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Abstract: The micro-canonical, canonical, and grand canonical ensembles of walks defined in finite
connected undirected graphs are considered in the thermodynamic limit of infinite walk length. As
infinitely long paths are extremely sensitive to structural irregularities and defects, their properties
are used to describe the degree of structural imbalance, anisotropy, and navigability in finite graphs.
For the first time, we introduce entropic force and pressure describing the effect of graph defects
on mobility patterns associated with the very long walks in finite graphs; navigation in graphs and
navigability to the nodes by the different types of ergodic walks; as well as node’s fugacity in the
course of prospective network expansion or shrinking.

Keywords: statistical ensembles of walks; entropic force and pressure; graph’s navigation; graph
node’s navigability; graph node’s fugacity
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1. Introduction

The precursor of a concept of statistical ensembles and the related ergodic hypothesis
formulated by Boltzmann [1,2] were met with a violently negative reaction by the great
majority of scientists for clumsiness, absurd, and paradoxical consequences [3], although it
allowed the theoretical calculation of the equations of state for the first time. The study of
statistical ensembles related to graphs and networks suffers from a similar inhospitable
reception from scientists playing cup-and-ball with a swarm of heuristic parameters and
giving any importance to their connection with each other, which is often responsible for
spurious conclusions on the graph’s structure and function. The thermodynamic approach
to graphs was initiated in complex network theory concerned with the thermodynamic
limit of infinitely large graph size N → ∞ [4], in which a graph’s structural “fluctuations”
become negligible. The major result of the theory on structurally homogeneous infinite
graph (random trees) is the Bose–Einstein condensation mechanism explaining the growth
of complex evolving networks as a topological phase transition between a “rich-get-richer”
phase and a “winner-takes-all” phase [5–7]. In contrast to complex network theory, we
consider the statistical ensembles of walks defined on a finite connected undirected graph
in the thermodynamic limit of very long walks n→ ∞, which has previously never been
addressed. Statistics of lengthy walks elucidates the graph structure, quantifies navigability
of the graph, and evaluates the fugacity of graph nodes with respect to the entire system
of infinite paths available in the graph—all of these characteristics are introduced and
discussed in our work for the first time. The probability measuring the tendency of a graph
to shrivel or expand at a node follows the Fermi–Dirac distribution function. Although we
have sketched a set of “ideal gas laws” for the structure of networks and graphs (in the
last section of our work), we have not formulated a comprehensive structural "equation of
sate" for graphs and networks yet.

The probability we assign to an event depends on whether we count it as one of
many, considered all at once, or as a single event of its kind. In other words, an estimated
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likelihood of events hinges on their assumed membership in an ensemble described by
some probability distribution. The famous Two-Child Paradox [8] serves a good example
for this point: “Mr. Smith has two children. At least one of them is a boy. What is the probability
that both children are boys?” Given that a child is either a boy (B) or a girl (G) with equal
probability 1/2, two incompatible answers may be given to this question, depending on the
assumptions taken.

On the one hand, as the probability of getting a boy equals Pr(B) = 1/2 uniformly and
unconditionally for all families, using the Bayes’ Theorem, we obtain that the probability
of having at least one boy in a two-kid family will be the same as just having a boy, viz.,

Pr(B&B|B) = Pr(B|B&B)× Pr(B&B)
Pr(B)

= 1× (1/4)

(1/2)
=

1
2

.

On the other hand, as having a boy in an ensemble of two-child families with at least one
boy obviously comprises three possible events, i.e., B&B, or G&B, or B&G, the probability
of getting a boy in a family of two equals Pr(B) = Pr(B&B) + Pr(B&G) + Pr(G&B) =
1/4 + 1/4 + 1/4 = 3/4, and therefore

Pr(B&B|B) = Pr(B|B&B)× Pr(B&B)
Pr(B)

= 1× (1/4)

(3/4)
=

1
3

.

The ensemble interpretation, in which each admissible event in a family of two with a boy
appears equally probable, is preferable in the context of ergodic hypothesis blind to family
history. In the context of the Two-Child Paradox, there is no way in probability theory to
discern if the gender composition in such a family stays put, or children change their sex
exploring possible gender identities during an infinite lifetime provided at least one of them
stays a boy. The ergodic hypothesis helps to avoid this awkward question by equating the
ensemble and time averages while replacing a dynamic description of identity changes by
the probabilistic description within the ensemble over a very long period of time. Switching
temporal and ensemble perspectives under the spell of ergodic hypothesis is assumed in
thermodynamics, equilibrium statistical mechanics, and the theory of dynamical systems.

The concepts of ensembles and ergodicity have a long history [3]. Boltzmann intro-
duced a "monode", a family of possible stationary probability distributions over a single cyclic
trajectory of a system of gas particles on an energy surface in the phase space as early as in
1844 [1,2]. According to the Boltzmann hypothesis (1), the time spent by a system in some
region of the phase space is proportional to the volume of this region, so that all accessible
microstates are equiprobable over a long period of time, viz.,

lim
T→∞

dt
T

=
σds∫
σds

, (1)

where σ is the probability density of microstates on the iso-energetic surface, whose area
element is ds. With this hypothesis, Boltzmann [1,2] and later Helmholtz [9,10] were able
to explain the classical equilibrium thermodynamics, which successfully describes the
behavior of gases. The concept of thermodynamic ensembles was further developed and
coined into the English-speaking world by Gibbs [11].

In our work, we review three classical thermodynamic ensembles defined by
Gibbs [11]—the microcanonical (Section 2), canonical (Section 4), and grand canonical (Section 8)
ensembles of very long walks defined in finite connected undirected graphs—and demon-
strate that the concept of ergodic ensembles might be applied to quite abstract objects of
discrete mathematics. The thermodynamic limit in our approach is defined as the limit of very
long walks n→ ∞ in a finite graph rather than the limit for a large number of graph nodes N.
In the limit N → ∞, “fluctuations” of graph structural features are negligible, and therefore
the graph can be considered as structurally homogeneous across all scales—random, in the
limit n→ ∞ fluctuations of the growth rate of the number of distinguishable, long walks
in the graph can be ignored, and then graph’s topological entropy µ = log2 αmax (the log of
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graph’s spectral radius) and the corresponding Perron eigenvector of the graph adjacency
matrix describe the degree of structural complexity, anisotropy, and navigability of the
graph.

Each thermodynamic ensemble permits specific statistical behavior. For example,
the microcanonical ensemble representing an isolated system (with constant energy) is
defined by assigning equal probability to every walk of a given length existing in the graph.
All very long walks that fit some probability distribution over graph’s nodes constitute a
macrostate in the canonical ensemble of walks defined in the graph. For example, the series
of intrinsic random walks (introduced in Section 5) make up equal probabilities to all walks of
a given length starting at a node providing an example of the canonical ensemble of walks
defined on the finite graph. This canonical ensemble contains not only the very well-known
isotropic nearest-neighbor random walks on finite graphs [7,12], but also infinitely many
types of less known anisotropic random walks on graphs—and the Ruelle–Bowen random
walk [13,14] making up all infinite walks starting at each node equally probably is one
among them. While the ergodic theory for isotropic random walks on finite graphs is well
developed [15,16] (We profoundly thank our referee for this remark), the ergodic properties
of anisotropic random walks, including their statistical confinement in the best structurally
integrated sub-graphs (see Sections 5 and 7), have not been discussed in literature yet.
Finally, in an open system of long walks represented by the grand canonical ensemble,
chemical potential (free energy absorbed by a very long walk seizing graph’s edge) is kept
fixed and equal the graph’s topological entropy µ.

We also discuss applications of ergodic walks to the structural analysis of and naviga-
tion through finite undirected connected graphs. Graph’s structural defects and boundaries
repel very long walks that can be be expressed in terms of entropic pressure and force
(Section 3). Intrinsic random walks forming the canonical ensemble in a graph can be used
to measure the degree of graph’s structural anisotropy (Section 5), to estimate the amount
of predictable (navigable) information about present navigator’s location (Section 6) and
assess the navigability to each graph node in proportion to its relative visiting frequency
(Section 7). Navigation focuses on locating a navigator’s position compared to known
locations, paths, and structural patterns [17]. The navigability to a node comprises two
information components compatible with two major navigation strategies, known as path
integration (that allows for keeping track of the position and heading while exploring a
new space) and landmark-based piloting (re-calculating position when in a familiar envi-
ronment), working in concert during navigation in humans and animals [17]. Finally, the
grand canonical ensemble describes the statistics of local fluctuations of the growth rate
of the numbers of long walks around the chemical potential as n → ∞ (Section 8). The
distribution of these fluctuations follows Fermi–Dirac statistics and marks graph’s defects
and boundary nodes hosting dramatically less very long walks than others.

We conclude in the last section.

2. The Micro-Canonical Ensemble of Equiprobable Walks in Finite Connected
Undirected Graphs

The number of walks of length n (i.e., n–walks) in a lattice Zd in d-dimensional space
grows exponentially with n, Nn = 2nd. The micro-canonical ensemble is defined by assigning
equal probability to every n–walk, viz.,

℘n =
1

2nd = exp
(
− nd

1/ln 2

)
≡ exp

(
Fn

kT

)
, (2)

where the (Boltzmann constant and) temperature kT ≡ 1/ln 2, the free energy of the n–walks is

Fn ≡ − log2 ℘n = −kT lnNn ≡ −kT Hn = nd, (3)
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andHn ≡ lnNn = nd ln 2 is the entropy in a micro-canonical ensemble. As the free energy
Fn is the Legendre transformation of the internal energy Un, with kT as the independent
variable [18,19], viz.,

Fn ≡ Un − kTHn,

comparing this definition with (3), we conclude that the internal energy of all n–walks is
Un = 0 in a micro-canonical ensemble.

We also readily extend the statistical description of micro-canonical ensemble of
equiprobable walks to κ-regular graphs, in which every vertex has the same number of
neighbors, κ = 2d, by using the substitution d = log2 κ. As the free energy value (3) grows
linearly with n, the intensive free energy (per absorbed edge), viz.,

µ ≡ lim
n→∞

Fn

n
= kT lim

n→∞

Hn

n
= log2 κ = d, (4)

plays the role of chemical potential describing the change to free energy after absorbing a
new edge to a very long walk in a κ-regular graph in a micro-canonical ensemble.

Given a finite connected undirected graph G(V, E) where V, |V| = N, is a set of
vertices, and E ⊆ V × V is a set of edges, we assume that its adjacency matrix (such that
Ai,j = 1, (i, j) ∈ E, and Ai,j = 0, otherwise) has the following spectral decomposition
Aij = ∑N

s=1 αsuisusj, with ordered eigenvalues αmax ≡ α1 > α2 ≥ · · · ≥ αN . The free energy
in the micro-canonical ensemble equals

Fn = log2Nn = log2 ∑ij An
ij = log2 ∑ij

(
∑N

s=1 αn
s uisujs

)
= log2 ∑N

s=1 αn
s γ2

s = log2 γ2
1αn

max

(
1 + ∑N

s=2
γ2

s
γ2

1

(
αs

αmax

)n
)

, γs ≡ ∑N
i=1 uis,

(5)

and, since (αs/αmax) < 1, the intensive free energy amounts to the logarithm of the spectral
radius αmax of the graph, viz.,

µ = lim
n→∞

Fn

n
= lim

n→∞

1
n

log2 γ2
1αn

max

(
1 +

N

∑
s=2

γ2
s

γ2
1

(
αs

αmax

)n
)

= log2 αmax ≡ dG. (6)

In Section 8, the quantity (6) plays the role of chemical potential of an edge absorbed by a
very long walk. For a κ—regular graph, its spectral radius αmax = κ, so that µ = log2κ = d,
in accordance with (4). The log of graph spectral radius (6) is also called the topological
entropy of the graph [20,21] because it is the exponential growth rate of the number of
distinguishable walks, being a measure of complexity of the graph structure. According
to (4), the topological entropy of the graph µ can also be interpreted as the effective dimension
of space of the graph, dG, in a micro-canonical ensemble of very long walks.

3. Entropic Pressure and Force in Micro-Canonical Ensemble of Walks

Missing nodes and edges might dramatically reduce the number of very long walks
available in a graph, reshaping the global mobility patterns in a micro-canonical ensemble
of walks. Statistical changes in mobility patterns due to graph defects that can be described
in terms of entropic pressure and entropic force are as follows.

Namely, a missing node depletes the number of very long walks available in the graph,
and therefore reduces the corresponding free energy, Fn = log2 ∑ij An

ij, by the following
amount of local energy,

E
(n)

i = log2 ∑j(An)ij

= log2 αn
maxui1γ1

(
1 + ∑N

s=2

(
αs

αmax

)n( uis
ui1

)(
γs
γ1

))
,

(7)
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corresponding to the number of very long walks anchoring at i, viz.,

δiFn ≡
(
Fn − E

(n)
i

)
. (8)

In the thermodynamic limit n→ ∞, the resulting local increment of free energy measuring
its sensitivity to the disappearance of node from the graph is as follows:

∆F|i = lim
n→∞

(δiFn −Fn) = − lim
n→∞

log2

(
∑ij(An)ij−∑j(An)ij

∑ij(An)ij

)
= − log2

(
1− ui1

γ1

)
≡Pi.

(9)

We call the resulting quantity (9) entropic pressure Pi, as it accounts for the local stress
characterizing the transfer of walker’s mobility from i to the rest of the graph if i is not
available (see Figure 1 Left).

Figure 1. Entropic pressure and force in the membrane graph. Left: The nodes are colored according to the values of
entropic pressure (9). Right: The nodes are colored according to the values of the Perron eigenvector of the entropic force
matrix Fij (10).

Similarly, by eliminating an edge (i, j) ∈ E from the graph, we reduce the local energy
E
(n)

i of the node i ∈ V (7) by the following amount, δE
(n)

i,j = log2

(
∑s An

is − Aij

[
∑k
(

An−1)
jk

])
,

corresponding to the number of (n− 1)-walks available from the node j ∈ V adjacent to i,
viz.,

∆E |i→j = lim
n→∞

− log2

(
∑s(An)is−Aij ∑k(An−1)ik

∑s(An)is

)
= lim

n→∞
− log2

(
1− Aij ∑k(An−1)jk

∑s(An)is

)
= − log2

(
1− Aijuj1

αmaxui1

)
= − log2

(
1−W(∞)

ij

)
≡ Fij.

(10)

The direction dependent entropic force Fij introduced in (10) emerges from the statistical

tendency of very long walks to follow the preferential transition W(∞)
ij to the neighboring

nodes hosting many infinitely long walks, as in the Ruelle–Bowen random walk (19) [13,14].
It is worth-mentioning that the expression for the entropic force (10) has the structure of a
Laplacian operator Lij =

(
1−W(∞)

ij

)
related to random walks defined in the graph G by

the transition matrix W(∞)
ij .
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In Figure 1, we have presented a membrane graph with a defect and highlighted its
nodes according to the values of entropic pressure (9) (left) and the elements of Perron
eigenvector of the matrix Fij (10) (right) in the membrane graph.

In Figure 2, we use the graph representation of Lubbock, TX, USA acquired from
the OpenStreetMap service (The OpenStreetMap database is publicly available at https:
//dataverse.harvard.edu/dataverse/osmnx-street-networks). To construct the spatial
graph of the city, we used Python’s lxml library to parse the raw data and obtain the spatial
graph adjacency matrix. The data set was cleaned further by removing disconnected
neighborhoods, such as the Preston Smith International airport that is not a structural
part of the city. The resulting connected city graph of Lubbock contains 10,421 nodes
representing all spaces of movement, including but not limited to residential, secondary,
tertiary roads, trunk links, and highways.

Figure 2. Entropic pressure and force in the city spatial graph of Lubbock, Texas (of 10,421 nodes). Left: The nodes of the
city graph are colored according to values of entropic pressure (9). Right: The nodes of the city graph are colored according
to values of the Fiedler eigenvector belonging to the second largest eigenvalue of the entropic force matrix Fij (10) (or the
smallest eigenvalue of the associated Laplacian matrix). The Fiedler eigenvector indicates the direction of fastest decrease of
the entropic force over the city spatial graph of Lubbock.

The value of entropic pressure in the spatial graph of Lubbock attains maximum at
the contemporary structural focus of the city, far apart from the city historical downtown
(Figure 2 Left). The nodes of the city spatial graph on the right-hand side of Figure 2
are highlighted according to elements of the Fiedler eigenvector belonging to the second
largest eigenvalue of the entropic force matrix Fij (i.e., the second smallest eigenvalue of
the associated Laplacian matrix Lij). The Fiedler eigenvector is used in spectral graph
partition, as it bisects the graph into only two connected communities based on the sign
of the second vector entry. The Fiedler eigenvector indicates the direction of the fastest
decrease of the entropic force over the city spatial graph of Lubbock (Figure 2 Right). The
entries of the Fielder eigenvector are zero everywhere, except for a narrow band extended
from the historical city center (where the magnitudeof entropic force is positive) toward
the contemporary structural focus of the city (where the magnitude of entropic force is
negative). The structural focus of the city absorbs very long walks while the historical
center anchored at the abolished city railway station expels long walks. Although railway
construction enhanced the city status of Lubbock in early days, its maintenance has a
continuing negative impact on the urban development, since railways barricade streets,
dramatically cutting down the number of possible paths people can drive or walk and
create isolated neighborhoods [22].

https://dataverse.harvard.edu/dataverse/osmnx-street-networks
https://dataverse.harvard.edu/dataverse/osmnx-street-networks
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4. The Canonical Ensemble of Walks in Finite Connected Undirected Graphs

The canonical ensemble represents the possible states of a system in equilibrium that
does not evolve over time, even though the underlying system might be in constant
motion [11]. The canonical ensemble is a collection of very long walks (microstates) of
length n = ∑s

r=1 nr � 1, where nr counts the number of visits paid by a walker to the
r-th vertex of a connected undirected graph G, compatible with a π-macrostate, a discrete
probability density vector {πr}N

r=1, ∑N
r=1 πr = 1, taken over the set of graph vertices, viz.,

nr/n −→n→∞ πr.
The total number of microstates (i.e., long walks) lumped into a single π-macrostate is

then given by the following multinomial coefficient:

M(n, s) =
n!

n1! · · · ns!
=

n!
(nπ1)! · · · (nπs)!

(11)

Using Stirling’s approximation, ln n! ≈ − n + n ln n, we readily obtain that

ln M(n, s) ≈ (n− n ln n)− (n1 − n1 ln n1) · · · − (ns − ns ln ns)
= n ∑s

r=1
nr
n · ln

nr
n ,

(12)

and therefore, as n→ ∞

M(n, s) ≈ exp

(
n

s

∑
r=1

nr

n
· ln nr

n

)
≈ exp

(
n

s

∑
r=1

πr · ln πr

)
≈ exp (−nH), (13)

in which

H ≡ −
N

∑
r=1

πr · ln πr, 0 · log 0 = log 00 = log 1 = 0, (14)

is the Boltzmann–Gibbs–Shannon entropy [23,24] in the canonical ensemble. If every very
long walk lumped to the π-macrostate is chosen with equal probability among the other
walks suited for the same macrostate, ℘n ≈ exp nH, then the most probable walks would
be those compatible with the uniform density πr = 1/N, r = 1, . . . , N, maximizing the
value of entropy (14), Hmax = ln N. The free energy over the canonical ensemble of very
long π-walks (n→ ∞) is given by

Fn = −kT ln℘n ≈ kT · nH, (15)

and, therefore, the intensive free energy (chemical potential) equals

µ = lim
n→∞

Fn

n
= kT · H = −

N

∑
r=1

πr · log2 πr ≡ I(π), (16)

where I(π) is the amount of information (in bits) revealed at every step of the π -walk.

5. The Canonical Ensemble of Intrinsic Random Walks in Finite Connected
Undirected Graphs

Discrete time random walks W = {Xn ∈ V : n ∈ Z} defined in a finite connected
undirected graph G(V, E) by an irreducible row -stochastic transition probability matrix
Wij = Pr (Xn+1 = j|Xn = i) > 0, i, j ∈ V, (i, j) ∈ E are the natural candidates for the
π-macrostates in the canonical ensemble of walks. Indeed, as the row-stochastic transition
matrix Wij does not evolve over time, the unique stationary distribution of the random
walk W is the major left eigenvector π = {πr}N

r=1 of the transition matrix, such that
∑N

s=1 πrWrs = πs.
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Given the graph adjacency matrix Ai,j = 1, (i, j) ∈ E, and Ai,j = 0 otherwise, we define
the nth-order degree of the vertex i ∈ V as the number of n-walks available at i ∈ V, viz.,

κ
(n)
i ≡

N

∑
j=1

(An)ij, κ
(0)
i = 1. (17)

Taking further into account that κ
(n+1)
i = ∑N

j=1 Aijκ
(n)
j , we derive an infinite sequence of

transition probability matrices [25], viz.,

W(n)
ij =

Aijκ
(n)
j

κ
(n+1)
i

=
Aij ∑N

s=1(An)js

∑N
s=1 Ais ∑N

s=1(An)sr
,

N

∑
j=1

W(n)
ij = 1, n ∈ N, (18)

defining a countable set of intrinsic random walks in the graph G.
The first order intrinsic random walk defined by the transition matrix W(1)

ij = Aij/κ
(1)
i

has been discussed in literature for more than a century [12,26]. The walk W(1)
ij is locally

isotropic, as the random walker chooses the next node to visit among all nearest neighbors
of the current node with equal probability. In Figure 3, we presented densities of nodes in
the membrane graph with respect to the different types of intrinsic random walks. Density
of nodes with respect to W(1)

ij is proportionate to their degree centrality, i.e., the numbers of
links incident upon the nodes (Figure 3, left). Other intrinsic random walks following the
transition probabilities, W(n)

ij , n > 1, make all κ
(n)
i n-walks starting at the node i to occur

with equal probability. These random walks are locally biased (anisotropic), as transitions to
the nearest neighbors providing more lengthy walks are more preferable under (18) for
n > 1 [25]. In the limit n→ ∞, the series of transition matrices W(n)

ij converges [25] to the
Ruelle–Bowen random walk [21] (also known as the maximal entropy random walk [27]), viz.,

W(∞)
ij = lim

n→∞
W(n)

ij = lim
n→∞

Aijκ
(n)
j

κ
(n+1)
i

= lim
n→∞

Aijα
n
maxuj1γ1

αn+1
maxui1γ1

=
Aijuj1

αmaxui1
. (19)

The anisotropic random walk W(∞)
ij is confined in the central nodes of the membrane graph

(Figure 3, right). The stationary distribution for the intrinsic random walks (18) reads as
follows [25]:

π
(n)
i =

κ
(n)
i κ

(n−1)
i

∑N
s=1 κ

(n)
s κ

(n−1)
s

. (20)

For the isotropic random walks W(1)
ij , the stationary distribution π

(1)
i = κ

(1)
i

/2E, where E is

the total number of edges in the graph [12], and π
(∞)
i = u2

i1, for the Ruelle–Bowen random

walks [27]. The stationary distribution π
(1)
i reports on the degree centrality of the graph

nodes (i.e., the number of links incident upon a node), and π
(∞)
i is naturally related to the

eigenvector centrality ui1 of the node i in the graph G [28].
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Figure 3. Densities of nodes in the membrane graph with respect to the isotropic and anisotropic intrinsic random walks.

Left: Density of nodes wrt to the isotropic random walk W(1)
ij is proportionate to their degree centrality. Right: The

anisotropic random walk W(∞)
ij is confined in the central nodes of the membrane graph.

The time until a random walk approaches the stationary distribution (Figure 3) (i.e.,
the mixing time) is determined by the spectral gap, the difference between the two largest
eigenvalues of the transition matrix. Spectral gaps is maximum (mixing time is minimum)
over the canonical ensemble of intrinsic random walks for the anisotropic random walk
W(∞)

ij (Figure 4).

Figure 4. Spectral gaps is maximum (mixing time is minimum) over the canonical ensemble of intrinsic random walks for

the anisotropic random walk W(∞)
ij .
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The relative entropy rate [29] between two Markov chains defined by their transition
matrices,

η(n) = ∑N
i=1 π

(1)
i ∑N

j=1 W(1)
ij log2

W(1)
ij

W(n)
ij

= 1
2E ∑i,j Aij log2

κ
(n)
i

κ
(n−1)
j κ

(1)
i

= 1
2E ∑i,j

(
Aij log2

κ
(n)
i

κ
(n−1)
j

− δij log2 κ
(1)
i

)
≡ 1

2E ∑i,j

(
Aij∆

(n)
ij − δijdi

)
,

(21)

can be used for measuring information divergence over the canonical ensemble of intrinsic
random walks in connected undirected graphs and the degree of graph directional anisotropy [25].

In (21), we have introduced di ≡ log2 κ
(1)
i , a local counterpart of the space dimension

parameter (4), and its generalization to n-walks, the directional graph space dimension tensor

∆(n)
ij ≡ log2

κ
(n)
i

κ
(n−1)
j

(22)

measuring the degree of directional anisotropy in transitions of the intrinsic random walks
making up all n-walks available from the node i with equal probability. For n = 1, the
graph space dimension tensor (22) reduces to the space dimension, ∆(1)

ij = di, as κ
(0)
i = 1 for

all nodes. In the thermodynamic limit n→ ∞, the graph space dimension tensor reduces
to a direction dependent counterpart of the effective space dimension of the graph dG (6) (or
the graph topological entropy), viz.,

∆(∞)
ij = log2

αmaxui1
uj1

. (23)

6. Navigation through Graphs over Canonical Ensembles of Walks

The problem of effective navigation in graphs and networks can be considered in the
framework of canonical ensemble of walks, since the navigator location prediction requires
a density of locations that is known. Frequently visited sites are predicted more efficiently
than little frequented, especially in the long-run [30].

Given a π -walk W = {Xt ∈ V : t ∈ Z} defined in a connected undirected graph
G(V, E), Bayes’ theorem [29,31] describes the probability of navigator’s present location X
based on prior knowledge of her previous location t steps before, X−t

t−→ X. Namely, X−t
may be a t-step precursor of X with the following probability:

Pr(X−t|X) =
Pr
(

X−t
t−→ X

)
π(X−t)

π(X)
, (24)

where Pr
(

X−t
t−→ X

)
is the probability of walking from X−t to X precisely in t steps;

π(X−t) and π(X) are the densities of locations X−t and X with respect to the π-walk,
respectively. Pr(X−t|X) is a density of the t-step precursors for the location X induced by
the density of walks π. If Pr(X−t|X) = π(X−t), it follows from (24) that the location X is
unpredictable (as any other location X−t is a precursor for X). The available information
about visiting the location X at present is therefore scattered over the entire graph in the
past and can be assessed by observing all possible t-step precursors X−t, viz.,

P(X) = Pr(X−t|X) log2
Pr(X−t|X)

π(X−t)
(25)

The information divergence [29] (25) vanishes if and only if the density of t-step precursors
Pr(X−t|X) for the location X over the graph G is identical to π(X−t), so that visiting the
location X−t in the past is statistically independent of visiting the present location X t steps
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later, and therefore X−t is not a t-step precursor of X [30]. The amount of information (25)
attains its maximum value, viz.,

maxPt(X) = − log2 π(X), (26)

whenever the marginal probability π(X) is the major left eigenvector of the t-step transition

matrix Pr
(

X−t
t−→ X

)
, so that Pr(X−t|X) = 1, for all t and X−t, i.e., visiting any location in

the graph G by π-walk with probability 1 is a predictor for visiting any other location X t
steps later.

According to the Boltzmann equation (1), for ergodic observables, the time average of
the maximal information (26) over the entire history of π-walks equals the entropy of the
π-walk (16), viz.,

lim
t→∞

1
t

t

∑
τ=0

maxPτ(X) = − ∑
{X}

π(X) log2 π(X) = kT · H(X) ≡ I(π). (27)

However, the actual amount of predictable (navigable) information about present naviga-
tor’s location may be quite modest, much less than the amount information revealed at ev-
ery step of the π-walk ((16) and (27)): different graphs have different degrees of navigability.

7. Navigability of Graphs and Graph Nodes over Canonical Ensembles of Walks

The information function (27) can be represented as a sum of the predictable and
unpredictable information components [32], viz.,

I(π) = P(π) + U(π). (28)

The predictable information component P(π) measures the amount of apparent uncer-
tainty about the navigator’s location that can be resolved with some navigation strategy
compatible with the π-walks, and U(π) gauges the amount of true uncertainty about the
navigator’s location that cannot be inferred anyway. In the following, we attribute the
predictable information component P(π) to the navigability of the graph G by the π-walk.

Assuming that both information components in (28) have the same form as the
information function (27), viz.,

P(π) = −
N

∑
r=1

πr · log2 ϕr, and U(π) = −
N

∑
r=1

πr · log2 ψr, (29)

with some partition functions ϕr and ψr, such that πr = ϕrψr, we obtain

I(π) = −
N

∑
r=1

πr · log2 ϕrψr, ϕr = πr/ψr. (30)

We call the partition function ϕr the navigability to the node r ∈ V in the graph G by the
π-walk. Obviously, the navigability to the node ϕr is proportional to its relative visiting
frequency πr—as the more frequent the location, the higher its forecast accuracy—and
inverse proportional to the partition function ψr assessing uncertainty of visiting the node r
by the π-walk.

There are two major navigation strategies—landmark-based piloting and walk integration—
working in concert during wayfinding in humans and animals [17]. First, the next visit location
Xt+1 can be guessed from the present navigator’s position Xt in the graph, and the degree of
accuracy of such a guess can be assessed by the mutual information between the present and
future navigator’s location conditioned on the walk history, I(Xt; Xt+1|Xt−1, . . . X1). This
strategy can be naturally associated with landmark-based piloting.

If the π-walk is a random walk defined by a transition matrix Wij, the conditional mutual
information for such a Markov chain depends only upon the immediate past navigator’s
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location Xt−1, but not on the entire historical sequence of locations visited by the navigator
in the more distant past [32], so that

I(Xt; Xt+1|Xt−1) = H(Xt+1|Xt−1)− H(Xt|Xt−1)
= ∑N

k=1 πk ∑N
r=1
(
Wkrlog2Wkr −W2

krlog2W2
kr
)
.

(31)

Second, some degree of uncertainty about the navigator’s future location Xt+1 might be
resolved after all revisiting, and a possible correlation between walks are taken into account
in the course of walk integration over the presumably infinite motion history of π -walk.
The latter quantity is given by the excess entropy [33–35],

E(π) = I(π)− h(π) (32)

where the entropy rate [29],

h(π) = lim
t→∞

1
t

t

∑
k=1

H(Xt|Xt−1, . . . X1) (33)

quantifies the mean amount of uncertainty consisting in the whole (infinite) path his-
tory of the π-walks. However, it is intuitive that the values of conditional entropies
H(Xt|Xt−1, . . . X1) in the r.h.s. of (33) do not increase with the length of walks and, there-
fore, I(π) ≥ h(π), so that E(π) ≥ 0.

For a random walk defined by a transition matrix Wij, the Markov property simplifies
the expression for the entropy rate (33), viz.,

h(π) = lim
t→∞

1
t ∑t

k=1 H(Xt|Xt−1, . . . X1)

= lim
t→∞

[
1
t H(X1) +

1
t (H(X2|X1) + H(X3|X2) + . . .)

]
= lim

t→∞

[
1
t H(X1) +

t−1
t H(X2|X1)

]
= H(X2|X1) = −∑N

k=1 πk ∑N
r=1 Wkrlog2Wkr,

(34)

so that the excess entropy (32) reads as follows:

E(π) = −
N

∑
k=1

πk ·
(

log2πk +
N

∑
r=1

Wkrlog2Wkr

)
. (35)

By summing (31) and (35), we obtain the total amount of predictable information P(π)
revealed by the π-walk in the graph G, viz.,

P(π) = E(π) + I(Xt; Xt+1|Xt−1)

= −∑N
k=1 πk ·

(
log2πk + ∑N

r=1 W2
krlog2W2

kr

)
= −∑N

k=1 πk · log2

(
πk ·∏N

r=1 W
2W2

kr
kr

)
,

(36)

so that the navigability to the node r in the graph G by the random walks defined by the
transition matrix Wij is

ϕk = πk ·
N

∏
r=1

W
2W2

kr
kr (37)

Navigability to a node evaluated by the partition function (37) depends on the strategy
of walkers. In Figure 5, we illustrate the difference by highlighting the nodes of the
membrane graph according to the degrees of navigability by the isotropic random walks
W(1)

ij (left) and anisotropic random walks W(∞)
ij (right). For the isotropic random walks,

the movement of walkers along the low-dimensional boundaries and at the corners of the
graph are more predictable than their movements in the bulk, as all bulky locations of the
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same connectivity are visited with equal probability by the random walk W(1)
ij . In contrast

with the isotropic random walks, a navigator following the anisotropic strategy W(∞)
ij is

statistically confined within the region hosting the most of infinitely long paths available in
the graph, where the navigator’s position is very likely.

Figure 5. Navigability to the nodes in the membrane graph by the isotropic W(1)
ij (left) and anisotropic W(∞)

ij (right) intrinsic
random walks.

As demonstrated in [32], the entropy function I(π) ≡ H(Xt) allows for the following
decomposition involving the conditional entropies:

H(Xt) ≡ H(Xt)− H(Xt+1|Xt) + H(Xt+1|Xt)
= (H(Xt)− H(Xt+1|Xt)) + H(Xt+1|Xt) + {H(Xt|Xt−1)− H(Xt|Xt−1)}
+{H(Xt+1|Xt−1)− H(Xt+1|Xt−1)}

= (H(Xt)− H(Xt+1|Xt))︸ ︷︷ ︸
E(π)

+ (H(Xt+1|Xt−1)− H(Xt|Xt−1))︸ ︷︷ ︸
I( Xt ;Xt+1|Xt−1)

+ (H(Xt+1|Xt) + H(Xt|Xt−1)− H(Xt+1|Xt−1) )︸ ︷︷ ︸
U(π)

.

(38)

Therefore, the remaining part of the information function (28), the last part in the decompo-
sition (38), is the conditional entropy of the present navigator’s location conditioned on her
past and future locations, viz.,

U(π) = I(π)− P(π) = H(Xt|Xt−1) + H(Xt|Xt−1)− H(Xt+1|Xt−1) (39)

assesses the amount of true uncertainty about a navigator’s location that can neither be
inferred from integrating over the past history of the π-walk nor have any repercussion for
the navigator walk in the future [34]. For a random walk defined by the transition matrix
Wij, we readily obtain that

U(π) = −∑N
k=1 πk · log2 ψk = −∑N

k=1 πk · log2

(
πk
ϕk

)
= −∑N

k=1 πk · log2

(
∏N

r=1 W
−2W2

kr
kr

)
,

(40)

where the partition function ψk assesses the amount of uncertainty about navigator’s
visiting the node k ∈ V.
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8. A Grand-Canonical Ensemble of Ergodic Walks in Finite Connected Undirected
Graphs

The grand canonical ensemble represents the possible states of a system exchanging
energy and particles with a heat bath in thermodynamic equilibrium [11]. The growth
rate of the number of distinguishable paths in a graph tends to its topological entropy
µ = log2 αmax in the thermodynamic limit n→ ∞. However, the local growth rate of the
number of distinguishable paths available from a node, log2 αmaxγ1ui1, might differ from
the graph topological entropy. In the grand canonical ensemble, the probability to observe
such a "fluctuation" of the long paths growth rate inferior to the topological entropy at the
node i is taken to be

P
(n)
i =

1
Zn

exp
(

δiFn

kT

)
, Zn ≡

N

∑
j=1

exp
(

δjFn

kT

)
, (41)

where δiFn =
(
Fn − E

(n)
i

)
is a fluctuation of free energy (8) associated with heterogeneity

of growth rate of the number of very long walks in the graph. The grand partition functionZn

amasses the fugacity exp
(

δjFn
kT

)
of all nodes in the graph, playing the role of a normalization

factor in (41). In the thermodynamic limit n → ∞, limn→∞ Fn = limn→∞ log2 ∑ij An
ij=

limn→∞ log2 αn
max = nµ, and limn→∞ E

(n)
i = limn→∞ log2 αn

maxui1γ1, so that the expression
for the node’s fugacity takes the following form:

exp
(

δiF
kT

)
= lim

n→∞
exp

(
nµ−E

(n)
i

kT

)
= exp

(
[log2 αn

max−log2 αn
maxui1γ1]

1/ln 2

)
= αn

max
αn

maxui1γ1
= 1

ui1γ1
, γ1 ≡ ∑N

j=1 uj1,

(42)

the grand partition function reads as follows:

Z ≡ lim
n→∞

Zn =
1

γ1

N

∑
j=1

1
uj1

, γ1 ≡
N

∑
i=1

ui1, (43)

and, finally, the grand canonical probability (41) takes the form of a Fermi–Dirac distribu-
tion in the thermodynamic limit n→ ∞, viz.,

Pi = lim
n→∞

P
(n)
i =

1/ui1

∑N
j=1 1/uj1

=
1

1 + ∑N
j 6=i 1/uj1

. (44)

The grand potential Ω playing the role of free energy with respect to the grand partition
function Z in grand-canonical ensemble equals:

Ω = −kT lnZ = log2

(
1

γ1

N

∑
j=1

1
uj1

)
. (45)

Having a form of the relative fugacity of a node, the grand canonical probability (44) can be
regarded as measuring the ease of separation of the vertex from the rest of graph with respect to
the entire system of infinite paths. The nodes with the long paths growth rate inferior to the
topological entropy are insufficiently integrated into the graph structure and might be lost
or acquire new connections in the course of prospective graph structural modifications.

In Figure 6, we have presented the membrane graph (left) and the spatial graph of
the city of Lubbock, Texas (right), with their nodes colored according to values of grand
canonical probabilities (44). The nodes located on the low-dimensional graph boundaries,
at the corners of membrane graph and in the loosely connected south suburbs of the city
of Lubbock have distinctly higher relative fugacity than others. These nodes can also be



Entropy 2021, 23, 205 15 of 17

regarded as the points of prospective network growth in where the graph as a system of infinite
paths remains open. Interestingly, the highlighted nodes in the spatial graph of Lubbock
(Figure 6 right) mark the city neighborhoods currently under construction.

Figure 6. The grand canonical probabilities in the membrane graph (left) and in the spatial graph of the city of Lubbock,
Texas (right). The highlighted nodes exhibit the long paths growth rates inferior to the topological entropy of the graph,
in the thermodynamic limit n → ∞, and therefore have higher relative fugacity in the course of prospective graph
structural changes.

9. Discussion and Conclusions

We have defined three major thermodynamic ensembles of ergodic walks in connected
undirected graphs, in the thermodynamic limit of infinitely long walks and showed that
the ergodic mindset might be applied not only to particles of ideal gases, but also to quite
abstract objects of discrete mathematics, such as graphs.

We have demonstrated that graph structural defects and irregularities, such as missing
nodes and edges, might dramatically reduce the number of available very long paths,
globally reshaping the mobility patterns in the entire graph. In the framework of micro-
canonical ensembles, we may consider their effect as resulting from actions of the entropic
pressure and force repelling walkers from structural irregularities and boundaries toward
the best integrated region of the network: the laxer the connection, the stronger the repelling.
Perhaps, the cumulative effect of entropic forces generated by railways and other structural
obstacles along with the unbalanced growth of urban neighborhoods might be responsible
for the urban decay process in the historical districts of some cities.

We have also shown that the problem of effective navigation [36] in graphs and
networks can be considered with respect to a canonical ensemble of walks, as an effective
location prediction of a navigator’s position, and requires a density of locations in the walk
be known. According to the probabilistic setting, frequently visited sites are predicted
more efficiently than little frequented, especially in the long run: the more frequent a node,
the more predictable the navigator’s position visiting it. Regular lattices and homogeneous
graphs lacking structural salience and landmarks might also be confusing environments
dramatically, reducing predictability of navigator’s position.

Finally, we have studied the grand canonical ensemble of very long paths describing
the statistics of fluctuations of the local path growth rate with respect to the graph topolog-
ical entropy. In the thermodynamic limit of infinite paths, the distribution of the relative
fugacity over the graph nodes takes the form of Fermi–Dirac distribution function. The
high relative fugacity value of a node assumes that the degree of its integration into the
system of infinite paths is insufficient, indicating that the graph is open for the prospective
structural modifications associated with the node. In the urban spatial graphs, the nodes of
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high fugacity might be concentrated in the neighborhood under construction, marking the
points of city network growth.

Future research should consider a comprehensive structural "equation of sate" for
networks and graphs.
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