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Post-genomic insights into plant nodulation symbioses
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Abstract

Several legume genes involved in establishing nitrogen fixation have been discovered using
functional genomics; when mutated, the genes affect symbioses, and all encode receptor kinases.
This provides long-awaited insights into a complex plant-bacterium interaction and heralds the
possibility of extending the range of plants susceptible to nitrogen-fixing nodulation.
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Nitrogen is essential for life 
Plants are essential for life on this planet; they convert solar

energy to chemical energy that we eventually use as food,

fuel, feed and fiber. But plants can do this only if they have

nitrogen, the most limiting element for the synthesis of pro-

teins, amino acids, nucleotides and vitamins. Nitrogen is

commonly assimilated as nitrate and modern agriculture is

highly dependent on nitrate fertilizer, with global annual

nitrate fertilizer costs exceeding US$300 million. Moreover,

nitrate often contaminates ground water and surface

streams, causing environmental and human health prob-

lems, at a cost that possibly exceeds several billion dollars.

Some plants are naturally able to acquire nitrogen from the

air through a process called symbiotic nitrogen fixation. In

broad terms, this process requires a close interaction

between a soil bacterium, Rhizobium, and the roots of plants

of the legume family (which includes soybeans, peas, beans

and clovers, as well as thousands of other species found in a

wide range of ecosystems). Rhizobium enters into a symbio-

sis in which both partners benefit from their interaction: the

bacterium gains sugar from the plant, and the plant gains

reduced nitrogen. For this reason, legumes tend to be very

nutritious and serve as a direct protein source for many

people and animals.

All the bacterial genes needed for symbiotic nitrogen fixation

have been identified. Now, exciting progress is being made in

elucidating the plant’s contribution to this mutually beneficial

interaction, with the identification of crucial signal transduc-

tion genes involved early in the response to Rhizobium. The

major advances originate from the discovery of plant genes

that, if mutated, affect the symbiotic function of the plant.

This breakthrough was accomplished by applying functional

genomic tools to classic plant mutation breeding, a fruitful

marriage of old and new approaches. Precise genetic and

developmental controls are required for the establishment of

the complex interaction between bacterium and plant. Most

significantly, when the legume root is stimulated by the

appropriate bacterial partner it develops spherical, cylindri-

cal or coral-like outgrowths, in which the bacterium is

housed and where it accomplishes nitrogen fixation (the

reduction of atmospheric N2 gas into NH3, which is subse-

quently assimilated by the plant to form glutamine). These

structures are called ‘nodules’ and are produced from prolif-

erating root cortex and the pericycle (a cell layer along the

length of the root that is akin to pluripotent stem cells in

animals and is normally involved in lateral root initiation).

Nodules are induced by bacterial lipo-chito-oligosaccharides

called nodulation factors [1,2]. The invading Rhizobium dif-

ferentiates into a nitrogen-fixing form within a highly spe-

cialized plant membrane, making the resultant ‘symbiosome’

and the entire nodule fascinating examples of ‘cellular soci-

ology’ [3,4]. Such intimacy and specificity of interaction

clearly require precise signaling and genetic regulation.

Thanks to recent genomic advances we are now at the

threshold of discovering significant numbers of genes



involved in the process of nodulation and it may become pos-

sible to expand rhizobial symbiosis to other non-leguminous

crop plants. Indeed the full impact on agricultural sustainabil-

ity of such developments cannot be estimated at this point.

Classical nodulation analysis
Historically, analysis of nodulating plants depended largely

on biochemical and physiological data, describing the mech-

anisms of carbon supply, nitrogen fixation, ammonia assimi-

lation and nitrogen transport. Major emphasis was given to

understanding the function of such molecules as the oxygen-

transport protein leghemoglobin, expression of which is sig-

nificantly enhanced in the cytoplasm of infected nodule cells,

thus facilitating higher-efficiency oxygen transport to the

oxygen-requiring bacterium (the oxygen is used to generate

ATP that in turn is needed to split the nitrogen molecule).

Evolutionary parallels to oxygen-carrying globins in animals

stimulated further interest.

A little later in the development of the field, classical tech-

niques involving differential screening of cDNA libraries

with RNA from roots and nodules yielded nodule-enhanced

gene products, called nodulins. These are divided into two

broad classes, comprising either late functions associated

with nitrogen fixation (for example, leghemoglobin, gluta-

mine synthetase and uricase) or early nodulins (such as

ENOD2, ENOD12, ENOD40, all with unknown functions)

[5]. The use of more sensitive techniques, such as quantita-

tive reverse transcriptase-coupled PCR (QRT-PCR), demon-

strated that nodulins were often also expressed in other

tissues but at lower levels. Today, many nodulins remain

‘orphans’ for which the gene structure, location of expression

and even promoter structure are well described but function

remains obscure; as yet, no nodulin has been functionally

associated with a symbiosis-affecting mutation.

Genetics and genomics 
In parallel to the biochemical and molecular approaches, the

plant’s contribution to the process of nodule development

and maintenance has been analyzed by genetics. Using pre-

dominantly mutagenesis with the chemical ethyl methyl sul-

fonate (EMS) followed by selection of the second mutant

generation (M2), loss-of-function mutants were isolated for

a large range of legumes (notably pea, soybean, Lotus japon-

icus and Medicago truncatula) [6-9]. Such mutants demon-

strated that plant genes are essential for symbiotic success.

The mutations affected events during root-hair curling, for-

mation of an infection thread by the bacterium, nodule initi-

ation, control of nodule number, and nitrogen fixation itself.

But correlative studies of plant mutants and nodulin expres-

sion patterns failed to discover causative associations

between a mutant phenotype and a molecular alteration in a

nodulin gene. Knowledge of the nodulation mechanism

improved recently when molecular genetic technologies,

such as gene tagging and complete genome sequencing,

revealed all the bacterial genes needed for both nodulation

(Nod and Nol genes) and nitrogen fixation (Fix genes). Simi-

larly, analysis of the plant’s genetic contribution required the

development of functional genomic technologies such as

microarray transcript analysis and map-based gene cloning

([10-14] and A.E. Men, T.S. Linaya, I.R. Searle, I. Iturbe-

Ormaetxe, A.K.M. Hussain, I. Gresshoff, Q. Jiang, B.J. Carroll,

P.M. Gresshoff, unpublished work). 

To identify the plant components of nodulation, the tech-

niques of insertion mutagenesis and positional (map-based)

cloning, which were developed mainly for the non-legumes

Zea mays and Arabidopsis thaliana, have now been applied

to legume genetics. Many crop legumes suffer as experi-

mental organisms because of difficult regeneration from

tissue culture, which hinders fast and high-throughput

transformation, their large genomes (the pea genome is

4,000 Mb, compared to the human genome of 3,000 Mb),

frequent tetraploidy, large seeds and long life cycles. These

factors prevent large-scale mutant or transgenic screening

in laboratory conditions. To overcome these limitations,

two small legumes, L. japonicus and M. truncatula, were

chosen as models. 

Focusing on signal transduction
A few years ago the first true nodulation gene of any legumi-

nous plant was isolated from L. japonicus using transposon

mutagenesis with the Z. mays Ac transposable system [15].

In the non-nodulating mutant (nin-1) the interrupted gene

encoded a transcription factor that facilitates early symbiosis

at the infection-thread stage. It still remains unclear which

gene(s) is regulated by the NIN-1 protein. More recently, a

number of genes dealing with early signal transduction have

been discovered through map-based cloning [11,13], and

these are discussed further in the remainder of this article.

This approach requires linking the locus responsible for the

mutant phenotype to molecular markers that are then used

to isolate clones for sequencing and discovery of candidate

genes, with eventual sequencing of mutant and wild-type

alleles. The critical nexus between gene function and gene

structure, hitherto impossible for either nodulins or plant

mutants, has thus been achieved. 

Two non-nodulation mutant genes (LjSymRK and MsNORK)

have this year been positionally cloned and sequenced con-

currently in L. japonicus and Medicago sativa (alfalfa)

[11,13]. The two genes turned out to encode homologs of a

receptor-like kinase (RLK). The RLKs family is abundant in

plants, with perhaps 150 RLKs predicted to be encoded in the

Arabidopsis genome [16]; they are transmembrane proteins

of variable length with extracellular leucine-rich repeats or

lectin domains and a cytoplasmic protein kinase domain (a

canonical RLK structure is shown in Figure 1). RLKs are

involved in hormone reception, growth-factor recognition,
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the recognition of fungal elicitors, development of shoot and

floral apical meristems, and cell-cell recognition [17].

The discovery of the nodulation receptor kinase (MsNORK)

[13] gene was especially significant as its isolation was based

on a mutant in alfalfa, which is tetraploid. Given the avail-

ability of only a single nonsense mutation, it was significant

that analysis of non-nodulating mutations in other legumes

revealed alterations in the same (homologous) gene; thus,

mutations affecting NORK were also discovered in non-

nodulation mutants dmi2 (M. truncatula), and sym19

(Pisum sativum, the pea) [13]. In parallel, the homologous

gene, but named symbiosis receptor kinase (SymRK), was

also discovered in L. japonicus [11]. Severe mutants with

affected NORK product are unable to form symbioses not

only with Rhizobium but also with mycorrhizal fungi, sug-

gesting a common pathway for these bacterial and fungal

symbioses [11]. Accordingly, Stracke et al. [11] proposed that

the fungal symbiosis may have predated the bacterial,

perhaps dating back 360 million years to when plants were

rootless and possibly required association with fungi in

order to interact with the soil (see [18,19]).

NORK may be a widely used signal receptor, suggesting a

similarity between nodulation factors, fungal elicitors and

the ‘mycorrhizae factor’ that has yet to be discovered, but

this idea is put into question by genetic evidence of non-

nodulating mutants that nevertheless develop mycorrhizae.

It is more likely that other non-nodulating mutants, such as

sym1 in L. japonicus or nod139 of Glycine max (soybean) [8]

encode the true receptor component and that this may be

closely associated with NORK, forming a functional complex

similar to that of the epidermal growth factor (EGF) receptor

in animals or CLAVATA1, CLAVATA2 and CLAVATA3 in

plants [16,20,21]. Another component of this complex, pos-

sibly providing specificity for binding specific nodulation

factors, might be the lectin-nucleotide phosphohydrolase

(LNP) [22], which has high affinity for nodulation factor and

is expressed on the root surface. Work by Etzler and associ-

ates (M.E. Etzler, personal communication) suggests that

antibody against LNP blocks nodulation, and that anti-sense

expression of the gene in transgenic L. japonicus yields non-

nodulating progeny. It is therefore likely that LNP interacts

with the putative receptor kinase gene product of Ljsym1 to

form the Nod-factor receptor that in turn interacts with

NORK. Extrapolation suggests that yet another receptor

polypeptide would be needed for mycorrhizal recognition,

and that this protein would be closely associated with NORK. 

Regulating nodule number  
Once a nodule is induced, the plant requires a homeostatic

control system to regulate the nodule number at a level that

balances the burden on the plant with the benefit accrued. In

legumes this control is achieved by autoregulation of nodula-

tion (Figure 2), in which initiated nodule primordia signal

the leaf, which in turn produces an inhibitor that blocks pro-

gression of ontogenically younger nodule primordia [8,23].

Thus, an initial ‘burst’ of nodules develops during the time

needed to establish the feedback loop, after which nodule

primordia are initiated but fail to develop. EMS-induced

mutations in this process have super- or hypernodulation

and altered lateral root development [6,7,9,18,24]; in all

cases, except the nod3 mutant of pea, supernodulation is

controlled by some part of the shoot. Nodulation of

detached, then rooted (and meristem-less) soybean leaves

and removal of the shoot apex clearly demonstrated the

pivotal role of the leaf and not the apex.

Searle et al. [14] have used map-based cloning in soybean to

isolate an RLK called nodule autoregulation receptor kinase

(GmNARK), which is highly similar to the well-characterized

Arabidopsis RLK CLAVATA1. The role of CLAVATA1 is to

control the transition to flower formation of shoot apical

meristem cells after interaction with a related protein,

CLAVATA2, and complexing with a smaller peptide,

CLAVATA3. Alteration of the AtCLV1 CLAVATA1 gene leads

to a ‘club-like’ shoot apical meristem (hence the name) and

additional floral organs [21]. A missense mutation (V837A)

in the RLK GmNARK had a weak nodulation phenotype

while the nonsense mutant strains nts382 and nts1007

showed extensive supernodulation (between 10 and 40 times

the number of nodules found on wild-type plants) [14]

(Figure 2). The Stougaard and Kawaguchi groups [25,26] in

Denmark and Japan isolated the homologous gene (HAR1-1)

from L. japonicus using similar mutants and positional

cloning approaches. They also found similar mutations in

pea and confirmed a soybean supernodulation allele

(En6500), substantiating new insight into nodule and organ

development in plants.

What is fascinating about GmNARK/Har1-1 is the fact that

its biology is similar to an existing protein complex that is
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Figure 1 
A canonical receptor-like kinase gene such as CLAVATA1 from Arabidopsis
thaliana. The leucine-rich repeats differ extensively in number; intron
number may also vary significantly - for example, LjSymRK contains 14
introns whereas GmNARK/HAR1-1 has one; and the 3’ UTR (untranslated
region) often provides a means to distinguish closely related RLK genes
(see [27]).

 Intron 3′UTR

Leucine rich repeat

Kinase domain
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found in non-nodulating Arabidopsis [16,27]. Like

CLAVATA1, the GmNARK kinase regulates the fate of divid-

ing and differentiating cells. But supernodulating plants show

no detectable difference in their shoot apical meristems, where

CLAVATA1 is expressed, and GmNARK is expressed in the leaf

and little in the shoot meristem (in contrast to AtCLV1). Sup-

porting the idea of nodulation control via the leaf, expression

analysis by QRT-PCR demonstrated that mRNA levels are

about 14-fold higher in the leaf than the shoot apical meristem

region. It is most likely that high GmNARK activity in the

shoot apical meristem could lead to developmental malfunc-

tion. Strikingly, CLAVATA1 had not been implicated in long-

distance signaling, as GmNARK/Har1-1 now appears to be.

Interestingly, GmNARK/Har1-1 mutants in several legumes

possess an altered root phenotype especially in the absence

of Rhizobium inoculation. This suggests the NARKs have a
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Figure 2
Autoregulation of nodulation in legumes. A nodulation factor is received by a complex closely associated with nodulation receptor kinase (NORK), which
induces cell divisions. (a) The cell divisions signal the leaf-associated nodulation autoregulation receptor kinase (NARK) to produce a shoot-derived
inhibitor (SDI) of further primordial progression. Root NARK activity, however cannot ‘cross-feed’ to contribute to autoregulation, leading to leaf
control of nodulation. (b) SDI is absent in plants with a super- or hypernodulating mutation. Root systems of soybean with nodules induced by the soil
bacterium Bradyrhizobium japonicum show either (c) an autoregulated phenotype or (d) a supernodulation phenotype; shown is a supernodulation mutant
nts1007. Photo courtesy of Qunyi Jiang.
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role in lateral root development. It is possible that the root

control is not mediated by a long-distance signal, providing a

satisfying evolutionary phylogeny for the appearance of

nodule autoregulation after lateral root autoregulation. 

The discovery of a gene controlling the proliferation of

induced nodule primordia (GmNARK/LjHAR1-1), together

with the cloning of LjSymRK/MsNORK, opens a new field of

functional genomics of symbiosis. Phosphorylation targets,

complexing proteins and peptides, and the nature of the

ascending and descending signals in symbiosis need to be

described. Analysis of the interacting protein partners

(Figure 2) requires ‘phosphoproteomics’ in which patterns of

protein phosphorylation are monitored relative to environ-

mental triggers and resolved by mutant studies. Complimen-

tary to this are transcriptome-profiling approaches involving

gene arrays. Colebatch et al. [12] have used Nylon-based

macroarrays of 2,300 L. japonicus cDNAs to monitor gene

expression in roots and nodules. Numerous unexpected

‘functional connections’ were revealed by clustering analysis

and are now the subject of verification. Maguire et al. [10]

used glass-slide-mounted expressed sequence tag (EST)

arrays of soybean (4,100 UniGene ESTs) to compare root

and shoot expression patterns. In both studies the new tech-

nology was verified by ‘classical’ techniques of QRT-PCR and

northern blots. Micro- and macroarrays thus are valuable

tools for the study of gene networks functioning during the

onset of organ development. Molecular knowledge and the

integrated application of profiling of the transcriptome, pro-

teome and metabolome, coupled with defined mutations as

well as reverse genetics (in which new receptor kinase gene

constructs are introduced into gene deletion lines such as

soybean mutant FN37 (A.E. Men et al., unpublished work)

promise a bright future for the modulation of nodulation.
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