including blood

coagulation proteins. The second cluster comprised 56 proteins and

21 GO terms. The most frequently observed family of proteins in

this cluster was the CC chemokines that, together with the other

accompanying proteins, represent a protein signature of inflamma-

tion and chemokine response (Figure 5b). The third cluster included

three GO terms, defined by 17 proteins many of which are ephrin

proteins and receptors (Figure 5c). Together with other proteins in

the cluster such as netrin proteins, this cluster represents axon guid-

ance. The fourth cluster involved three GO terms, represented by 12

proteins, many of which are implicated in peptidase activity (Fig-

ure 5d). The fifth cluster included four GO terms and included 12

proteins. Most of the proteins are members of the TNF receptor

family involved in apoptosis (Figure 5e).

F IGURE 2 Correlation of GDF15 with age and validation with ELISA assay. (a) The most significant age association was observed for
growth differentiation factor 15 (GDF15), which was positively associated with age (β = 0.018 ± 0.001, p = 7.5 × 10−56). To validate
association of GDF15 using an independent assay, GDF15 abundance was measured with ELISA on a subset of 88 subjects. (b) GDF15
abundance measured with ELISA correlated with age (β = 0.018 ± 0.002, p = 3.83 × 10−20). (c) Plasma GDF15 measured by ELISA assay was
correlated with the measure from SOMAscan, and a correlation of 0.821 was found

F IGURE 3 Proteomic signature of age. Using elastic net
regression model, proteomic predictors of age were created with
variable numbers of predictor proteins in the model. This graphs
show the correlation between the predicted age on the y‐axis and
chronological age on the x‐axis for proteomic predictors with 76
predictor proteins. The correlation between predicted age using the
proteomic signature and observed age was 0.94
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3 | DISCUSSION

In this study, we used the SOMAscan assay to examine the plasma

proteomic profile of age in healthy humans. To reduce potential bias

from disease and maximize the chance to capture age‐related differ-

ences, we selected a sample of individuals spanning a wide age‐
range who were very healthy according to strict criteria originally

developed for enrollment in the BLSA (Shock et al., 1984). We iden-

tified 217 proteins significantly associated with age and show that a

precise proteomic predictor of age can be generated using a combi-

nation of these proteins. Of the age‐associated proteins, some, such

as the GDF15 and NPPB, have previously been described to increase

with age, but for many others their association with age has never

been previously reported. It is an interesting fact that some of the

classic aging biomarkers such as IL6, TNFα, and IGF‐1 were not

among the top proteins significantly associated with age. This finding

was surprising but may be explained by the exceptional health status

of the individuals enrolled in this study. Whether these proteins are

better correlated with age in a more representative population that

does not exclude persons affected by diseases and disabilities should

be explored in future studies.

Several proteomic studies of aging using earlier versions of the

SOMAscan platform have been reported. One of these studies was

conducted in a sample of women enrolled in the TwinsUK study

(Menni et al., 2015). In this study, 1,129 plasma proteins were

measured by SOMAscan in 206 women, and the top proteins

were tested for replication in 677 subjects from AddNeuroMed,

TABLE 2 Precision and Accuracy of proteomic predictors of age

No. of proteins
in model

Correlation between
predicted and
observed age

% proteins in the
predictor associated
with age (N)

Agepredicted |Agepredicted−Ageobserved|

Mean Min Max Mean SE

76 0.943 49 (37) 56.9 22.9 84.5 5.7 4.7

63 0.943 54 (34) 56.9 23.0 83.6 5.9 4.7

58 0.942 57 (33) 56.8 23.3 83.1 6.0 4.7

49 0.942 71 (35) 56.9 25.3 82.4 6.3 4.7

40 0.941 80 (32) 56.9 26.9 82.2 6.7 4.8

27 0.939 93 (25) 56.9 28.5 81.0 7.5 4.9

17 0.936 94 (16) 56.9 33.5 77.5 9.0 5.4

9 0.930 100 (9) 57.0 40.5 72.5 11.4 6.4

8 0.924 100 (8) 57.1 45.2 69.0 13.1 7.1

7 0.872 100 (7) 57.3 50.8 64.7 15.3 8.1

5 0.858 100 (5) 57.3 51.7 63.7 15.6 8.3

3 0.843 100 (3) 57.2 52.6 62.7 16.0 8.5

1 0.815 100 (1) 57.2 54.1 60.8 16.6 8.8

TABLE 3 Associations of age‐associated clinical parameters with proteomic signatures of age

Chronological age 76‐protein signature 8‐protein signature GDF15 signature

b SE p b SE p b SE p b SE p

IL‐6 (pg/ml) 0.006 0.003 0.037 0.007 0.004 0.063 0.017 0.010 0.093 0.069 0.034 0.044

CRP (μg/ml) 0.012 0.005 0.035 0.012 0.007 0.073 0.039 0.018 0.036 0.185 0.060 0.003

Total Cholesterol (mg/dl) 0.393 0.158 0.014 0.389 0.196 0.049 1.159 0.538 0.033 2.777 1.816 0.129

Glucose (mg/dl) 0.132 0.038 0.001 0.137 0.047 0.005 0.391 0.132 0.004 1.250 0.441 0.005

HBA‐1C 0.008 0.002 4.44E‐06 0.009 0.002 3.25E‐05 0.025 0.006 3.65E‐05 0.077 0.019 1.20E‐04

Blood Urea Nitrogen 0.089 0.018 2.51E‐06 0.120 0.021 1.60E‐07 0.342 0.059 4.84E‐08 0.972 0.204 5.42E‐06

Alkaline Phosphatase 0.207 0.092 0.027 0.169 0.115 0.142 0.545 0.315 0.086 1.946 1.049 0.066

Albumin (g/dl) −0.007 0.001 2.85E‐06 −0.007 0.002 2.12E‐04 −0.017 0.005 0.001 −0.059 0.016 4.88E‐04

Waist (cm) 0.193 0.047 7.01E‐05 0.185 0.059 0.002 0.518 0.162 0.002 2.147 0.528 8.95E‐05

Grip Strength (kg) −0.191 0.039 2.67E‐06 −0.216 0.048 1.84E‐05 −0.583 0.133 2.70E‐05 −1.763 0.452 1.63E‐04

Walking speed (m/s) −0.004 0.001 1.07E‐04 −0.004 0.001 0.005 −0.012 0.004 0.001 −0.047 0.012 1.25E‐04

Systolic Blood Pressure

(mmHg)

0.293 0.061 4.17E‐06 0.333 0.075 2.28E‐05 0.813 0.211 1.98E‐04 3.099 0.692 1.80E‐05

Red Blood Cell Distribution

Width

0.013 0.003 1.21E‐04 0.013 0.004 0.002 0.036 0.011 0.002 0.084 0.038 0.030
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Alzheimer's Research UK, and Dementia Case Registry cohorts.

There were 13 age‐associated proteins in the discovery, 10 of which

were replicated in the independent samples. In our study, 12 of the

13 proteins that were age‐associated in the TwinsUK study were

confirmed to be associated with age. Two other proteomics studies

of age were performed in cerebral spinal fluid (CSF) and serum (Baird

et al., 2015; Di Narzo et al., 2017). In the first study, 800 proteins

were measured in CSF from 90 cognitive normal participants

between 21 and 85 years old (Baird et al., 2015). Of these, 248 pro-

teins exhibiting a signal twofold greater than the background were

tested for association with age, of which 81 were found to be asso-

ciated with age. In the second study, 1,128 serum proteins were

measured in 88 subjects with ulcerative colitis, 84 subjects with

Crohn's disease, and 15 healthy subjects (Di Narzo et al., 2017).

There were 130 and 32 age‐associated proteins in patients with

ulcerative colitis and patients with Crohn's disease, respectively. It is

difficult to directly compare the results from the latter two studies

and the present work because of differences in study subjects

(healthy vs. disease), biological sample used (plasma vs. CSF and

serum), and protein coverage due to the different versions of the

SOMAscan used. Due to these differences, less than half of the age‐
associated proteins reported in CSF and serum were confirmed in

the plasma. It would be of interest to conduct a study examining the

proteomic profile in different biological samples within the same

individuals to determine whether different proteomic signatures of

age differ by sample type.

In our study, we identified many other proteins associated with

age that were not previously described using this technology. The

F IGURE 4 Age‐associated proteins by sex. Association between protein abundance and age differed by sex for eight proteins: (a) Follicle‐
stimulating hormone (FSH), (b) sex hormone‐binding globulins (SHBG), (c) tissue factor pathway inhibitor (TFPI), (d) luteinizing hormone (CGA/
LHB), (e) vitamin K‐dependent protein 5 (PROS1), (f) human chorionic gonadotropin (CGA/CGB), (g) netrin 4 (NTN4), and (h) insulin‐like growth
factor binding protein 7 (IGFBP7). Observations from women are displayed by open triangles and men in closed circles. Regression lines within
women (dotted line) and men (solid line) are also displayed

TABLE 4 Top KEGG terms enriched in 217 age‐associated SOMAmers

Term FDR Genes

hsa04060:Cytokine–cytokine
receptor interaction

5.31E‐10 IL1R2, CCL3, CXCL9, TNFSF15, TNFRSF8, CCL7, CXCL10, TNFRSF1A, TNFRSF1B, CCL3L1, IL10RA,

TNFRSF19, IL15RA, FAS, EGF, IL13RA1, EPO, EGFR, CCL4L1, CCL11, AMH, TNFRSF9, RELT, IFNB1,

CXCL16, VEGFA, IL5RA

hsa04610:Complement and

coagulation cascades

9.91E‐07 PLAT, CD55, FGG, FGA, FGB, SERPINF2, CD59, C6, C5, TFPI, SERPING1, CFD, PLAU, PLAUR

hsa04360:Axon guidance 2.74E‐04 NRP1, EFNB3, PLXNB2, EFNA2, EFNB1, EFNB2, NTN1, EPHA1, EPHA2, EPHB2, SEMA6B, SEMA3E,

EFNA5, UNC5C, EFNA4
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most significant age‐associated protein was growth differentiation

factor 15 (GDF15), a member of the transforming growth factor‐b
cytokine superfamily that plays an essential role in regulating the cel-

lular response to stress signals in cardiovascular diseases and is pro-

duced by cardiac myocytes in response to ischemia (Dominguez‐
Rodriguez, Abreu‐Gonzalez, & Avanzas, 2011). GDF15 levels are high

in animal models with mitochondrial dysfunction, patients affected

by mitochondrial disease, and in older than in younger persons, pos-

sibly as a response to impaired calcium homeostasis and excessive

oxidative stress (Davis, Liang, & Sue, 2016; Fujita, Taniguchi, Shinkai,

Tanaka, & Ito, 2016). It is an interesting fact that the increase in

GDF15 with aging found in this study is consistent with previous

data showing that mitochondrial function decline with aging in

humans (Choi et al., 2016). In our cross‐sectional study, the levels of

GDF15 were not associated with any cardiovascular disease risk fac-

tors including lipids, inflammation markers, blood pressure, and mea-

sure of glucose homeostasis. This suggests that GDF15 may not be

a strong marker of CVD in exceptionally healthy individuals.

Functional enrichment analysis highlighted some key pathways

that are important in aging. The GO term clusters targeted included

blood coagulation, chemokine and inflammatory pathways, axon

guidance, peptidase activity, and apoptosis. The two main proteins in

the blood coagulation cluster were fibrinogen and fibronectin, both

previously shown to increase with age, and both related with a pro‐
inflammatory state (Folsom et al., 1991; Labat‐Robert, Potazman,

Derouette, & Robert, 1981). A second cluster included a number of

peptidases, with substantial overlap with the blood coagulation clus-

ter, and included SERPINF2, AHSG, SERPING1, SERPINA3, and

F IGURE 5 Functional annotation
clustering using Database for Annotation,
Visualization and Integrated Discovery
(DAVID). Pathway enrichment analysis was
conducted using DAVID, and to better
visualize the shared proteins between the
top GO annotation terms, functional
annotation clustering was conducted on
GO “biological processes,” “molecular
function,” and “cellular component” terms.
The GO terms and proteins shared among
the terms for the top five clusters are
displayed
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TIMP1 suggesting that this second group of proteins taps into some

different aspects of blood clotting pathways. Of note, increased

levels of all proteins included in the second cluster have been associ-

ated with major age‐related conditions. SERPINF2 modulates insulin

sensitivity and is associated with cardiovascular diseases and dia-

betes (Aso et al., 2000; Uitte de Willige et al., 2011). SERPING1

modulates the complement cascade and is important in many inflam-

matory diseases, including macular degeneration (Ennis et al., 2008).

SERPINA3 has been identified as a specific biomarker of delirium

and Alzheimer's disease (Padmanabhan, Levy, Dickson, & Potter,

2006; Poljak et al., 2014). TIMP1 has been involved in age‐associ-
ated renal sclerotic and impairment kidney angiogenesis (Tan & Liu,

2012). In addition, TIMP1 (together with TIMP3) regulate the extra-

cellular matrix and strongly affect stem cell function and survival

(American College of Emergency, 2015; Jackson et al., 2015).

Enrichment analysis also reveals the changes in protein levels of

various CC chemokine family. For many of these chemokine pro-

teins, there are reports that aging affect both their gene expression

and protein levels (Mo et al., 2003; Whiting et al., 2015; Yung &

Mo, 2003). One of these proteins, CCL11 or eotaxin has been pro-

posed as an important factor in neurogenesis in parabiotic models of

aging in mice models (Villeda et al., 2011). Our study provides sup-

portive evidence that these class of proteins change with age in

healthy older adults.

The main proteins that define the axon guidance cluster are

ephrin proteins that are important in axonal growth during develop-

ment (Fiore & Puschel, 2003). In adults, some ephrin proteins have

been implicated in cancer development (Royet et al., 2017). The

implication of changes in ephrin proteins in healthy proteins should

be investigated further.

Consistent with the hypothesis of increase apoptosis with aging,

one of the enriched functional clusters involved several proteins

from the TNF receptor superfamily. The TNF receptor superfamily

plays an important role in regulating cell fate, not only apoptosis but

also proliferation, and morphogenesis (Aggarwal, Gupta, & Kim,

2012). The TNF receptors can be categorized as activating receptors

(such as TNFRSF1B) that control the nuclear factor κB and mitogen‐
activated protein kinase (MAPK) pathways, and death receptors

(such as FAS) that contain a death domain that induces cell death.

TNFR1 (TNFRSF1A) has both activating and death receptor func-

tions and can affect cell metabolism, differentiation, and proliferation

(Li, Yin, & Wu, 2013). Soluble TNF receptor 1 (TNFRSF1A) and 2

(TNFRSF1B) have been associated with advance age and aging

pathologies such as kidney function, fractures, and cognitive perfor-

mance (Cauley et al., 2016; Gao et al., 2016; Schei et al., 2017). Our

study results would suggest that there may be a more coordinate

change in the TNF receptor family with age that may be important

determinant of healthy aging.

We sought to examine whether there was enrichment of pro-

teins involved in important aging phenomenon that may not be

annotated in established databases. There is a growing interest in

understanding the role of senescence in aging. It has been hypothe-

sized that many age‐related, degenerative pathologies are driven at

least in part by the accumulation of cell senescence (Campisi &

Robert, 2014). An elegant study has shown that clearance of senes-

cent cells can delay age‐associated conditions such as cataract, lor-

dokyphosis, muscle mass and function, and increase longevity in

mice (Baker et al., 2011). Several studies have documented that

senescence cells release a variety of bioactive molecules including

interleukins, chemokines, growth factors, secreted proteases, and

extracellular matrix components into the extracellular matrix.

Although a comprehensive list of SASP proteins is still not available,

in our study we found an enrichment of SASP proteins that has

been reported in the literature, suggesting that senescence increases

with aging even in subjects who remain relatively healthy. It is possi-

ble that these blood biomarkers of age may be used to monitor the

trajectories of aging.

Using data from multiple proteins, we created a proteomic signa-

ture that is tightly correlated with age. It is an interesting fact that

the precision of the proteomic age predictor was not compromised

by reducing the number of proteins used in the predictor; however,

with fewer proteins, there was a substantial decline of accuracy. Our

results suggest that there are stereotypical biological changes that

occur with aging that are reflected by circulating proteins. Regardless

of whether these protein modifications reflect biological aging or

track compensatory mechanisms triggered by aging, similarly to the

epigenetic clock, our signature accurately predict age. It is critical

that the proteomic “signature” of age identified in our analysis be

examined in different populations, including samples representative

of the general population.

There are several important limitations to this study related to

the SOMAscan technology and the study population. First, while this

SOMAscan platform assessed 1,301 proteins, this is by no means a

comprehensive list of proteins in the plasma. Most likely, there are

other key aging proteins missing from this analysis; thus, our results

do not comprehensively represent the aging proteome. For example,

we observed that most of age‐associated proteins show increased

abundance with age. This trend was also observed in the previous

study of aging in plasma using the SOMAscan platform (Menni et al.,

2015). It is unlikely that this is a biological phenomenon but rather

an artificial observation based on the proteins that are targeted by

the SOMAmers. Other proteomic aging studies in humans using

technology such as two‐dimensional gel electrophoresis (Byerley et

al., 2010) or quantitative mass spectrometry (Waldera‐Lupa et al.,

2014) showed an equal number of age‐associated proteins that

decreased as well as increased with age. Second, the SOMAscan is

not an absolute measure of proteins, and therefore, we cannot make

comparisons between proteins. Third, the accuracy of the protein

specificity revealed by the SOMAscan technology is still controver-

sial (Schafer et al., 2016). While the aptamers are designed to mea-

sure proteins in their native confirmation, there is still a possibility of

cross‐reactivity for proteins with high similarity. We validated the

measure and the age association for our top protein GDF15 by com-

paring values obtained with the SOMAScan with those obtained by

ELISA. Nevertheless, substantial work remains to be done to validate

the other proteins. Large aging proteomic studies conducted with
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different technologies are needed to provide a comprehensive pic-

ture of the aging proteome in addition to validate our findings. A

substantial step in this field is to overcome the current limitations of

LC‐MS approached to study proteomics in plasma to obtain a com-

prehensive profile in this highly accessible biological fluid. At last,

our study involved individuals that were exceptionally healthy, which

is an advantage of our approach, but it can also be a limitation. As

we have applied the same selection criteria across the age spectrum,

it is most likely that the younger and older populations are different.

The older subjects in this study are by all accounts healthy agers,

while the likelihood of the younger subjects to be as healthy in older

age is not guaranteed. In addition, the healthy older subjects in this

study are not generalizable to the average American population.

In summary, using a discovery proteomic approach, we identified

over 200 proteins that are robustly associated with age. Our findings

could provide a window to a new area of investigation with enor-

mous potential. Future studies are needed to replicate and expand

our findings in a larger population and, possibly, in representative

cohorts that are followed for many years. Under the assumption that

the age‐proteomic profile summarizes the biological mechanisms of

aging, one could anticipate that such profile would predict many of

the aging phenotypes as well as multimorbidity, disability, and death.

If future studies show that longitudinal changes in the age‐proteomic

profile track the phenotypic manifestations of aging, plasma pro-

teomics may shed light into the biology of aging and contribute to

the development of interventions aimed at preventing the burden of

disease and disability in older persons.

4 | EXPERIMENTAL PROCEDURES

4.1 | Study population

This study was conducted in healthy men and women participating

in the BLSA and the GESTALT studies.

The BLSA study is a population‐based study aimed at depicting

physiological and functional trajectories with aging and discover fac-

tors that affect those trajectories. The study evaluates contributors

of healthy aging in persons 20 years old and older (Shock et al.,

1984). Starting in 1958, the BLSA study follows participants for life,

at intervals from 1 to 4 years, depending on their age. The GESTALT

study began in April 2015 and was aimed at discovering new molec-

ular biomarkers of aging in different cell types and develop new phe-

notypes that are highly age sensitive and can be potentially applied

in epidemiological studies of aging. In both BLSA and GESTALT, par-

ticipants 20 years or older are recruited from the DC/Baltimore

metropolitan area, and only if they are considered healthy based on

stringent criteria, including absence of any chronic disease (with the

exception of controlled hypertension) and cognitive or functional

impairment (detailed in Appendix S1). For the GESTALT study, base-

line sample were run in the SOMAscan Assay. For the BLSA study,

samples collected at times when all healthy criteria were still met

were selected. Both studies share the sample protocol for medical

assessment and biochemical measurements and were conducted by

expert research nurses and physicians. The study protocol for both

studies was reviewed and approved by the Internal Review Board of

the National Institute for Environmental Health Sciences (NIEHS)

and all participants provided written informed consent.

Information about lifestyle factors such as smoking and years of

education were assessed by self‐report. Waist circumference, BMI

(ratio of weight in kg to square of height in meters), and blood pres-

sure were objectively assessed during a standard medical exam. Grip

strength was measured three times on each of the right and left

hand. The highest average grip strength was used. Usual gait speed

was measured in two trials of a 6‐m walk; the faster time between

the two trials was used in the analysis.

Blood tests were performed at a Clinical Laboratory Improve-

ment Amendments certified clinical laboratory at Harbor Hospital,

home of the National Institute of Aging (NIA) intramural research

program clinical unit. White blood cell count and red blood cell

distribution width was measured as part of the standard CBC

using SYSMEX SE‐2100 (Sysmex, Kobe, Japan). Albumin was mea-

sured using dye binding BCG, blood urea nitrogen with diazo cou-

pling, total cholesterol, alkaline phosphatase, creatinine with

enzymatic methods, HDL and LDL with dextran magnetic, triglyc-

erides with colorimetric methods, glucose with glucose oxidase

using the Vitros system (Ortho Clinical Diagnostics, Raritan, NJ,

USA). Serum inflammatory markers IL6 (R&D System, Minneapolis,

MN, USA) and CRP (Alpco, Salem, NH, USA) were measured with

enzyme‐linked immunosorbent assay (ELISA). HbA1C levels were

measured using liquid chromatography by an automated DiaSTAT

analyzer (Bio‐Rad, Oakland, CA, USA). In a subset of 88 subjects,

plasma GDF15 was measured using Quantikine ELISA (Human

GDF‐15; R&D Systems).

4.2 | Proteomic assessment

Proteomic profiles for 1,322 SOMAmers were assessed using the

1.3K SOMAscan Assay at the Trans‐NIH Center for Human

Immunology and Autoimmunity, and Inflammation (CHI), National

Institute of Allergy and Infectious Disease, National Institutes of

Health (Bethesda, MD, USA). The 1,322 SOMAmer Reagents, 12

hybridization controls and 4 viral proteins (HPV type 16, HPV type

18, isolate BEN, isolate LW123), and 5 SOMAmers that were

reported to be nonspecific (P05186; ALPL, P09871; C1S, Q14126;

DSG2, Q93038; TNFRSF25, Q9NQC3; RTN4) were removed leaving

1,301 SOMAmer Reagents in the final analysis. There are 46 SOMA-

mer Reagents that target multicomplex proteins of 2 or more unique

proteins. There are 49 uniprot IDs that are measured by more than

one SOMAmer Reagent. Thus, the 1,301 SOMAmer Reagents target

1,297 Uniprot IDs. Of note, there are four proteins in the final pro-

tein panel that are rat homologues (P05413; FABP3, P48788;

TINNI2, P19429; TINNI3, P01160; NPPA) of human proteins.

The experimental process for proteomic assessment and data

normalization has been previously described (Candia et al., 2017).

The data reported are SOMAmer Reagent abundance in relative flu-

orescence units (RFU). The abundance of the SOMAmer Reagent
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represents a surrogate of protein concentration in the plasma sam-

ple.

Data normalization was conducted in three stages. First,

hybridization control normalization removes individual sample vari-

ance on the basis of signaling differences between microarray or

Agilent scanner. Second, median signal normalization removes inter-

sample differences within a plate due to technical differences such

as pipetting variation. At last, calibration normalization removes vari-

ance across assay runs. Further, there is an additional interplate nor-

malization process that utilizes CHI calibrator that allows

normalization across all experiments conducted at CHI laboratory

(Candia et al., 2017). A interactive Shiny web tool was used during

the CHI QC process (Cheung et al., 2017).

4.3 | Statistical analysis

Protein RFU values were natural log‐transformed and outliers outside

4 SD were removed. Association of each protein with chronological

age was assessed using linear regression adjusted for sex, study (BLSA

or GESTALT), plate ID, and race (white, black, other). A second model

was examined with further adjustments for white blood cell counts,

BMI, and creatinine. To test for differences in age–protein association

by sex, an age by sex interaction term was included in the base model.

A Bonferroni corrected p‐value of 3.84 × 10−5 (0.05/1301) was con-

sidered significant for the analysis of 1,301 SOMAmer Reagents. To

test for potential nonlinear relationship of protein with age, a quadra-

tic (age2) term was included in the model. This was carried out by run-

ning three regression models. Model 1 is a base model of proteins

predicted by covariates (sex, study, plate ID, and race). Model 2 is a

model of protein predicted by age and covariates in model 1. Model 3

is a model of protein predicted by age and age2 with covariates from

model 1. The proteins were then re‐ranked based on variance

explained as follows: (a) If the coefficient for age2 was not significant

(p > 0.05), then the variance explained was the differences between

adjusted R2 from model 2 and model 1; (b) if the coefficient for age2

was significant, the variance explained was the difference between

adjusted R2 from model 3 and model 1.

To determine enrichment of cell senescence proteins, a list of

SASP proteins were compiled based on prior research (Coppe,

Desprez, Krtolica, & Campisi, 2010; Coppe et al., 2008; Lasry & Ben‐
Neriah, 2015). There were 72 unique SOMAmer Reagents that rec-

ognized proteins previously reported as SASP proteins. Significant

enrichment of SASP proteins among age‐associated proteins was

determined using a Fisher's exact test.

4.4 | Proteomic signature of age

To construct a proteomic age predictor, a penalized regression model

was implemented using the R package glmnet. First, a training set

was selected by stratified random sampling method selecting 24 sub-

jects from each of the 15‐year age strata (20–35, 35–50, 50–65, 65–
80, 80+ years). The remaining 120 subjects were used as a valida-

tion sample. In the training dataset, chronological age was regressed

on 1,301 log‐transformed protein abundances. The alpha value was

set to 0.5 (for elastic net regression) and a lambda of 0.8767859

was selected using a 10‐fold cross‐validation on the training set

using the cv.glmnet function. The resulting age‐prediction model

from the penalized regression was applied to the validation data and

the correlation between predicted and chronological age was exam-

ined.

Proteomic age predictor with varying number of predictor pro-

teins was created to explore the minimum number of proteins

needed to create a meaningful age predictor. This was carried out

by constraining the maximum number of variables selected using the

dfmax option in the training set. A total of 12 additional age predic-

tors were created with 63, 58, 49, 40, 27, 17, 9, 8, 7, 5, 3, or 1 pro-

teins in the model. These age predictor models were applied to the

validation dataset to check for the correlation between predicted

and chronological age.

The association between the 13 proteomic age predictors with

13 age‐associated clinical phenotypes (IL‐6, CRP, total cholesterol,

fasting glucose, HBA1C, blood urea nitrogen, alkaline phosphatase,

serum albumin, waist circumference, grip strength, usual walking

speed, systolic blood pressure, and red blood cell distribution width)

was tested using multiple linear regression adjusting for chronologi-

cal sex, study (BLSA or GESTALT), and race (white, black, other).

Two clinical variables (IL‐6 and CRP) were natural log‐transformed to

achieve near normality. For this analysis, a p‐value <0.05 was con-

sidered as statistically significant.

4.5 | Functional annotation and enrichment analysis

To explore whether certain biological processes, molecular function

or cellular components are enriched among the proteins that were

found significantly correlated with age, a gene enrichment analysis

was run on the 217 age‐associated proteins using the Database for

Annotation, Visualization and Integrated Discovery (DAVID

https://david.ncifcrf.gov/) tool (Dennis et al., 2003). The GO, KEGG

pathway enrichment, and functional annotation clustering (Huang et

al., 2007) were conducted using default DAVID parameters. Enriched

GO and KEGG pathways were considered significant at FDR or Ben-

jamini–Hochberg corrected p < 0.05.
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