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Abstract

Recently, genome-wide association studies (GWAS) have linked the human LIN28B locus to 

height and timing of menarche [1-5]. LIN28B and its homolog LIN28 (hereafter, LIN28A) are 

functionally redundant RNA-binding proteins that block let-7 microRNA (miRNA) biogenesis 

[6-9]. lin-28 and let-7 were discovered in C. elegans as heterochronic regulators of larval and 

vulval development, but recently have been implicated in cancer, stem cell aging, and 

pluripotency [10-13]. The let-7 targets Myc, Kras, Igf2bp1 and Hmga2 are known regulators of 

mammalian body size and metabolism [14-18]. To explore the Lin28/let-7 pathway in vivo, we 

engineered transgenic mice to express Lin28a and observed increased body size, crown-rump 

length, and a delayed onset of puberty. While investigating metabolic and endocrine mechanisms 

of overgrowth, we observed increased glucose metabolism and insulin sensitivity in these 

transgenic mice. We report a mouse that models the human phenotypes associated with genetic 

variation in the Lin28/let-7 pathway.

To investigate Lin28a function in vivo, we generated a transgenic mouse strain that 

expresses the M2 reverse tetracycline transactivator (M2-rtTA) from the Rosa26 locus and 

Flag-tagged mouse Lin28a from the Collagen 1a1 (Col1a1) locus (Fig. 1a) [19]. We 

observed that mice carrying the Lin28a transgene (Lin28a Tg) were larger than non-

transgenic littermates, even in the absence of the rtTA transgene and/or doxycycline 

induction. Transgene-bearing animals also had wider facies and coarser hair (Fig. 1b). 

Lin28a Tg animals showed an increased growth rate and in adulthood were heavier and 

longer (Fig. 1c-d). Newborn wild-type (WT) and Lin28a Tg pups were the same size (Fig. 

S1a). Differences in weight and crown-rump length became apparent after weaning, and the 

increased growth of Tg mice was characterized by a prolonged growth period with higher 

plateaus for height and weight. In contrast, we found that Lin28a knockout mice weigh 20% 

less at birth than WT pups, but do not survive long enough for further analysis (Fig. S1b).

DEXA imaging revealed no change in percentage body fat or lean mass in Lin28a Tg mice, 

but did show increased bone mineral content and density (Fig. 1e). Organ mass was 

increased in relative proportion to total body weight, suggesting appropriate regulation of 

organ size relative to overall body growth (Fig. 1f). To control for any possible effects of 

doxycycline induction of the engineered Col1a1 locus, we generated a mouse strain using 

the KH2 embryonic stem cell (ESC) line without a targeted transgene. After 5 weeks of 

doxycycline, the WT, induced, and un-induced mice containing the engineered Col1a1 allele 

showed no differences in weight (Fig. S1c). Taken together, our data show that Lin28a Tg 

mice possess increased body size, a phenotype associated with genetic variation in the 

human LIN28B locus.
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Given the recent GWAS linking LIN28B to later age at menarche, we investigated the timing 

of reproductive maturity in these mice. Vaginal opening (VO) is a key milestone in sexual 

development and a reliable marker for the onset of murine puberty [20]. In Lin28a Tg mice, 

we observed a 2.24 and 2.18 day delay in VO in the CD-1 and C57BL/6J strains, 

respectively (Table 1 and Fig. 2a-b; both p < 0.002). Puberty was delayed despite the fact 

that Lin28a Tg mice were heavier at VO for both strain backgrounds (Table 1 and Fig. 2c; 

both p < 0.0001). At day 26 of age, uterine plus ovarian mass was greater in the WT mice, 

indicating delayed sexual development in Tg mice (Fig. 2d; p < 0.002). WT and Lin28a Tg 

mice achieved first estrus at day 27.3 and day 31.8, respectively (Fig. 2e; p = 0.0106). 

Furthermore, mating experiments revealed that Lin28a Tg animals had a ~3 day delay to 

date of first litter (Fig. 2f; p = 0.0351), correlating well with the delays in VO and first 

estrus. We noted that the size of the first litter was markedly larger in the Tg versus WT 

animals (16.4 vs. 9.67; p = 0.0002) (Fig. 2g), though overall fertility was no different over 

the first three months of life, indicating that altered timing of sexual maturation was not due 

to reproductive incompetence.

We then analyzed Lin28a transgene and let-7 expression in various organs. Normally, both 

Lin28a and Lin28b are highly expressed in early murine embryogenesis until E10.5. 

Thereafter, their patterns diverge: Lin28b is expressed in the fetal liver, blood, and brain, 

while Lin28a is expressed in the intestinal crypts, muscle, heart, testes, and ovary [21]. By 

RT-PCR, combined transgene and endogenous Lin28a mRNA expression was increased in 

multiple organs in the Tg mice, resulting from ectopic expression of the Lin28a transgene 

from the Col1A1 locus in both neonates and adults (Fig. 3a-b). In adults, there was a 7-fold 

Lin28a mRNA increase in the skeletal muscle, a 5-fold increase in the ovary, and a 4-fold 

increase in the hypothalamus (Fig. 3a). In the neonatal limb, which contains skin and 

muscle, there was a 3-fold increase (Fig. 3b). These fold changes were small, considering 

that endogenous Lin28a is expressed in these tissues. In the muscle, skin and neonatal limb, 

the additional Lin28a protein functioned to suppress let-7 processing (Fig. 3c-d). In contrast, 

let-7 levels were preserved in the liver, where Lin28a is absent (Fig. 3c-d). To corroborate 

these results, immunohistochemistry (IHC) was used to show increased Lin28a protein in 

skin and muscle (Fig 3e), but not in other tissues (Fig. S2). Within the hypothalamic-

pituitary-gonadal axis (HPG axis), endogenous Lin28a is normally only expressed in the 

pituitary and ovary. Despite over-expression of Lin28a in the hypothalamus and ovary (Fig. 

3a), we found no decrease of let-7a or let-7g in the HPG axis, demonstrating that Lin28a and 

let-7 are uncoupled in some tissues(Fig. 3f).

In a separate study, we showed that doxycycline induction of Lin28a expression expands 

transit amplifying cell numbers in a cell autonomous manner in the intestinal crypts, blood, 

and skin (Viswanathan et al., unpublished data), supporting the hypothesis that increased 

progenitor cell proliferation leads to organ and whole body enlargement. Doxycycline 

induction in Lin28a Tg animals leads to rapid death associated with marked gut pathology, 

thus precluding the analysis of growth phenotypes associated with higher levels of Lin28a. 

The un-induced Tg mice exhibited thickened skin, larger bones, and proportionally enlarged 

visceral organs. Microscopically, we noted hyperplasia of the skin and bone (Fig. 3g), but no 

differences in visceral organ histology (Fig. S2 and S3). Tg livers are 50-60% larger than 
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livers from WT littermates (Fig. 1f), and show increased proliferation as assayed by Ki-67, 

but no increase in cell size (Fig S3a-c). Skeletal muscle cell diameters were also the same 

(Fig. S3c). To determine if Lin28a, LIN28B or let-7 could cause cell hypertrophy, we 

induced these genes in three doxycycline-inducible ESCs, and observed that cell size was 

unaffected (Fig. S3d). These data show that Lin28a mediates organ overgrowth by 

increasing cell numbers rather than cell size.

The proportional overgrowth suggested that endocrine or metabolic mechanisms might be 

governing organismal growth. We failed to observe pituitary adenomas and serum growth 

hormone and Igf1 were not elevated (Fig. S4), ruling out these etiologies of gigantism. 

Lin28a has been shown to enhance protein translation of Igf2, whose loss of imprinting 

causes a human overgrowth disorder called Beckwith-Wiedemann Syndrome (BWS) [22, 

23]. We found a ~20-fold increase of Igf2 mRNA in liver and a 2-fold increase in muscle 

(Fig. 4a). To determine if Igf2 was driving overgrowth, we crossed Lin28a Tg females to 

Igf2 null males and noted that Lin28a Tg mice lacking Igf2 were still overgrown (Fig. S5a). 

We confirmed that Igf2 coding mRNA was absent (Fig. S5b), ruling out an Igf2 dependent 

mechanism.

BWS patients also exhibit hypoglycemia, leading us to test if enhanced glucose utilization 

was contributing to overgrowth [24]. We first found that fasting and fed glucose was lower 

in the Tg mice (Fig. 4b-c). Using the glucose tolerance test, we showed that both males and 

females cleared glucose more efficiently (Fig. 4d-e). Using the insulin tolerance test, we 

found that Tg mice also had increased insulin sensitivity (Fig. 4f-g). To show that the lower 

glucose was due to an increase in peripheral tissue sensitivity rather than an increase in 

secreted insulin, we showed that insulin levels at fasting and thirty minutes after a glucose 

challenge were both lower in Tg mice (Fig. 4h). Consistent with a chronically decreased 

need for insulin, islets were smaller in transgenic animals at two ages (Fig. 4i), further 

supporting the hypothesis that Lin28a mediates enhanced glucose uptake in peripheral 

tissues. Importantly, the Lin28a Tg mice lacking Igf2 still showed enhanced glucose uptake 

and lower fed state glucose (Fig. S5c-d), demonstrating that this phenotype was not Igf2 

dependent.

Because Lin28a is normally expressed in muscle, a major organ for glucose processing, and 

because the Tg mice express 7-fold more Lin28a in muscle, we reasoned that over-

expression in muscle might drive increased glucose uptake. We over-expressed Lin28a in 

C2C12 myoblasts, differentiated them for one week, and found increased 2-deoxy-D-[3H] 

glucose (2-DG) uptake relative to controls (Fig. 4j). In contrast, shRNA knockdown of 

Lin28a in C2C12 led to a reduction in labeled glucose uptake (Fig. 4k), demonstrating that 

Lin28a is both necessary and sufficient for enhanced glucose uptake in these cells. To 

identify mechanisms involved in growth and glucose metabolism, we performed whole 

genome mRNA expression analysis in five week old skeletal muscle. Using gene-set 

enrichment analysis [25, 26], we found that expression signatures associated with let-7 

targets, hypoxia, and the Ras pathway were most significantly upregulated, while six of the 

fifteen most down-regulated sets involved oxidative phosphorylation or mitochondrial genes 

(Fig. 4). We hypothesized that increased glucose uptake, increased activity of hypoxia 

pathways and decreased oxidative phosphorylation represented an increase in glycolytic 
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metabolism. To test this, we measured serum lactate and found that Lin28a Tg mice 

generated more of this glycolytic metabolite than WT controls after glucose challenge (Fig. 

4m). Together, these data suggest that over-expression of Lin28a in skeletal muscle alters 

the metabolic state of the tissue, driving enhanced glucose uptake and favoring glycolytic 

metabolism. As the M2 isoform of pyruvate kinase (PKM2) drives glycolysis in embryos 

and cancer cells [27, 28], we asked if Lin28a might be activating Pkm2 in vivo. However, no 

Pkm2 RNA or protein was detected in skeletal muscle or liver of adult WT or Tg animals, 

excluding Pkm2 expression as a mechanism for increased glycolysis in the Lin28a Tg mice 

(data not shown).

Because GWAS-identified polymorphisms are typically associated with modest changes in 

gene or cis-regulatory activity, it is difficult to ascertain whether SNPs are associated with 

gain or loss-of-function effects. In contrast, knockout or transgenic mice often demonstrate 

either dramatic phenotypes like lethality or no phenotype at all, making it difficult to model 

human genetic variation. When induced by doxycycline, the Lin28a Tg mice succumb to 

gene hyperfunction. In the un-induced state, phenotypes associated with variation at the 

human LIN28B locus and in the loci of let-7 target genes were observed due to “leaky” 

expression that modestly alters Lin28a and let-7 levels. Although Lin28a also has let-7 

independent functions, the fact that the let-7 targets DOTL1, HMGA2, and CDK6 are also 

associated with taller stature suggests that LIN28B acts through let-7 to affect height [29]. 

Murine knockouts of many let-7 targets such as Hmga2, Igf2bp1, and Myc are runted, 

suggesting that larger body size could result from reduced let-7 suppression of its growth 

promoting targets [14-18]. In this mouse model, increased Lin28a in muscle results in a 

modest decrease of let-7 and a global increase in let-7 target gene expression (Fig. 4l). In C. 

elegans, loss of lin-28 results in precocious vulval differentiation and premature 

developmental progression [30, 31], while loss of let-7 leads to reiteration of larval stages 

and delayed differentiation [32]. We show that Lin28a gain of function also leads to a delay 

in murine puberty. Although increased body size and pre-pubescent growth rate are 

correlated with earlier menarche in humans [33], the LIN28B alleles associated with later 

menarche were also linked to taller stature [2-5]. Our model predicts that hyperfunction of 

LIN28B in humans contributes to increased height and later menarche, and indicate that 

some heterochronic functions of this pathway are conserved from worm to human.

In heterochronic fashion, Lin28a may also coordinate the rapid growth and metabolism of 

early embryogenesis and in turn delay the phenotypes associated with adulthood. We found 

that Lin28a causes increased glucose utilization, a mechanism by which it might drive 

overgrowth in vivo. let-7 target oncogenes such as MYC and KRAS also have profound 

effects on metabolism [34, 35], as the anabolic demands of embryos or tumors must be met 

by a different type of metabolism. In cancer, this use of “aerobic glycolysis” is known as the 

Warburg Effect [36], a phenomenon that is just starting to be explored in embryonic 

development. The Lin28a Tg mouse represents an invaluable tool for sorting out the 

relationship between metabolism, growth, and developmental timing.
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Methods

Generation of transgenic mice

Flag-tagged murine Lin28a open reading frame was cloned into pBS plasmid and targeting 

was performed into V6.5 ES cells containing M2-rtTA targeted to the Rosa26 locus, as 

previously described [19]. Chimeric mice were generated by injection of ES cells into 

Balb/c blastocysts, then bred to CD-1 females to generate germline-transmitted pups. The 

line was maintained on the CD-1 background and the C57/B6 background by backcrossing 

3-6 times. For all experiments, littermate controls were used.

Quantitative RT-PCR

RNA was collected by Trizol, reverse-transcribed using SuperScript II (Invitrogen). mRNA 

and miRNA expression was measured by quantitative PCR using the Delta-Delta CT 

method as described previously [10].

Histological Analysis

Tissue samples were fixed in 10% buffered formalin or Bouin’s solution and embedded in 

paraffin. Immunostaining was performed by using the rabbit anti-Lin28a antibody from 

Proteintech group (used at 1:300; catalog number 11724-1-AP).

Immunohistochemistry

Sections of tissues were deparaffinized with xylene and rehydrated with graded series of 

ethanol (absolute, 95%, 80% and 50%, respectively, and distilled water), followed by two 

washes of 5 min each in PBS-T. Antigen retrieval was performed for 20 min in sodium 

citrate buffer (10mM pH 6) at 90-100°C followed by wash with PBST 1× 5 min. Tissue 

sections were then incubated for 10 min in 3% (v/v) hydrogen peroxide in methanol to block 

endogenous peroxidase activity. Sections were then washed for 5 min in PBS-T and blocked 

at room temperature for 1 h by using 2% normal goat serum, 2% bovine serum albumin 

(BSA) and 0.1% triton-X in PBS. Tissue sections were then incubated in humidified 

chamber for overnight incubation at 4°C with primary antibody (1/200 in TBST). Sections 

were subsequently washed with PBS-T (3× 5min) and incubated at room temperature for 1 h 

with secondary antibody (goat anti rabbit). After a wash with PBS-T (3× 5min), sections 

were incubated with ready to use streptavidin peroxidase (Lab Vision, Fremont, CA) for 10 

min at room temperature and then color was developed by using a DAB kit (Vector 

laboratories, Burlingame, CA). Sections were counterstained with hematoxylin.

Glucose and insulin tolerance tests

Glucose tolerance tests were accomplished by intraperitoneal injection of glucose (2 g 

glucose/kg body weight) after an overnight fast (14–18h). Insulin tolerance was tested in 5 

hour fasted mice by intraperitoneal injection of human regular insulin (0.75 U insulin/kg 

body weight; Lilly, Indianapolis, Indiana). Blood glucose was determined with a One Touch 

Basic glucometer (Lifescan, Milipitas, California). Insulin, GH, and Igf1 levels were 

measured by enzyme-linked immunosorbent assays (Crystal Chem, Chicago, Illinois).
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Cloning and Plasmid Construction

Murine Lin28a cDNA was subcloned into pBabe.Puro and pMSCV.Neo retroviral vectors. 

Lin28a shRNA in lentiviral plasmid was purchased from Sigma-Aldrich 

(TRCN0000122599). Control shRNA was commercially purchased (SHC002V, Sigma-

Aldrich)

Viral Production

For ecotropic viral production, retroviral plasmid DNA and pCL-Eco were transfected into 

293T cells in a 1:1 mass ratio and virus harvested after 48h. For VSV-G pseudotyped 

lentivirus, viral plasmid, lentiviral gag/pol, and VSV-G were transfected in a mass ratio 

1:0.9:0.1, and virus was harvested after 72 hrs. 1 mL of unconcentrated viral supernatant 

was used to infect 50,000 cells. Infected cells were selected on antibiotic prior to subsequent 

analysis.

Glucose uptake assay

C2C12 cells growth, differentiation, and glucose uptake was performed as described in Berti 

et al [37].

Puberty phenotyping analysis

Beginning on the day of weaning, female pups were examined daily, 7 d/wk, between 0800 

and 1300 h, and the age at VO and concurrent body weight were recorded [38, 39]. For 

uteri/ovary weights, females were sacked at day 26 after birth and organs were weighed. For 

mating, a male proven to be fertile was placed into a cage with two WT or two Tg females at 

21 days of age and the first litter date and size were recorded. Estrus analysis was performed 

as describe previously [40].

Statistical analysis

Data is presented as mean ± SEM, and Student’s t-test (two-tailed distribution, two-sample 

unequal variance) was used to calculate P values. Statistical significance is displayed as p < 

0.05 (one asterisk) or p < 0.01 (two asterisks).

Microarray

RNA from quadriceps muscle from 5 week old WT and Tg mice (n = 2 and 2) were 

harvested and processed using RNeasy mini kits from Qiagen. All RNA samples were 

DNase treated. The Illumina Ref-8 microarray platform was used to generate data.

Gene set analysis

Gene Set Enrichment Analysis was used to identify gene sets/pathways associated with a set 

of upregulated or downregulated genes. Gene Set Enrichment Analysis 9 (version 2.0) is an 

analytic tool for relating gene expression data to gene sets to identify unifying biological 

themes [25, 26].
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Lin28a inducible mice display increased growth and a proportional increase in organ 
sizes
(a) Schema for the design of the Lin28a transgenic mice. Animals under study were not 

induced with doxycycline. (b) Adult Lin28a Tg mice exhibited greater size, wider facies, 

larger ears, and coarser hair than WT mice. (c-d) Male (4 WT and 5 Tg) and female (6 WT 

and 4 Tg) weights and crown-rump lengths from weaning until three months of age. (e) Dual 

Energy X-ray Absorptiometry results showing percent body fat mass, percent lean mass, 

bone mineral content, and bone mineral density (g/bone area (m2)) for 3 WT and 5 Tg 

males. (f) Relative organ weights of Tg animals normalized to WT animals (n = 7 and 7). 

All values represent means +/− SEM (*, p < 0.05; **, p <0.01) and the numbers of mice (n) 

are shown in the chart or noted in the legend.
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Figure 2. Lin28a Tg mice show a delay in the onset of puberty
(a-b) Comparison of the timing of vaginal opening (VO) in WT (blue) and transgenic mice 

(red) on the CD-1 (a) and C57/B6 backgrounds (b). The cumulative percent of animals with 

VO is displayed. (c) Weights of WT and Lin28a Tg mice at date of weaning and time of 

VO. (d) Uterus/ovary weights measured as a percentage of total body weight at day 26 of 

age (n = 10 and 8). (e) The time to first estrus. (f) The time to first litter. (g) The first litter 

size from these matings. All values represent means +/− SEM (*, p < 0.05; **, p <0.01) and 

the numbers of mice (n) are shown in the chart or noted in the legend.
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Figure 3. Ectopic expression of Lin28a in transgenic mice
Lin28a mRNA levels in adult (a) and neonatal organs (b) as measured by quantitative PCR 

(n = 6 and 6 for all analyses). (c-d) Mature let-7a and let-7g levels in the adult liver, skin, 

and muscle (c) and in the liver and limb of neonates (d). (e) Lin28a immunohistochemistry 

in neonatal skin and muscle. (f) let-7a and let-7g in the hypothalamic-pituitary-gonadal axis 

of adult mice. (g) Histology of skin and skull bone in 4 month-old WT and Tg adults. All 

scale bars are 100μm. All values represent means +/− SEM (*, p < 0.05; **, p <0.01) and the 

numbers of mice (n) are noted here.
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Figure 4. Lin28a Tg mice display increased glucose uptake and insulin sensitivity
(a) Igf2 mRNA levels in adult mouse tissues. Note the break in the y-axis designating a 

change in scale. (b-c) Glucose concentrations in fasting and fed state mice. Blood glucose 

and insulin concentrations were determined by tail bleeding in 1 or 3 month-old mice. 

Experimental groups consisted of 5-10 animals each. (d-e) Results of glucose tolerance tests 

(GTT) and (f-g) insulin tolerance tests (ITT) for WT and Lin28a Tg mice. GTT and ITT 

were performed on 1-3 month-old mice with 0.75 units of insulin/kg of body weight and 2 g 

of glucose/kg of body weight, respectively. (h) Insulin measurements performed during a 

GTT. (i) Average islet area measurements in 7 week old (n = 2 and 2) or 15 week old 

pancreata (n = 3 and 3) (8 to 40 islet analyzed per animal). (j-k) 2-deoxy-D-[3H] glucose 

uptake assay with C2C12 + Lin28a overexpression (j) and C2C12 + Lin28a shRNA 

knockdown (k). (l) Gene set enrichment analysis of muscle microarray data showing 

statistically significantly up and downregulated pathways in Tg vs. WT skeletal muscle. (m) 

Lactate levels were measured using Lactate Scout strips during a GTT experiment. All 

values represent means +/− SEM (*, p < 0.05; **, p <0.01) and the numbers of experimental 

animals are listed within the charts.
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Table 1

Mean age and body weight at time of VO are increased in Lin28a Tg mice.

Strain Mean age (days) at VO
(mean +/− SD) N P vs

WT (VO)
Body weight (g) at VO

(mean +/− SD)

CD-1 WT 26.64 +/− 2.5 33 19.08 +/− 1.9

CD-1 Lin28a Tg 28.88 +/− 2.8 32 0.00146 24.00 +/− 4.3

C57/B6 WT 28.08 +/− 2.0 36 14.60 +/− 1.1

C57/B6 Lin28a Tg 30.26 +/− 2.6 23 0.00144 18.17 +/− 2.0
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