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Abstract

We present a simple model for coherent, spatially correlated chaos in a recurrent neural net-

work. Networks of randomly connected neurons exhibit chaotic fluctuations and have been

studied as a model for capturing the temporal variability of cortical activity. The dynamics

generated by such networks, however, are spatially uncorrelated and do not generate

coherent fluctuations, which are commonly observed across spatial scales of the neocortex.

In our model we introduce a structured component of connectivity, in addition to random

connections, which effectively embeds a feedforward structure via unidirectional coupling

between a pair of orthogonal modes. Local fluctuations driven by the random connectivity

are summed by an output mode and drive coherent activity along an input mode. The

orthogonality between input and output mode preserves chaotic fluctuations by preventing

feedback loops. In the regime of weak structured connectivity we apply a perturbative

approach to solve the dynamic mean-field equations, showing that in this regime coherent

fluctuations are driven passively by the chaos of local residual fluctuations. When we intro-

duce a row balance constraint on the random connectivity, stronger structured connectivity

puts the network in a distinct dynamical regime of self-tuned coherent chaos. In this regime

the coherent component of the dynamics self-adjusts intermittently to yield periods of slow,

highly coherent chaos. The dynamics display longer time-scales and switching-like activity.

We show how in this regime the dynamics depend qualitatively on the particular realization

of the connectivity matrix: a complex leading eigenvalue can yield coherent oscillatory

chaos while a real leading eigenvalue can yield chaos with broken symmetry. The level of

coherence grows with increasing strength of structured connectivity until the dynamics are

almost entirely constrained to a single spatial mode. We examine the effects of network-size

scaling and show that these results are not finite-size effects. Finally, we show that in the

regime of weak structured connectivity, coherent chaos emerges also for a generalized

structured connectivity with multiple input-output modes.

Author summary

Neural activity observed in the neocortex is temporally variable, displaying irregular tem-

poral fluctuations at every accessible level of measurement. Furthermore, these temporal
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fluctuations are often found to be spatially correlated whether at the scale of local mea-

surements such as membrane potentials and spikes, or global measurements such as EEG

and fMRI. A thriving field of study has developed models of recurrent networks which

intrinsically generate irregular temporal variability, the paradigmatic example being net-

works of randomly connected rate neurons which exhibit chaotic dynamics. These models

have been examined analytically and numerically in great detail, yet until now the intrinsic

variability generated by these networks have been spatially uncorrelated, yielding no

large-scale coherent fluctuations. Here we present a simple model of a recurrent network

of firing-rate neurons that intrinsically generates spatially correlated activity yielding

coherent fluctuations across the entire network. The model incorporates random connec-

tions and introduces a structured component of connectivity that sums network activity

over a spatial “output” mode and projects it back to the network along an orthogonal

“input” mode. We show that this form of structured connectivity is a general mechanism

for producing coherent chaos.

Introduction

Firing-rate fluctuations and irregular spiking are ubiquitous in the neocortex [1, 2]. Further-

more this temporal variability is often observed to be correlated across spatial scales ranging

from local cortical circuits to the entire brain: in local cortical circuits both in membrane

potential fluctuations [3] and on the level of spiking [4–7], in the coherency measured in

brain-wide EEG signals [8, 9], and in the global signal observed across all voxels in fMRI mea-

surements [10–12].

A class of theoretical models has successfully accounted for temporal variability via inter-

nally generated chaotic dynamics of recurrent networks, whether through excitation-inhibi-

tion balance in spiking models [13, 14] or the more abstract models of rate chaos in randomly

connected networks [15]. Yet a key emergent feature of these models is the decorrelation of

neural activity such that the macroscopic, population activity remains nearly constant in time.

Population-wide coherence or synchrony can be generated in a variety of ways for example by

introducing spatial modes with self-excitation, but this comes at a cost of drowning out the

chaotic fluctuations and yielding fixed points [16]. Indeed a major challenge to theorists has

been to produce network models which generate spatially coherent, temporally irregular fluc-

tuations which can account for broad spatial correlations observed in experiments.

Two recent studies have shown that excitation-inhibition balance networks can generate

spatially modulated correlations [17, 18]. In both of these studies the correlations are driven

by common input from an external source, and the average correlation across the network

remains small. It remains an open question whether a network can internally generate corre-

lated fluctuations that are coherent across the entire network.

The chaotic dynamics of a network of randomly connected firing-rate neurons has been

well-studied [15, 19]. In such a network each individual neuron’s firing rate is given by a

non-linear function of its input, which is in turn a weighted sum of the firing rates of all

other neurons in the network. The network exhibits a phase transition from a fixed point to

chaotic activity in which the randomness of the weights reverberates uncorrelated fluctua-

tions throughout the network. Typically in this chaotic regime pairwise correlations are small

and no coherent fluctuations emerge. Here we extend this model by adding a low-rank struc-

tured component of connectivity to the random connections. The structured connectivity

sums the fluctuations along one spatial mode and projects them along a second, orthogonal
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mode yielding coherent fluctuations without drowning out the individual neuron variability

which continues to drive the chaotic dynamics. A previous work studied a specific example

of this structure and focused primarily on analyzing the non-chaotic regime [20]. Here we

focus on the chaotic regime and show that this form of structured connectivity together

with random connections provides a basic mechanism for internally generating coherent

fluctuations.

Results

We study a network of N neurons in which the connectivity between neurons has two compo-

nents: a random component, J, and a rank-1 structured component, M ¼ J1ffiffiffi
N
p ξνT , an outer

product of a pair of orthogonal vectors both of which have elements of O(1) and norm
ffiffiffiffi
N
p

,

with strength parameter J1. We restrict the elements of ξ to be binary, ξi = ±1, which will be

important for some of the results to come, and we will comment on when this restriction can

be relaxed. We can think of the row vector, νT, as an “output mode” performing a read-out of

the network activity, and the column vector, ξ, as a corresponding “input mode” along which

the output mode activity is fed back to the network (Fig 1A).

Fig 1. Random network with structured connectivity generates coherent chaos. (A) Network schematic showing neurons connected via random matrix J

and rank-one structured connectivity. The structured component is represented schematically as a loop with drive through the output mode, ν, and

feedback through the input mode, ξ. In our model these two vectors are orthogonal. The standard deviation of the random component is given by
gffiffiffi
N
p and the

strength of the structured component is
J1ffiffiffi
N
p . (B) Sample network dynamics without structured component, i.e. J1 = 0. Colored traces show a random

collection of ten neural activity patterns, ϕj, black trace shows the coherent mode activity, �� ¼ 1

N ξ
T
�, which exhibits only miniscule fluctuations. (C) Sample

dynamics for J1 = 1. Coherent mode displays substantial fluctuations. (D) Coherence, χ (definition in text), as a function of the strength of structured

connectivity component, J1 for small values of J1. Simulation and theory (valid in the weak structured connectivity regime—J1� g) shown for both g = 1.5

and g = 2. Bars show standard deviation over 60 realization of the random connectivity. (E) Passive coherent chaos. With weak structured connectivity

fluctuations of the coherent mode follow the fluctuations of the independent residual components. Normalized autocorrelation of the coherent component

of the current, �qðtÞ, in red circles. Average normalized autocorrelation of the residuals, qδ(τ), in blue ‘x’s. Both are averaged over 60 realizations of the

random connectivity with J1 = 0.1. Prediction from theory in black. N = 4000 and g = 2 in all panels unless stated otherwise.

https://doi.org/10.1371/journal.pcbi.1006309.g001
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The random component of the connectivity is given by the matrix J consisting of identically

distributed independent Gaussian elements with mean 0 and variance
g2

N , where g is an O(1)

parameter.

The state of each neuron is defined by its synaptic current, hi(t), with its firing rate given by

ϕi� ϕ(hi(t)), where ϕ is a sigmoidal function. For some later results it will be necessary to

assume that ϕ has a first derivative that is an even function. We therefore assume here for con-

creteness ϕ(h) = tanh (h) unless otherwise noted, and we comment on when this assumption

can be relaxed.

The dynamics of the synaptic current vector, h, is given by

dh
dt
¼ � hþ Jϕþ

J1ffiffiffiffi
N
p ξνTϕ ð1Þ

We have scaled the strength of the structured connectivity such that when the scaling-parame-

ter J1 * O(1) the contribution of the structure to individual synapses is of the same order of

magnitude as the typical random connection.

We will be particularly interested in the coherent activity and the coherent current, i.e. the

spatial overlap of both the firing rate and the synaptic current with the input mode. These are

defined respectively as

�� �
1

N
ξTϕ; �h �

1

N
ξTh; ð2Þ

We define the measure of spatial coherence as the fraction of the total power of the network

current hi that is shared along the input mode, ξ:

w �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h�h2i

1

N

P
ihh2

i i

s

ð3Þ

where hi represents average over time. This is a useful measure as it varies from 0 to 1, and will

yield w ¼ 1ffiffiffi
N
p for entirely independent, uncoupled fluctuations, and χ = 1 for complete syn-

chrony along ξ.

Without the structured component, i.e. J1 = 0, the network exhibits a phase transition at

g = 1 from a zero fixed point to chaos [15]. In the chaotic state the randomness of the connec-

tivity decorrelates the input current and yields an asynchronous state in which neurons fluctu-

ate with negligible correlations such that both �� and �h are nearly constant in time, and w � 1ffiffiffi
N
p

(Fig 1B).

Setting J1 = 1, we observe significant correlations along the input mode, such that the coher-

ent mode activity, ��, fluctuates significantly. For this network with N = 4000 we find the coher-

ence χ� 0.4, which is about 25 times larger than is observed in the asynchronous state. (Fig

1C).

In order to analyze this system we decompose the dynamics of the synaptic currents into

coherent component, �h, and the vector of residuals currents, dh ¼ h � �hξ. We also decom-

pose the activity into its coherent component, ��, and vector of residual activity, dϕ ¼ ϕ � ��ξ.

Because of the orthogonality between input and output mode, the output mode ignores the

coherent component, ��, and projects only the activity of the residuals: νT ϕ = νT δ ϕ.

By projecting the dynamic equations (Eq 1) onto the input mode, ξ, on the one hand, and

onto its orthogonal complement on the other, we can write decomposed dynamics for the

Coherent chaos in a recurrent neural network with structured connectivity
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coherent component, �h, and the residual synaptic current vector, δh:

d�h
dt
� � �h þ

J1ffiffiffiffi
N
p νTdϕ ð4Þ

ddh
dt
¼ � dhþ Ĵϕ ð5Þ

where the effective connectivity matrix in the residual dynamics (discussed more fully in

Methods) is

Ĵ � I �
ξξT

N

� �

J ð6Þ

which projects the output of J into the (N − 1) dimensional subspace orthogonal to ξ. This

guarantees that the decomposed dynamics satisfy the constraint ξT δh = 0. For most of what

follows this constraint can be ignored as it contributes only O 1ffiffiffi
N
p

� �
to each synaptic current.

Nevertheless it plays a role later and we introduce it here for completeness. In Eq 4 we

have ignored the small projection of the random connectivity along the coherent mode

(ξ
T

N Jϕ � O 1ffiffiffi
N
p

� �
) and we discuss this the impact of making this approximation in S1 Appendix.

Note that even in this approximation, the nonlinearity of ϕ in these equations couples the

coherent and residual degrees of freedom.

In order to attempt to solve the approximate system we could assume that �hðtÞ fluctuates

according to some known random process and then consider the dynamics of the δhi with the

firing rate of individual units as given by �ðdhiðtÞ þ xi�hðtÞÞ. However, for general J1 we are

unable to analytically close the loop and self-consistently compute the statistics of �hðtÞ.

Weak structured connectivity yields passive coherent chaos

In order to proceed analytically, we take a perturbative approach, assuming J1� g. In this

regime we assume the fluctuations in �hðtÞ are Gaussian and we turn to computing the autocor-

relations of both the coherent component

�DðtÞ � h�hðtÞ �hðt þ tÞi ð7Þ

and of the residuals,

DdðtÞ � hdhiðtÞ dhiðt þ tÞi : ð8Þ

For small J1 we assume that the coherent current is small (�h << 1) and therefore in the

dynamics of the residual currents (Eq 5) we approximate ∑j Jij ϕj� ∑j Jij ϕ(δhj). The result is

that to leading order the autocorrelation of the residuals is given by the zeroth-order (J1 = 0)

autocorrelation. That is, the residual currents fluctuate as independent Gaussian processes

almost identically to the situation without structured connectivity. These residual fluctuations

are summed over the output mode yielding substantial fluctuations in νT δϕ (recall, νi* O
(1)). These in turn drive Gaussian fluctuations in the coherent mode and we show in Methods

and S1 Appendix that its autocorrelation is given to first-order by

�D tð Þ �
J1
g

� �2

Dd tð Þ ð9Þ

Coherent chaos in a recurrent neural network with structured connectivity
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That is, to leading order the autocorrelation of the coherent component is simply a scaled ver-

sion of the local, residual autocorrelation.

We verify this prediction numerically in Fig 1E for J1 = 0.1 showing the normalized auto-

correlations, �q tð Þ ¼ �DðtÞ
�Dð0Þ

and qd tð Þ ¼
DdðtÞ

Ddð0Þ
, as well as the prediction from theory. Qualitatively

this means that in this regime chaos is driven by the emergent fluctuations in the local synaptic

current similar to in the J1 = 0 case, and that the coherent component can be said to absorb

these fluctuations passively along the input mode, ξ.

In this regime then, the coherence is given simply by

w ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Dð0Þ

�Dð0Þ þ Ddð0Þ

s

�
J1
g

ð10Þ

Numerically, we find that this approximation provides a good description of the system’s state

for up to J1=g � 0:2 (Fig 1D).

We can understand the coherent chaos in this regime qualitatively: the residual synaptic

currents driven by the random connectivity fluctuate as uncorrelated Gaussian processes,

and the resulting independent fluctuations in firing rates will be summed over the output

mode, ν, which projects to the input mode, ξ, driving coherent fluctuations in �hðtÞ. If the two

modes, ξ and ν had substantial overlap then the coherent fluctuations along ξ would drive

positive feedback through ν driving the neurons to a fixed point. The orthogonality of these

modes effectively embeds a feedforward structure from the output mode, ν, to the input

mode, ξ, within the recurrent connectivity. This enables the persistence of stable fluctuations

along the input mode, ξ, which do not feedback to ν, thus preventing either saturation or

oscillations.

Importantly, in the regime of passive coherence we can relax the restrictions on ξ and ϕ:

Our results here hold for any smooth, sigmoidal non-linearity and for any ξ which has norm
ffiffiffiffi
N
p

and is orthogonal to ν. In fact approximate orthogonality is sufficient in this regime: struc-

tured connectivity consisting of an outer product of two randomly chosen vectors will generate

mildly coherent fluctuations.

Random connectivity with “row balance”

We observe that as J1 increases to values near g, the network displays significant variability in

the dynamics from realization to realization. The coherent mode autocorrelation function,

�DðtÞ, for example, is no longer self-averaging (Fig 2A). As we increase system size, N, we find

that the realization-to-realization variability in �Dð0Þ saturates to a finite value (Fig 2B). More-

over, as J1 increases we observe realization-dependent transitions out of chaos to either fixed

points or limit cycles (Fig 2C).

The reason for this realization dependence is that as J1 increases and the fluctuations in the

coherent mode grow, feedback is generated through the interaction between the random con-

nectivity, J, and the input and output modes, ξ and ν. First of all, J maps the coherent activity

back along the input mode with a small realization-dependent component which we ignored

in Eq 4 driving feedback directly to the coherent current, �h. Secondly, J maps the coherent

activity along the the residuals in a realization-dependent direction biasing the residual fluctu-

ations δh. This direction in turn will have realization-dependent component along the output

mode, ν, and therefore the coherent activity may additionally drive feedback by pushing the

residual fluctuations along the output mode. See S1 Appendix for more details.

Coherent chaos in a recurrent neural network with structured connectivity
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Fig 2. Row balance preserves chaos, and increases coherence. (A) Full coherent mode autocorrelation, �DðtÞ of 60

individual realizations. Thick black line shows average over realizations. Network with random connectivity J without

row balance exhibits significant difference between realizations. (B) Coherent mode variance, �Dð0Þ, as a function of

network size for 300 individual realizations. Gray line shows average and gray region with black boundary shows one

standard deviation over realizations. Without row balance the standard deviation (over realizations) saturates to a

finite value as the network size increases, indicating that the variability between realizations is not a finite-size effect.

(C) Without row balance a network with moderate structured connectivity (J1 = 2.5) exhibits a fixed point. (D)-(F)

Same as (A)-(C) respectively, but network has “row balance” random connectivity, ~J ¼ J � J ξξ
T

N . (D) Individual

realizations of Δ(τ) are all very close to the average. (E) With row balance the standard deviation of Δ(0) over

realizations shrinks with N, suggesting that the variability between realizations is a finite-size effect. (F) Same

realization of J as in (C), but with row balance. Chaos is preserved. (G)-(H) Networks without row balance in blue,

with row balance in red (G) Fraction of realizations (out of 30 realizations) that lead to chaotic dynamics, as a function

of structural connectivity, J1. Row balance keeps nearly all realizations chaotic. (H) Coherence, χ, as a function of J1
computed for the realizations from (E). Row balance increases coherence. Error bars display standard deviation. Full

line shows all realizations, dashed line displays average coherence restricted to the chaotic realizations. J1 = 0.2, g = 2,

and N = 4000 for all panels unless otherwise noted.

https://doi.org/10.1371/journal.pcbi.1006309.g002
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To suppress the strong realization dependence of the dynamics, we refine the random con-

nectivity matrix by defining

~J � J � J
ξξT

N
ð11Þ

This subtracts from each row of J its weighted average along the input mode. This “row bal-

ance” subtraction has been previously observed to remove realization-dependent outliers from

the eigenspectrum of the full connectivity matrix [21, 22].

We find here that row balance suppresses realization-to-realization variability in the non-

linear chaotic dynamics, for example reducing the variability in the autocorrelation of the

coherent mode, �DðtÞ (Fig 2D). We observe that with row balance this variability drops as a

function of increasing system size, suggesting (although not proving) that the dynamics are

now self-averaging in the limit of large N, at least for these values of J1 (Fig 2E).

The impact of row balance on the chaotic dynamics can be understood by noting that the

resulting connectivity matrix, ~J, now has a null-space, and the input mode, ξ, lies within it

(~Jξ ¼ 0). The result of row balance then is to ensure that the random connectivity matrix fil-

ters out any coherent activity fluctuations, ��ðtÞ:

~Jϕ ¼ J I � I
ξξT

N

� �

��ξþ dϕ
� �

¼ Jdϕ ð12Þ

This prevents the coherent mode activity from driving feedback to the dynamics of the coher-

ent current (S1 Appendix).

Interestingly, we find that row balance allows chaotic fluctuations to persist for larger values

of J1, whereas without row balance a substantial fraction of realizations exhibit fixed points or

limit cycles for J1 > g (Fig 2F and 2G). Furthermore, the chaotic dynamics are more coherent

with row balance than without (Fig 2H). As the structured connectivity is made stronger row

balance appears to enable the dynamics to grow increasingly coherent even as chaotic fluctua-

tions persist.

Row balance yields self-tuned coherent chaos

When we increase the strength of structured connectivity, J1, we find that with row balance the

network yields chaotic dynamics which are strikingly coherent and display switching-like mac-

roscopic activity (Fig 3A). In contrast to the case of weak structured connectivity, the coherent

mode dynamics are no longer passively driven by the fluctuations in the residual synaptic cur-

rents. This is evidenced by the normalized autocorrelation of the coherent mode, �qðtÞ, which

is no longer close to the normalized residual autocorrelation, qδ (τ), but rather has qualitatively

different dynamics including longer time-scales (Fig 3B as compared to Fig 1E).

We find that the coherence, χ, increases steadily as a function of the strength of structured

connectivity, J1, and notably it is independent of system size (Fig 3C).

To check whether this highly coherent state is chaotic, we calculate the largest Lyapunov

exponent and verify that the dynamics are indeed chaotic for a vast majority of realizations

even as the fluctuations are highly coherent (Fig 3D).

We now examine the qualitative changes in the chaotic state of the network with row bal-

ance as J1 increases. We observe that for J1 ≲ 1 the fluctuations are unimodal with an approxi-

mate Gaussian shape. The temporal fluctuations are dominated by a single time constant as

with J1 = 0 (Fig 4A and 4B). On the other hand, for larger values of J1 the fluctuations deviate

dramatically from Gaussian and instead become sharply bimodal (Fig 4A).

Coherent chaos in a recurrent neural network with structured connectivity
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Furthermore, we find that with larger values of J1 the network exhibits intermittent switch-

ing between two different values of �h (Fig 4B, top right). We observe that the dynamics at both

of these values of �h are qualitatively distinct as reflected by the speed of the dynamics and the

level of coherence. We define the speed of the dynamics as the norm of the vector of first time-

derivatives per neuron:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N

P
i
dhi

dt

� �2
s

. Similar measures have been used to find fixed points

and slow dynamics in highly non-linear dynamics [23]. We observe that the two distinct values

of �h are both associated with vanishing speed (Fig 4B, middle right). Additionally they are

associated with very high levels of coherence, i.e. small residuals as quantified by the popula-

tion variance, 1

N

P
iðdhiðtÞÞ

2
(Fig 4B, bottom right). Evidently, in the network with larger values

of J1 there are two distinct states with slow dynamics and high levels of coherence, and the net-

work switches rapidly between these two. In contrast, with mild structured connectivity both

the speed and the variance of the residuals remain roughly constant throughout the trial (Fig

4B, left).

To gain insight into the emergence of the switching dynamics, we examine the most fre-

quent value of j �hðtÞ j as a function of J1 and we find that there is a rapid crossover from a state

with unimodal fluctuations around zero, to a state with bimodal peaks and that the most

Fig 3. Strong structured connectivity with row balance generates high coherence even as chaos persists. (A)

Sample activity of 10 randomly chosen neurons, ϕj, and coherent mode activity, ��, in black. Strong structured

connectivity with row balance subtraction to the random component of connectivity yields chaotic activity that is

highly coherent with switching-like behavior. (B) Normalized autocorrelation of coherent mode, �qðtÞ, in red. Average

normalized autocorrelation of the residuals, qδ (τ), in blue. Shaded regions show standard deviation over 25 initial

conditions of the same connectivity. Strong structured connectivity yields coherent mode dynamics that are

qualitatively different from those of the residuals. J1 = 15.8 for both (A) and (B), compare to Fig 1C and 1E,

respectively. (C) Coherence, χ, as a function of J1 is independent of network size. Coherence appears to approach 1 as

J1 is increased demonstrating that chaos persists even as fluctuations in the residuals shrink (See also S4 Fig).

Coherence is averaged over 30 realizations of the connectivity for each N, excluding the few fixed points and limit

cycles that occur for larger J1 (2 out of 30 or less for the largest values of N). (D) Largest Lyapunov exponent as a

function of J1. Thick line shows average over 10 realizations, small dots show values for individual realizations, and

shaded region is standard deviation. All but a small fraction of realizations are chaotic, even in the region where χ>
0.9. N = 4000 and g = 2 in all panels unless noted otherwise.

https://doi.org/10.1371/journal.pcbi.1006309.g003
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frequent value of j�hðtÞ j saturates quickly with J1 and then remains constant (Fig 4C). What is

the nature of this regime? And what determines the two values of �h that come to dominate the

dynamics?

Because the bouts of slow dynamics are associated with small residuals we linearize the

dynamics around hðtÞ � �hðtÞξ and assume that δhi� 1. This gives

ϕðtÞ � ��ðtÞξþ �0ð�hðtÞÞdh ð13Þ

Note that we have made use of the fact that ξi = ±1 and that ϕ is an odd function. Because ξ is

in the null-space of the row-balanced connectivity (~Jϕ ¼ Jdϕ, as discussed above) the residual

dynamics (Eq 5) become

ddh
dt
¼ � dhþ �0 �h

� �
Ĵdh ð14Þ

We observe that in these linearized dynamics the coherent mode current, �hðtÞ, plays the

role of a dynamic gain via the slope of the transfer function, ϕ0.

Fig 4. Self-tuned coherent chaos. (A)-(B) Comparison between weak structured connectivity (Left: J1 = 0.8) and stronger structured connectivity (Right: J1 = 15.8)

Both with N = 4000. (A) Histogram of values of the coherent mode current, �hðtÞ. Mild structured connectivity yields coherent fluctuations with a peak at zero and a

distribution that appears not far from Gaussian. For stronger structured connectivity the histogram is clearly non-Gaussian and highly bimodal. (B) Top: Sample

activity of 10 randomly chosen neurons, ϕi (t) and coherent mode activity, ��ðtÞ. Middle: Speed of network during same epoch of activity, (definition in text). Bottom:

Instantaneous population variance of the residual currents δhi (t). For mild structured connectivity, ��ðtÞ fluctuates around zero (top), speed is roughly constant

throughout the trial (middle), residual currents maintain large variance throughout (bottom). On the other hand, for stronger structured connectivity, there is state-

switching between bouts of high and low coherent-mode activity (top), these same bouts are associated with vanishing speed (middle), and with small residual

currents (bottom). Gray shaded regions show epochs of speed lower than 0.18, which was the lowest instantaneous speed achieved without structured connectivity.

(C) Statistical mode (most frequent value) of j�h j as a function of J1. The results indicate a crossover to self-tuned coherent chaos, defined by the bimodal peaks of j�h j
reaching a constant value. The crossover occurs very rapidly and independently of N. Dashed line shows �hc ¼ �

0� 1 1

g

� �
. (D) The statistical mode of j �h j as a function of

g with fixed J1 = 10 and N = 8000. Dashed line shows �hc ¼ �
0� 1 1

g

� �
. In all other panels g = 2.

https://doi.org/10.1371/journal.pcbi.1006309.g004
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In the linearized dynamics we turn to the eigenvectors, u(k), of Ĵ and decompose the resid-

ual dynamics according to δh = ∑k ck u(k). Given an instantaneous value of �h, the independent

dynamics of the eigenmodes are

dck
dt
¼ � 1þ �

0 �h
� �

lk

� �
ck ð15Þ

where λk is the kth eigenvalue of Ĵ. (We show in S1 Appendix that Ĵ has the same eigenvalues

as ~J).

By the well-known circular law of random matrices, the leading eigenvalue, λ1, has real part

approximately equal to g. If j�hðtÞ j is small then �
0
ð�hÞ � 1 and there are many modes that

diverge exponentially. If j�hðtÞ j is large then �
0
ð�hÞ � 0 and then all the modes decay exponen-

tially. However, there are two critical values of �h which yield marginal and therefore slow

dynamics for the leading mode, c1. These are the values, �hc, for which the slope of the transfer

function is equal to 1

g:

�hc ¼ �
0� 1 1

g

� �

ð16Þ

If �hðtÞ � �hc and the residuals are small then the time constant of fluctuations in the leading

eigenmode, ð1 � �
0
ð�hÞgÞ� 1

, are very long.

Indeed we find that the most frequent value of j �hðtÞ j as a function of g fits the curve hc(g)

very well (Fig 4D).

We conclude that the switching between two states each with slow dynamics and a high

level of coherence observed in Fig 4B reflects a distinct dynamical regime of self-tuned coher-

ent chaos. In this regime the coherent mode self-adjusts to a critical value so that the dynamics

of the small residuals are near-marginal, giving rise to slow dynamics. The above linearized

dynamics (Eq 14) are not exact and therefore non-linear interactions eventually destabilize the

system and precipitate a state-switch. Nevertheless, the linearized dynamics dominate the

dynamics of the small residuals during the bouts of high coherence.

As observed in Fig 4C, when we increase J1, the most frequent value of j�hðtÞ j rapidly

increases until it saturates at a value very near to �
0� 1 1

g

� �
. Moreover, we find that this crossover

to the regime of self-tuned coherent chaos occurs at moderate values of J1 (on the order of g),

independently of network size.

Notice the crucial role of row balance in facilitating self-tuned coherent chaos: row balance

filters out the direct contribution of the coherent mode activity to the dynamics of the residuals

and enables the coherent mode to act as a dynamic gain. The coherent mode then self-adjusts

to cancel the leading eigenvalue of Ĵ and yield bouts of slow, highly coherent dynamics.

We note that we can loosen the constraint on the symmetry of the transfer function and

allow any smooth sigmoidal transfer function if we restrict the input mode to be uniform, ξi =

1 for all i. We show an example of the self-tuned coherent chaotic state for a non-symmetric

transfer function in S1 Fig.

Symmetry breaking in the self-tuned chaotic regime and transition to fixed point. The

example of Fig 4A illustrates dynamics which reside in the positive and negative coherent

states with equal frequency, maintaining the hi! −hi symmetry of the underlying dynamic

equations. We observe that in many realizations this symmetry is violated at the single trial

level for sufficiently strong J1, as demonstrated in Fig 5A.
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We measure the asymmetry in a single trial as the absolute value of the time-averaged
coherent activity, j h�hi j, and we find that asymmetry grows gradually with J1 throughout the

chaotic regime, and at different rates for different realizations (Fig 5B).

As is evident in Fig 5B, for many realization the level of asymmetry increases with J1 until it

reaches a maximal value of j h�hi j¼j�hc j¼j�
0� 1 1

g

� �
j (dashed line). At this point, the system

spends all the time at one of the possible states, suggesting a transition to fixed point.

Indeed, as has been previously reported by Garcia Del Molino et al [20], realizations of Ĵ
that have a real leading eigenvalue (see also Methods and S1 Appendix) yield a fixed point

equation for the above linearized dynamics (Eq 14):

c�
1
ð1 � �

0
ð�h�Þl1Þ ¼ 0 ð17Þ

The fixed point requires �h� ¼ �hc ¼ �
0� 1 1

g

� �
so that all but the leading eigenmode decay to

zero, and the resulting fixed point for c�
1

is marginally stable.

Indeed, we find that realizations of Ĵ with a real leading eigenvalue undergo a transition to a

fixed point upon sufficient increase of J1. Similar to the preceding chaotic state, the fixed point

is highly coherent, with very small residuals. Furthermore, it exhibits the hallmarks of the self-

tuned coherent state: the value of the coherent mode is close to �
0 �h�
� �

¼ 1

g, the residuals are

aligned with the leading eigenvector of Ĵ, and the the leading eigenvalue of the Jacobian matrix

at the fixed point is close to zero independently of J1 (S2 Fig).

Oscillatory fluctuations in self-tuned chaos and transition to limit cycle. The above

symmetry breaking and transition to fixed point is observed only for some of the realizations

of J. In most of the other cases, rather than symmetry breaking, we observe an increased oscil-

latory component in the chaotic dynamics. This is reflected in the presence of a large second

peak in the normalized autocorrelation function, �qðtÞ (Fig 6A).

The origin of these oscillations can be traced to the nature of the leading eigenvalues of Ĵ.

As also reported in [20], if the leading eigenvalue of Ĵ, λ1, is complex then there is no fixed

point solution. Instead, as we show in S1 Appendix, if we assume that �hðtÞ undergoes a limit

Fig 5. Realization-dependent symmetry breaking in the self-tuned chaotic regime. (A) Sample traces of coherent mode current, �hðtÞ,
(top) and histogram of values of �hðtÞ (bottom) from a connectivity realization with real eigenvalue for J1 = 40,60,80 increasing from left

to right. Dynamics exhibit pronounced asymmetry. (B) Absolute value of the time-average coherent mode current, j h�hi j, as a function

of J1. Each colored line represents a single connectivity realization, averaged over 10 initial conditions. For many individual realizations,

j h�hi j is significantly non-zero over a large range of values of J1, while still not arriving at fixed point value (displayed by dashed line). We

display the 37 realizations with real leading eigenvalue out of 100 total realizations from this set of trials. Thick black line shows average

over those realizations. Dashed line shows �hc ¼ �
0� 1 1

g

� �
. N = 8000 for all panels.

https://doi.org/10.1371/journal.pcbi.1006309.g005

Coherent chaos in a recurrent neural network with structured connectivity

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006309 December 13, 2018 12 / 27

https://doi.org/10.1371/journal.pcbi.1006309.g005
https://doi.org/10.1371/journal.pcbi.1006309


cycle with period T, we find that the period must satisfy

T ¼ 2p
Rel1

Iml1

ð18Þ

and additionally the period-average of �
0
ð�hðtÞÞmust be equal to the critical value 1

g (see S1

Appendix).

Indeed, we observe that in the case of a Ĵ with complex leading eigenvalue, most realizations

exhibit oscillatory fluctuations. The height of the second peak in the autocorrelation, �qðtÞ,
grows gradually with J1 with a realization-dependent rate (Fig 6B). Furthermore, for most indi-

vidual realizations the period of the dominant oscillatory peak in the autocorrelation, even

within the chaotic regime, is well-predicted by the above theoretical prediction for T (Eq 18,

Fig 6C).

For individual realizations, there is a sufficiently large J1 beyond which the second peak of

�qðtÞ reaches 1 and the dynamics transition to a pure limit cycle (S3 Fig). We note that some

realizations with a real leading eigenvalue also exhibit oscillatory components in their chaotic

dynamics for certain values of J1, which we presume relate to complex subleading eigenvalues,

but these do not exhibit a transition to pure limit cycle.

Realization-dependence and system-size scaling of the transition out of chaos. We

now consider the critical value, Jc
1
, of the strength of structured connectivity that yields a transi-

tion out of chaos. In contrast to the case without row balance, we find that in the row-balanced

network the transition out of chaos occurs at values of J1 scaling at least as
ffiffiffiffi
N
p

. However, the

particular value of Jc
1

varies considerably across realizations (S2 and S3 Figs).

The case of a real leading eigenvalue λ1� g and the associated transition to fixed point pro-

vides a starting point for analyzing the transition out of chaos (a similar argument is made in

Methods and S1 Appendix for the case of complex leading eigenvalue). In the limit of small

residual currents, δhi� 1, the fixed point equation for the coherent mode current (Eq 4) is

�h� ¼ �0 �h�
� � J1ffiffiffi

N
p νTdh�. Applying the fixed point requirements derived above that �

0 �h�
� �

¼ 1

g

Fig 6. Realization-dependent oscillatory imprint on the self-tuned chaotic regime. (A) Sample traces �hðtÞ (top), and normalized autocorrelation �qðtÞ (bottom) of

coherent mode current for a connectivity realization with complex eigenvalue for J1 = 25,30,35 increasing from left to right. Dynamics exhibit pronounced oscillatory

power and the autocorrelation exhibits a pronounced peak near the same frequency that will dominate the limit cycle for larger J1. (B) Height of second peak of the

autocorrelation of the coherent mode input as a function of J1. Each colored line represents a single connectivity realization, averaged over 10 initial conditions. For

many realizations, there is a significant second peak in the autocorrelation over a long range of values of J1 well before a limit cycle is reached. We display the 63

realizations which had complex leading eigenvalue out of 100 in this set of trials. Thick black line shows average over those realizations. (C) Observed period of

oscillatory chaos vs phase of leading eigenvalue for 181 realizations from which we were able to measure an oscillatory period with chaotic fluctuations (out of 196

realizations with complex leading eigenvalue in this set of trials. In order to confine to realizations and values of J1 that yielded chaos, we restrict to those with second

peak of autocorrelation less than 0.8. These had average height of second peak over all realizations: 0.5). Dotted line shows prediction from theory: 2p

Phaseðl1Þ
. The bulk of

realizations are very well predicted although a notable fraction are not. The median error of prediction was 7.75 (average period over these realizations: 231, std: 212).

N = 8000 for all panels.

https://doi.org/10.1371/journal.pcbi.1006309.g006
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and dh ¼ c�
1
uð1Þ, where u(1) is the leading eigenvector of Ĵ, we find (as also reported in [20])

that

c�
1
¼

ffiffiffiffi
N
p

g�0� 1 1

g

� �

J1νTuð1Þ
ð19Þ

Because the above fixed point assumes dhi ¼ c�
1
uð1Þi << 1 where u(1) has norm 1, we must have

c�
1

be no larger than O(1). Therefore we expect that the critical value, Jc
1
, for a given realization

will require yielding a sufficiently small value of c�
1

in Eq 19. This suggests that Jc
1

scales roughly

as inverse of the overlap between the leading eigenvector, u(1), and the output mode, ν. Indeed,

we show numerically that the critical value Jc
1

for fixed g is negatively correlated with |νT u(1)|

(Fig 7A).

We next ask how Jc
1

scales with system size. Since the typical value of |νT u(1)| is O(1) we

would naively expect that the typical transition might occur for Jc
1
�

ffiffiffiffi
N
p

. However, we observe

numerically that the fraction of realizations exhibiting chaotic dynamics for a given value of J1
appears to scale as

J1
N and not as

J1ffiffiffi
N
p as expected (Fig 7B). For finite N chaos appears to be lost

for some Jc
1
� Na with a 2 1

2; 1= �½ , and the particular Jc
1

is highly realization-dependent. An

analytical derivation of the actual value of Jc
1

requires a more comprehensive study of the net-

work’s stability.

From our numerical work it appears that in the limit of large system size chaos persists for

all values of J1, for almost all realizations. Indeed for a network with N = 16000, for example,

we increase J1 up to values around 100 and observe that chaos persists for most realizations

and coexists with a very high degree of spatial coherence. The coherence measure, χ, reaches

values higher than 0.96 even as fluctuations persist (S4 Fig). Thus we conjecture that in the

limit N!1, for almost all realizations, increasing J1 indefinitely will yield self-tuned coherent

chaos with χ! 1.

Multiple modes of coherence

We generalize our model in order to construct a network with multiple modes of coherent

activity. In this extension we take the structural component, M, to be a low-rank matrix com-

prised of the sum of outer products between input modes, ξ(k), and output modes, ν(k). We

Fig 7. Sufficiently strong structure yields transition out of chaos despite row balance. (A) Scatterplot of the

logarithm of transitional value, Jc
1
, vs the absolute value of the projection of the output mode, ν, on the leading

eigenvector, u(1) for 300 connectivity realizations with N = 8000. r2 = 0.29. (B) Fraction of realizations displaying

chaotic activity as a function of the rescaled structured connectivity:
J1
N. With this scaling the curve appears to be

independent of N.

https://doi.org/10.1371/journal.pcbi.1006309.g007
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require that the subspace spanned by the input modes be orthogonal to the subspace spanned

by the output modes. Using singular value decomposition we can find orthogonal bases for

each of these subspaces, such that without loss of generality we can additionally assume

that each pair of input modes and each pair of output modes are orthogonal. In sum we

assume ξ(k)? ξ(j) and ν(k)? ν(j) for all j 6¼ k, and ξ(k)? ν(j) for all j, k.

We write the structured component of connectivity as

M ¼ J0
Xd

k¼1

wkffiffiffiffi
N
p ξðkÞνðkÞ

T
ð20Þ

where we have introduced a parameter J0 that controls the overall strength of the structured

connectivity, and a set of parameters wk satisfying
Pd

k¼1
w2

k ¼ 1 that determine the relative

weight of the different modes.

We can extend our schematic representation and think of each row vector νðkÞ
T

as a separate

output mode connected in a feed-forward-like manner to the input mode, ξ(k), (Fig 8A) and

then decompose the dynamics into the residual dynamics identical to the above (Eq 5) and the

dynamics of the coherent activity along each separate input mode (by approximation analo-

gously to Eq 4):

d�hðkÞ

dt
� � �hðkÞ þ

J0wkffiffiffiffi
N
p νðkÞ

T
ϕ ð21Þ

where each separate coherent current is given by �hðkÞ � 1

N ξ
ðkÞTh.

The analytical results found above for the regime of passive coherence can be directly

extended to the case of multiple modes. In particular, in the limit where J0� g, the separate

coherent modes are independent of each other and driven passively by the residual fluctua-

tions (Fig 8C) such that

�DðkÞ tð Þ �
J2
0

g2
w2

kDd tð Þ ð22Þ

where �DðkÞðtÞ ¼ h�hðkÞðtÞ�hðkÞðt þ tÞi is the autocorrelation function of the kth coherent mode.

The resulting covariance matrix, Cij� hϕi ϕji, has a low-rank structure which is shaped by

the input modes (Fig 8B). In particular, by Taylor expanding ϕi around δhi:

Cij � �ðdhiÞ þ �
0
ðdhiÞ

X

k

�hðkÞxðkÞi

 !

�ðdhjÞ þ �
0
ðdhjÞ

X

k

�hðkÞxðkÞj

 !* +

ð23Þ

Since the residuals are on average uncorrelated and the distinct input modes are orthogonal,

we find using Eq 22 that to leading order:

C � <�0>2Dd 0ð Þ
J2
0

g2

Xd

k¼1

w2

kξ
ðkÞξðkÞ

T
ð24Þ

We generalize our measure of coherence to measure the d-dimensional coherence, or the

fraction of total power which is shared along the d input mode directions:

wðdÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xd

k¼1

ð�hðkÞÞ2
� �

1

N

X

i
hh2

i i

v
u
u
u
u
u
t

ð25Þ
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Fig 8. Coherent chaos along multiple modes. (A) Schematic of network with three coherent modes displaying effective output

modes, ν(k), and input modes, ξ(k), each of which are orthogonal to all others. (B) Matrix of Pearson correlation coefficients between

firing rates, ϕi, of pairs of neurons in a network with three coherent modes and J1 = 1. (C) Sample activity trace displaying sample

single neuron activities and in thicker lines, three coherent mode activities, ��ðkÞ. (D) Generalized coherence, χ(k), as a function of J1
for 2,3,4 modes in the regime of passive coherence. Dashed line displays theory. (E) Sample activity traces display extreme coherence

for two coherent modes. (F) Generalized coherence for two coherent modes with row balance random connectivity (in blue) as a

function of J1 extends to near complete coherence, while chaos persists. Compare network with one coherent mode (in black dashed

line). Bar shows standard deviation over 100 realizations. For panels (B), (C), (E) N = 2000. For panels (D) and (F) N = 4096.

https://doi.org/10.1371/journal.pcbi.1006309.g008
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and we find that for J0� g and finite d

wðdÞ �
J0
g ð26Þ

Numerically, this prediction holds well for up to
J0
g ¼ 0:2 for at least up to d = 4 as we show

in Fig 8D, and we expect it to hold for larger d as well.

We note that in the regime of passive coherence, just as in the case of a single coherent

mode, we can relax the restrictions on ξ(k) and ϕ: Our results hold for ξ(k) any norm
ffiffiffiffi
N
p

vector

orthogonal to ν(j) 8j and ξ(j) 8j 6¼ k, and also for ϕ any sigmoidal function.

In addition, we can generalize row balance by subtracting the weighted row-average for

each input mode such that every ξ(k) will reside in the null space of the new connectivity

matrix, ~JðdÞ:

~JðdÞ � J � J
1

N

Xd

k¼1

ξðkÞξðkÞ
T

ð27Þ

For d> 2 this generalized row balance does not appear to preserve chaotic fluctuations and

instead fixed points or limit cycles appear for J0 * O(1).

Intriguingly, for d = 2 we observe that with generalized row balance the chaotic regime per-

sists as the structured connectivity is strengthened and the dynamics become increasingly

coherent. The dynamics display switching-like activity in which at any time one of the two

coherent modes appears to be near the critical value hc while the other mode is near zero (Fig

8E). It appears that the generalized coherence approaches 1 while chaos persists (Fig 8F)

such that we conjecture that just as in the case of d = 1, here too in the large N limit χ(2)! 1 as

J0!1.

Discussion

Coherent fluctuations are prevalent in cortical activity ranging in spatial scale from shared var-

iability in membrane potential and spiking in local circuits to global signals measured across

the scalp via EEG or across voxels via fMRI [3, 4, 9, 11]. Constructing a model that intrinsically

generates coherent fluctuations has been a challenge to theorists.

We have studied the intrinsic generation of coherent chaotic dynamics in recurrent neural

networks. Our model consists of rate-based neurons whose recurrent connections include a

structured component in addition to random connections. The structured component is a

low-rank connectivity matrix consisting of outer products between orthogonal pairs of vectors

which allow local fluctuations to be summed along an output mode, amplified and projected

to an input mode resulting in coherent fluctuations. The orthogonality of input and output

mode effectively embeds a purely feedforward structure within the recurrent connectivity,

thus avoiding feedback of the coherent fluctuations along the input mode.

In the regime where the structured component is weak, the local synaptic currents are effec-

tively uncoupled from the coherent mode activity and their dynamics are similar to that of a

random network with no structured component at all. The local fluctuations are summed by

the structured component of connectivity to drive the coherent mode, which follows those

fluctuations in a passive manner. In this regime of passive coherent chaos we derive a pertur-

bative dynamical mean-field theory following [15, 19] which shows that the coherence grows

linearly with the ratio of the strength of structured connectivity to the random connectivity.

We show that this analysis extends to multiple modes of coherent activity yielding a finite-

rank covariance pattern for the coherent fluctuations.
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For moderate strength of structured connectivity the network exhibits significant realiza-

tion-dependence and most realizations transition to either a fixed point or a limit cycle. A real-

ization-dependent theory of these transitions is beyond the scope of this work. We add a row-

balance constraint, placing the input mode in the null-space of the random connectivity

matrix, and we observe that this constraint preserves chaos, reduces the variability between

realizations, and increases the level of coherence.

With row balance, increased strength of structured connectivity yields a crossover to a dis-

tinct regime of self-tuned coherent chaos. In this regime the network undergoes Up-Down-

like switching between two states each of which are characterized by slow, highly coherent

dynamics. We show how row balance facilitates this regime by enabling the coherent mode to

act as a dynamic gain to the dynamics of the residual currents. Consequently, intermittent

marginal dynamics emerge as the coherent mode self-adjusts to one of two critical values.

Interestingly the crossover to this self-tuned coherent regime happens for moderate strength

of structured connectivity, independently of network size.

In the regime of self-tuned coherent chaos, realization-dependent qualitative differences

begin to emerge with increasing strength of structured component, J1. For realizations of the

row-balanced random connectivity with real leading eigenvalue, symmetry-breaking emerges

such that individual initial conditions yield trajectories that spend more time near one of the

critical values of the coherent mode than the other. For realizations with complex leading

eigenvalue, oscillatory fluctuations begin to emerge. The frequency of these oscillations is well

predicted by the phase of the leading eigenvalue. Note that we have not addressed the question

of the necessary scaling of J1 for the emergence of realization-dependence in the chaotic regime

for the limit of large system size.

As structured connectivity is further strengthened chaos persists even as coherence contin-

ues to increase until the dynamics are dominated almost entirely by the one dimensional fluc-

tuations of the coherent mode. For a finite network, above some critical strength of the

structured component the system converges to either a fixed point or a limit cycle, depending

on the leading eigenvalue of the row-balanced random connectivity. Our numerical work sug-

gests that the critical strength of structured connectivity grows with the system size, most likely

scaling as Jc
1
� N (at least as Jc

1
�

ffiffiffiffi
N
p

). Hence we conjecture that for the scaling of the strength

of structured connectivity presented here, as the network size diverges coherent chaos persists

independent of J1 for most realizations, and the level of coherence can be brought arbitrarily

close to 1.

Importantly, in the regime of weak structured connectivity and passive coherence some of

the assumptions of our model can be loosened. First, in this regime row balance on the ran-

dom connectivity is not necessary. Additionally, we need not require the input mode be binary

but rather any general pair of orthogonal vectors can serve as input and output mode. More-

over we can loosen the restriction on orthogonality: a random pair of vectors can be used

without qualitative impact on the dynamics presented here because the contribution of the

realization-dependent overlap between the two vectors in this regime will be negligible relative

to the typical contribution from the full-rank random connectivity, J.

On the other hand, achieving self-tuned and highly coherent chaos requires the network be

finely-tuned to a high degree. The orthogonality of the input and output modes is not enough

in order to achieve highly coherent chaos because of interactions between the random and

structured components of connectivity. We therefore constrain the random component to sat-

isfy row balance by ensuring that the input mode of the structured connectivity be in the null-

space of the random component of connectivity. In addition to row balance, the self-tuned

coherence regime depends on the choice of the single-neuron transfer function and input-
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mode vector. In the case where the transfer function is an odd function, such as tanh used

throughout the main text, the input mode can be any binary vector. Otherwise, high coherence

is achieved only for a uniform input mode, ξi = 18i. In the latter case, the theory developed

here predicts coherent fluctuations that switch between two non-symmetric values of the

coherent mode, corresponding to the two points where where the slope of the transfer function

equals 1=g, and we have verified this numerically (S1 Fig).

An interesting question is whether the particular structure of the connectivity matrix in our

model can be achieved by a biologically plausible synaptic learning rule. Prior studies of

sequence generation have constructed learning rules that yield connectivity which is com-

prised of outer-products of random vectors [24, 25] and these could form the basis for learning

the necessary orthogonal rank-one structure. Plausible learning rules for yielding balanced

excitation-inhibition dynamics [26–28] could potentially provide a foundation for learning

row balance. It is thus plausible that the constraints of our model can be achieved by an appro-

priate synaptic learning, especially for the more robust regime of mild coherence. On the other

hand, it is unclear to us whether the high degree of fine tuning required for the self-tuned

coherence regime can be achieved by a biologically plausible learning rule. Investigating candi-

dates of appropriate learning rules for generating coherent chaos, is beyond the scope of this

work.

In the case of a uniform input mode the model can be constructed as an excitation-inhibi-

tion network, for example with half the neurons defined as excitatory by setting νi = 1 and the

other half defined as inhibitory via νi = −1 (or a larger inhibitory value to compensate for a

smaller fraction of inhibitory neurons). From this perspective the coherent fluctuations, in

particular in the regime of passive coherence, can be understood within the framework of

dynamic excitation-inhibition balance [13]. In this case the pair of balance equations are

degenerate and constrain only the mean excitatory population rate to be nearly equal the

inhibitory rate, but otherwise leave the overall mean rate unconstrained. Local residual fluctua-

tions yield only small differences in mean population rates, thus leaving the balance satisfied,

but these small differences drive significant coherent fluctuations because of the strong bal-

anced connectivity. In the general setting of excitation-inhibition balance the pair of balance

equations fully determine the mean rates to leading order and no coherent fluctuations are

possible without introducing shared fluctuations in the external drive. We note that excita-

tion-inhibition networks in the literature have sometimes been constructed yielding degener-

ate balance equations. As we have shown here, such choices have dramatic impact on the

dynamics and the results should not be assumed to be generalizable.

In parallel to our study a pre-print has been published which explores a very similar model

[29]. The authors observe a similar phenomenon as the self-tuned coherence studied here, and

attempt to explain it by an iterative numerical solution of locally Gaussian dynamic mean-field

equations. They do not make the role of row balance clear in their analysis. In contrast, we

have focused on analytical solutions in the limit of both weak and strong structured connectiv-

ity, deriving a perturbative dynamic mean-field solution for the regime of weak structure and

passive coherence. As we have shown here row balance is critical for moderate structure

and self-tuned coherent chaos. Additionally we have shown that a full understanding of the

properties of the highly coherent regime requires a realization-dependent mean-field analysis.

In particular, we have explained that the leading eigenvalue of the row-balanced random con-

nectivity matrix impacts qualitative features of the chaotic dynamics, yielding either broken

symmetry or oscillatory fluctuations. Furthermore the critical strength of structured connec-

tivity that leads to a transition to either fixed point or limit cycle is correlated with the extent

of overlap between the leading eigenvector and the output mode.
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As mentioned in the main text and introduction, a previous study also explored the case of

a single orthogonal E-I structured component [20]. They derived the fixed point and limit

cycle solutions which we reviewed here, but did not focus on the chaotic regime and they did

not discuss the role of network size in the transition out of chaos. Our focus here was on the

chaotic regime, both the emergence of coherence for small structured connectivity and the

imprint of the non-chaotic regime on the chaotic dynamics for moderate structured

connectivity.

A separate study has claimed to observe coherent activity in excitation-inhibition networks

of spiking neurons [30]. A study of the dynamics of spiking neurons is beyond the scope of

our work, although we would conjecture that coherent activity would arise with orthogonal,

rank-one E-I structure in that setting as well.

Previous work has shown how shared inputs from external drive can drive correlated fluc-

tuations in excitation-inhibition networks [17, 18]. In our current work, in the context of rate

neurons, we show that such correlated fluctuations can be generated internally by a recurrent

network without external drive. In order to avoid either saturation or pure oscillations the

coherent activity mode must not drive itself through a feedback loop. In order to achieve this

it is necessary that the structured component embed an effectively-feedforward projection

between a pair of orthogonal modes. In parallel, Darshan et al [31] have developed a theory for

internally generated correlations in excitation-inhibition networks of binary units. The under-

lying principle is similar: the recurrent connectivity embeds a purely feedforward structure.

We note that the structured component of connectivity in our network is non-normal. The

dynamics of non-normal matrices have drawn a fair amount of interest with suggested func-

tional impact on working memory [32, 33] and amplification [34]. Non-normal matrices

embed feedforward structure within recurrent connectivity, and the resulting dynamics even

in a linear system are not fully determined by the eigenspectrum but depend on the structure

of the corresponding eigenvectors [35]. It has been shown that E-I networks are generally non-

normal, and that rank one E-I structure amplifies small differences between excitatory and

inhibitory rates driving a large common response [34, 36]. This amplification is related to the

way in our network, small fluctuations of the residuals are summed along the output mode

and drive coherent fluctuations along the input mode in the regime of passive coherence, but

these fluctuations are internally driven by the non-linear dynamics whereas the dynamics in

those previous studies were linear. As pointed out in [37], a structured component such as in

our model is purely feedforward and can be considered an extreme case of non-normality as it

has only zero eigenvalues and therefore all the power in its Schur decomposition is in the off-

diagonal. The results here depend on this property and cannot be extended to connectivity

with only partial feedforward structure.

Rate model dynamics with a rank-one structured component have been studied in depth

recently [38, 39]. Since these works focused on time-averaged activity and not fluctuations

they did not observe coherent activity in the case of an outer product of a pair of orthogonal

vectors as studied here. These works also differed in that the strength of the structured connec-

tivity was scaled as 1
N= . This scaling is similar to our limit of weak structured connectivity,

J1� 1, and guarantees that dynamic mean-field theory holds in the limit of large system size,

but in that scaling coherent fluctuations will appear only as a finite-size correction.

It has been previously observed [21] and then proven [22] that adding an orthogonal outer-

product to a random matrix generates realization-dependent outliers in the eigenspectrum,

and furthermore that these outliers are be removed by row balance. It has been previously

observed that performing such a subtraction has significant impact on the resulting dynamics

[20, 40]. Yet the relationship between the change in eigenspectrum and the dynamics has not

been made clear beyond the basic observations regarding the stability of a fixed-point at zero.
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Here we suggest that the impact of row balance on the chaotic dynamics is not directly related

to the eigenspectrum but that this adjustment should be thought of as effectively subtracting

the coherent-mode activity from each individual neuron, thus -preventing feedback loops to

the coherent mode. We show that row balance enables the emergence of slow residual dynam-

ics with the coherent mode playing the role of dynamic gain, and that it is crucial for the emer-

gence of self-tuned chaos and highly coherent dynamics.

In conclusion we have presented a simple model which generates coherent chaos in which

macroscopic fluctuations emerge through the interplay of random connectivity and a struc-

tured component that embeds a feedforward connection from an output mode to an orthogo-

nal input mode.

Methods

Exact decomposed dynamics

Our analytical approach begins by decomposing the network dynamics to the coherent com-

ponent, i.e. the projection onto ξ, and the residuals that remain after subtracting the coherent

component from each individual neuron.

We write the full dynamics without row balance:

dh
dt
¼ � hþ J�þ

J1ffiffiffiffi
N
p ξνTϕ ð28Þ

The coherent component is defined by �h � 1

N ξ
Th. Following this definition we project the

full dynamics onto 1

N ξ to obtain the exact coherent mode dynamics:

d�h
dt
¼ � �h þ

J1ffiffiffiffi
N
p νTϕþ

ξT

N
Jϕ ð29Þ

The residuals are defined by dh � h � �hξ. Following this definition we subtract
d�h
dt
ξ from

the full dynamics to obtain the exact residual dynamics:

ddh
dt
¼ � dhþ Jϕ �

ξξT

N
Jϕ ¼ � dhþ Ĵϕ ð30Þ

where Ĵ � PξJ, where Pξ ¼ I � ξξT

N is the projection matrix onto the orthogonal complement

of ξ. We note that by definition the constraint ξT δh = 0 must be satisfied automatically by the

residual dynamics (Eq 30), and this is ensured because the output of Ĵ is guaranteed to be

orthogonal to ξ.

Because ξ and J are independent, and furthermore we can assume that ϕj is independent

of Jij, therefore ξT

N Jϕ � O 1ffiffiffi
N
p

� �
for the typical realization and can be ignored in the coherent

dynamics (Eq 29). This yields the approximate coherent mode dynamics (Eq 4) presented

in the main text. We discuss the realization-dependence of this approximation in S1

Appendix.

Perturbative dynamic mean-field theory

Without the structured component of connectivity (J1 = 0), the chaotic dynamics can be

described by a dynamic mean-field theory which treats the dynamics of the hi as independent

Gaussian processes. The theory derives and solves a self-consistency equation for the autocor-

relation of the typical hi [15, 19]. Here we treat the structured component of connectivity in
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our model as a small perturbation to the dynamic mean-field theory by assuming J1� g. In

this regime we assume that the residual dynamics, δhi, behave as independent Gaussian pro-

cesses described by their autocorrelation:

DdðtÞ � hdhiðtÞdhiðt þ tÞi ð31Þ

and that the structured component of connectivity drives small Gaussian fluctuations in the

coherent component, j �h j<< 1, which are described by the coherent autocorrelation:

�DðtÞ � h�hðtÞ�hðt þ tÞi ð32Þ

As we derive in S1 Appendix, the residual autocorrelation is given to leading-order by

1 �
@

2

@t2

� �

Dd tð Þ � g2C tð Þ ð33Þ

where

CðtÞ � h�ðdhiðtÞÞ�ðdhiðt þ tÞÞi ð34Þ

This equation yields Δδ (τ)� Δ0 (τ), where Δ0 (τ) is the autocorrelation when J1 = 0.

The coherent autocorrelation is then determined to leading order by

1 �
@

2

@t2

� �

�D tð Þ � J2
1
C tð Þ ð35Þ

which yields solution

�D tð Þ �
J2
1

g2
D0 tð Þ ð36Þ

Thus for J1� g fluctuations in the coherent input are driven passively by the residual fluc-

tuations, and the resulting autocorrelation of the coherent mode is simply a scaled version of

the autocorrelation of the residuals. It is worth noting that for J1 * g the assumption of Gaus-

sianity is broken due to the cross-correlations between the ϕj. See S1 Appendix for a detailed

derivation.

Limit of strong structured connectivity with row balance

In the limit of large J1 we assume δhi� 1, and approximate �j � �ðxj
�hÞ þ �0ð�hÞdhj, where we

have made use of the symmetry of the transfer function and the binary restriction on ξj. Note

that this linearization holds without symmetric transfer function for the case of uniform ξj = 1

as well.

Using the random connectivity with row balance constraint, ~J, this yields dynamical equa-

tions:

ddh
dt
¼ � dhþ �0 �h

� �
Ĵdh ð37Þ

d�h
dt
¼ � �h þ

J1ffiffiffiffi
N
p �

0 �h
� �

νTdh ð38Þ

In this regime �h acts as a dynamic gain on the residual synaptic currents through �
0
ð�hÞ.

Given �h the equation for the residual currents is linear and therefore their dynamics can be
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decomposed in the eigenbasis of Ĵ. As we show in S1 Appendix, these eigenvalues are identical

to those of ~J:
We write the eigenvectors as u(i) with ĴuðiÞ ¼ liuðiÞ, and decompose the vector of residual

current as δh = ∑i ci u(i). This yields dynamics

dci
dt
¼ � 1þ �

0 �h
� �

li

� �
ci ð39Þ

The only (marginally) stable, non-zero fixed point is achieved with c1 6¼ 0 and ci = 0 for all

i> 1. And the fixed-point equation is

c�
1
ð1 � �

0
ð�h�Þl1Þ ¼ 0 ð40Þ

This fixed point only exists if λ1 is real, and yields a fixed-point requirement for �h�:

�h� ¼ �0� 1 1

l1

� �

� �
0� 1 1

g

� �

ð41Þ

In order to close the loop we turn to the fixed point equation for the coherent dynamics:

�h� ¼ J1= ffiffiffiffi
N
p �

0
ð�hÞνTdh�. Using dh� ¼ c�

1
uð1Þ, this yields a solution to leading order for c�

1
:

c�
1
¼

ffiffiffiffi
N
p

g�0� 1
ð1=gÞ

J1νTuð1Þ
ð42Þ

as reported in [20].

If λ1 is complex there is no fixed point but rather a limit-cycle solution to the dynamics of

the complex-valued c1 exists with δh (t) = Re [c1 (t) u(1)], and ci = 0 for all other eigenmodes.

In S1 Appendix we show that this limit cycle must have period equal to T ¼ 2p
Rel1

Iml1
(Eq 18,

as reported in [20] as well). This holds far from the transition to limit cycle, despite the non-

linearity. Furthermore, the average value of ϕ0 over a period must be the critical value:

h�
0 �h
� �
i ¼ 1

g.

The trajectory must cross this critical value at some time in the limit-cycle and therefore

without loss of generality we assume that �h 0ð Þ ¼ �
0� 1 1

g

� �
. In S1 Appendix we derive the

expression:

�hc � c0
1

J1jνTuð1Þj
ffiffiffiffi
N
p

g
cos y0 þ Im νTuð1Þ

� �� �
ð43Þ

This is analogous to the fixed point equation for �h� and c�
1
. In both cases the requirement that

dhi ¼ c1u
ð1Þ

i << 1 requires that c1 be maximally O(1) and motivates our conjectures about the

realization-dependence and system-size scaling of the transition out of chaos. In particular, we

expect and confirm numerically that the critical value of J1 for transition to either fixed point

or limit cycle is inversely proportional to |νT u(1)| and grows with network size (see main text

and Fig 7).

We note that in the limit of large N we expect that the typical size of the imaginary compo-

nent of the leading eigenvalue, λ1, shrinks such that the typical period grows. These longer

period oscillations are characterized by square-wave-like shape in which the dynamics of the

coherent component slows around the critical value �hc ¼ �
� 1
ð1=gÞ (S3 Fig).

The fraction of realizations with real leading eigenvalue in the large N limit has not been

calculated analytically to our knowledge. We find numerically that this fraction appears to sat-

urate roughly around 3

10
for N≳ 8000.
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Lyapunov exponent, limit cycles, and fixed points

In order to calculate the largest Lyapunov exponent, we begin with a point h0 along the trajec-

tory of the dynamics and we solve concurrently for the dynamics of the trajectory, h(t) with

h(0) = h0, and for a randomly chosen perturbation, η(t). The trajectory h(t) yields the time-

dependent Jacobian matrix for each point along the trajectory:

J ijðtÞ ¼ � 1þ Jij�
0
ðhjðtÞÞ ð44Þ

We choose a random unit-norm vector η(0) = η0 and iterate the linearized dynamics of the

perturbation:

dη
dt
¼ J η ð45Þ

The largest Lyapunov exponent is given by

lim
t!1

1

t
log kηðtÞk ð46Þ

In practice we iterate 45 until t = 5000, that is, 5000 times the intrinsic time-scale of the

dynamics, and we renormalize η(t) at intervals of t = 100n for n = {1, 2, . . ., 50}.

We classify fixed points numerically by a threshold on the fluctuations of the coherent

input: stdð�hðtÞÞ � 5x10� 4.

We classify limit cycles by a threshold on the second peak of the normalized coherent auto-

correlation: �qpeak � 0:9.

We confirm that all of the trials with negative Lyapunov exponent were categorized as

either fixed points or limit cycles. A small fraction of trials classified as limit cycles had positive

Lyapunov exponents but with the largest one 0.0043.

Supporting information

S1 Fig. Self-tuned coherent dynamics with non-symmetric transfer function. (A) We use a

non-symmetric transfer function ϕ(h) = (1 + exp − βh)−p with β = 4 and p ¼ 1

2
. (B) Activity

trace of coherent activity ��ðtÞ in black and 10 randomly chosen neurons ϕi(t) displays coher-

ent switching between slow states. (C) Histogram of values of coherent current, �h, displays

bimodality with peaks near the critical values predicted by theory where �
0 �h
� �
¼ 1

g. Simula-

tions for N = 2000 and g = 2 with row balance.

(TIF)

S2 Fig. Real leading eigenvalues yield fixed points. (A) Sample chaotic dynamics for J1 = 6.32.

(B) Sample dynamics of same connectivity realization as in (A) but with J1 = 63.2. (C) Scatter-

plot of all h�i at fixed point, plotted against individual components of the leading eigenvector,

u1
i . Red dot is value of coherent mode at FP. Black dashed line is FP value predicted from the-

ory. (D) Value of coherent mode at FP, �h�, as a function of the standard deviation of the ran-

dom connectivity, g. Black line is prediction from theory: �hc ¼ sech� 1 1ffiffigp
� �

. (E) Phase diagram

for a single realization with real leading eigenvalue. Colormap shows the absolute value of the

mean coherent current over a single trial, j h�hi j which is close to zero when the network is cha-

otic and non-zero when at a fixed point. The bar below shows the fixed point value predicted

by theory, �hc, which is independent of J1. (F) Stability eigenvalue at fixed point, i.e. leading

eigenvalue of the Jacobian, � 1þ ~J ij�
0
ðh�j Þ, as a function of J1 for a specific realization of the
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random connectivity. The fixed point exhibits marginal stability independent of J1. Networks

in all panels have row balance. N = 4000.

(TIF)

S3 Fig. Complex leading eigenvalues yield limit cycles. (A) Top: Sample chaotic dynamics

for J1 = 15.8. Bottom: Autocorrelation of coherent mode shows oscillatory ringing. (B) Same

connectivity realization as (A) but with J1 = 126. Dashed pink line in top panel is prediction

from solving the three-dimensional dynamics. Autocorrelation shows near-perfect oscillations.

(C) Projection of the full dynamics of (B) onto coherent mode and the real and imaginary

parts of the leading eigenvector. These three dimensions account for more than 0.99 of the

total variance of the dynamics. Gray projection onto the leading eigenvector plane accounts

for 0.98 of the variance of the residual currents. (D) Scatterplot of period of oscillations plotted

against the phase of the leading eigenvalue,
Iml1

Rel1
, of Ĵ, for 219 different realizations of the ran-

dom connectivity. Black line shows prediction from theory, T ¼ 2p
Rel1

Iml1
. (E) Phase diagram for

a single connectivity realization with complex leading eigenvalue. Colormap shows the second

peak of the normalized autocorrelation of the coherent mode. Networks in all panels have row

balance. N = 4000.

(TIF)

S4 Fig. Near perfect coherence as strength of structured connectivity is increased. (A) Plot

of coherence, χ, vs strength of structured connectivity, J1, for networks of size N = 16000 with

row balance. Dots display average over realizations, bars display standard deviation. Only cha-

otic realizations included (those not found to be at a fixed point or a limit cycle—see Methods).

More than 20 realizations per value of J1. For J1 = 100, 22 out of 30 realizations were chaotic

and the average coherence among these realizations was 0.963.

(TIF)

S1 Appendix. Analytical derivations. We analyze the realization-dependence of the network

with and without row balance, derive the perturbative dynamic mean-field equations, and

derive the non-chaotic solutions to the dynamics in the limit of strong structured connectivity.

(PDF)
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