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Multiscale influenza forecasting
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Influenza forecasting in the United States (US) is complex and challenging due to spatial and

temporal variability, nested geographic scales of interest, and heterogeneous surveillance

participation. Here we present Dante, a multiscale influenza forecasting model that learns

rather than prescribes spatial, temporal, and surveillance data structure and generates

coherent forecasts across state, regional, and national scales. We retrospectively compare

Dante’s short-term and seasonal forecasts for previous flu seasons to the Dynamic Bayesian

Model (DBM), a leading competitor. Dante outperformed DBM for nearly all spatial units, flu

seasons, geographic scales, and forecasting targets. Dante’s sharper and more accurate

forecasts also suggest greater public health utility. Dante placed 1st in the Centers for Dis-

ease Control and Prevention’s prospective 2018/19 FluSight challenge in both the national

and regional competition and the state competition. The methodology underpinning Dante

can be used in other seasonal disease forecasting contexts having nested geographic scales

of interest.
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Influenza represents a significant burden to public health with
an estimated 9 to 49 million cases each year in the United
States (US)1. Influenza (flu) related activity is monitored in the

US by the Centers for Disease Control and Prevention (CDC)
through numerous surveillance efforts. One such effort is the
Outpatient Influenza-like Illness Surveillance Network (ILINet).
ILINet collects weekly data on influenza-like illness (ILI) from
over 2000 healthcare providers from all 50 states, Puerto Rico, the
US Virgin Islands, and the District of Columbia. ILI is defined as
a temperature greater or equal to 100 °F, a cough or sore throat,
and no other known cause, representing symptoms consistent
with influenza. ILINet constitutes a significant and necessary
effort to understanding the spread and prevalence of flu-like ill-
ness in the US in near real-time.

With mature ILI surveillance infrastructure in place in the US,
attention has turned in recent years to ILI prediction. The ability
to predict the spread of ILI poses a substantial public health
opportunity if able to be done accurately, confidently, and with
actionable lead times at geographic and temporal scales amenable
to public health responsiveness. Since 2013, the CDC has hosted
an influenza forecasting challenge called the FluSight challenge to
gauge the feasibility of forecasting targets of public health interest
in real-time, to galvanize the flu forecasting community around
common goals, and to foster innovation and improvement
through collaboration and competition2–4. The FluSight challenge
has been a leading driver of recent model development and flu
forecasting advancements5–21.

Up until the 2016 flu season (i.e., the flu season starting in the
fall of 2016 and ending in the spring of 2017), the FluSight
challenge’s scope encompassed probabilistic forecasting of short-
term (1 to 4 week ahead) and seasonal (season onset, peak timing,
and peak intensity) targets at two geographic scales: nationally
and regionally, where regions correspond to Health and Human
Services (HHS) regions. Probabilistic forecasting is carried out by
binning the support of the targets (e.g., binning the peak timing
target into weeks of the season) and assigning a probability to
each bin, representing the probability the eventual outcome will
fall in each bin. Probabilistic forecasts are a crucially important
component of the FluSight challenge, as it demands not only
information on what the forecasting models thinks will happen,
but also how confident the forecasting model is in its own pre-
diction. National and regional forecasts give a high-level view of
flu activity across the US. Those forecasts provide value to
national and regional public health officials, but offer only coarse
information for state and local public health practitioners. Thus,
starting with the 2017 flu season, the FluSight challenge expanded
to a third geographic scale: states and territories (referred to as
states). This expansion to a finer geographic scale presents an
opportunity to move forecasting to geographic scales better
aligned with public health response infrastructure and decision
making. It also presents an opportunity to develop and advance
methodological forecasting frameworks that can share informa-
tion across geographic locations, flu seasons, and geographic
scales coherently in ways that geographically isolated forecasting
models cannot.

Multiscale forecasting in the US requires careful consideration
as it presents numerous challenges. For instance, Fig. 1 (as well as
Supplementary Fig. 3) shows appreciable state-to-state ILI
variability. As an example, Montana’s average ILI is about 20%
the national average, while the District of Columbia’s and Puerto
Rico’s average ILI is about 250% the national average. Figure 1
also shows evidence of spatial correlation, with states near the
Gulf of Mexico having higher than average ILI while most
Midwest and Mountain West states have lower than average ILI.
Attempts to model the spatial relationships of flu and flu-like
illnesses include using network models and US commuter data5,

network models based on Euclidean distance19, and empirically
derived network relationships21,22. Though these approaches
consider spatial relationships differently, they all support the
conclusion that sharing information across geographical units can
improve forecasting.

Figure 2 (and Supplementary Fig. 4) shows season-to-season
variability, illustrating the common directional effect a flu season
can have on nearly all states. 2015, for instance, was a mild flu
season in the US with 42 out of 53 states experiencing ILI activity
below their state-specific averages (the 53 states are all 50 states,
minus Florida with no available data, plus Puerto Rico, the US
Virgin Islands, New York City, and the District of Columbia). In
contrast, 2017 was an intense flu season with 47 out of 53 states
experiencing ILI activity above their state-specific averages.
Supplementary Fig. 5 visualizes this information with six inten-
sity levels rather than an above/below average binary. Similar to
the findings that sharing information across geographical units
can improve flu forecasting, previous work has found that
sharing information across seasons can also improve flu
forecasting13. Similarly positive findings have been identified
in other disease modeling contexts using latent random
walks23,24.

Figure 3 shows the average standardized week-to-week volati-
lity across geographic scales (see Supplementary Note 3 for
details). Standardized volatility measures how much ILI (states)
and wILI (regions and nationally) varies from week-to-week,
where wILI is weighted ILI—a state-population weighted version
of ILI used to characterize ILI regionally and nationally. High
volatility poses a challenge to forecasting as increased volatility
can swamp the signal in the (w)ILI data. Figure 3 makes clear that
extending forecasts down to the state scale, a more actionable
scale for public health officials, comes at the cost of increased
volatility. The level of volatility is largely driven by the number of
patients seen weekly, as illustrated in Fig. 3. Developing multi-
scale flu forecasting models that account for decreasing volatility
with coarsening geographic scales will be crucial. Some multiscale
forecasting models have been developed in the context of nor-
ovirus gastroenteritis prediction25. In that work25, showed that
modeling at the finest available data scale and aggregating up to
coarser scales generally had better predictive performance than
models directly operating at the aggregated scales. To our
knowledge, such models have not been developed and oper-
ationalized for ILI forecasting.

It is in the context of appreciable state-to-state and season-to-
season variability, uneven ILINet surveillance participation, and
the need to render short-term and seasonal probabilistic forecasts
at nested geographic scales that Dante, a probabilistic, multiscale
flu forecasting model, was developed. While efforts have been
made to address each of these challenges in isolation, no one has
yet to tackle all of these challenges simultaneously in the context
of influenza forecasting. Jointly addressing all these challenges is
the main contribution of this paper.

Dante is composed of two submodels: a fine-scale model for
the state scale and an aggregation model for the regional and
national scales. The state submodel includes both a data model
and a process model. The data model is where Dante learns
information about the level of volatility in the ILI time series. The
process model is where Dante captures common and specific
structure in the data, including a term common to all states and
seasons, a state-specific term, a season-specific term, and a state-
season specific interaction term. The common term can be
thought of as the average profile of the ILI data across space and
time, whereas the interaction term captures deviations from
common, state-, and season-specific baselines. The aggregation
model builds regional and national forecasts using the state
forecasts as population weighted building blocks, leading to
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forecasts that are coherent across geographic scales. Full details of
both submodels are provided in the Methods section.

Results
Dante is compared to a leading flu forecasting model, the
Dynamic Bayesian Model (DBM)13. Like Dante, DBM models ILI
data as the sum of component trajectories. DBM’s components
include a season/region-specific susceptible-infectious-recovered
(SIR) compartmental model, a region-specific statistical dis-
crepancy component capturing deviations from the SIR compo-
nent common across seasons (e.g., holiday effects), and a
regularized season/region-specific discrepancy component to
capture ILI structure unable to be captured by the other two
components. DBM is fit to each geographic unit separately, thus
does not share information across geographic units or geographic
scales, but does share information across flu seasons. In contrast,

Dante shares information across geographic units, geographic
scales, and flu seasons. DBM was the fourth place model and a
component model in the second place ensemble model18 in the
prospective national and regional 2017/18 FluSight challenge out
of 29 participating models. Dante was the first place model in the
2018/19 national and regional FluSight challenge out of 33 par-
ticipating models. Dante also came in first out of 14 competing
models in the 2018/19 state challenge.

We compare Dante and DBM using forecast skill following the
scoring rules of the CDC’s FluSight challenge (details in Sup-
plementary Note 8), noting both that this scoring rule is
improper18,26,27 and that a proper scoring rule has been imple-
mented in the FluSight challenge starting with the 2019/20 sea-
son. In this paper, forecast skill is defined as the exponentiated
average over forecast scores and ranges between 0 and 1, with 1
being the best possible forecast skill. Put another way, skill here is

Fig. 1 State-to-state influenza-like illness variability. a Average state influenza-like illness (ILI) relative to average national weighted ILI (wILI). States
bordering the Gulf of Mexico tend to have higher ILI than the national average. The geographical sizes of Alaska (AK), Hawaii (HI), Puerto Rico (PR), the US
Virgin Islands (VI), New York City (NYC), and the District of Columbia (DC) are not to scale. Data for Florida is unavailable. Averages are based on 2010
through 2017 data. b ILI by season (colored lines) for select states. Black line is national average wILI for reference. Appreciable season-to-season and
state-to-state ILI variability exists.
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Fig. 2 Seasonal influenza-like illness variability. a Dark green states denote states with ILI less than their state-specific averages while pink states are
states with ILI above their state-specific averages. 2015 was a mild flu season for the majority of states relative to their state-specific average ILI, while
2017 was an intense flu season for the majority of states, indicating that season-to-season effects can affect most of the country. Data unavailable for
Florida. States displayed outside of the contiguous US are geographically not to scale. b State detrended ILI for the 2015 and 2017 flu seasons, where state
detrended ILI is ILI for a state/season minus ILI for that state averaged over all seasons. Positive/negative state detrended ILI means ILI for that season was
above/below the state-specific average, respectively. Black line is season-specific national average wILI for reference.

Fig. 3 Standardized volatility by geographic scale. a Average standardized week-to-week influenza-like illness (ILI—states) and weighted ILI (wILI—HHS
regions and nationally) volatility for three geographic scales. Volatility decreases as the scales coarsen. Boxplots present median (center line), interquartile
range (boxes), 1.5 times the interquartile range (whiskers), and outliers (points) based on n= 53, 10, and 1 observations for states, HHS regions, and the
nation respectively. b Average standardized week-to-week (w)ILI volatility versus the average number of weekly patients on a log scale for each state, HHS
region, and nationally. Volatility decreases as the number of weekly patients seen increases, suggesting that volatility is in part a product of ILINet
participation.
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the geometric average probability assigned to the observed out-
come or, in the case of the CDC’s multibin score, values rea-
sonably close to the observed outcome. This differs from the
definition of skill in28 defining an average over forecast scores in
relation to a reference forecast. Conceptually, skill is a function of
both accuracy (a measure of a point summary of a distributional
forecast) and sharpness (a measure of concentration of the dis-
tributional forecast). We also score both models using a proper
log scoring rule (details in Supplementary Note 8.3). We will
show how Dante compares to DBM broadly in terms of skill, and
also in terms of its component pieces. Both models were fit in a
leave-one-season out fashion, where the data for all seasons not
being forecasted along with the data for the season being fore-
casted up to the forecast date were used for training.

Table 1 shows that Dante outperformed DBM in forecast skill
at all geographic scales as calculated by both the improper CDC
scoring rule and a proper log scoring rule. Dante also out-
performed DBM in terms of accuracy, as measured by mean
squared error (MSE) of point predictions (posterior means), at all
geographic scales. For both models, forecast skill improves and
average MSE decreases as geographic scales coarsen, suggesting
that both forecast skill and accuracy degrade as we move to finer
scales where volatility is greater. See Supplementary Note 12 for
further details and figures comparing the MSE of Dante and
DBM.

Figure 4 shows the ratio of forecast skill of Dante to that of
DBM for each state, region, and nationally. Dante outperformed
DBM for the majority of geographic regions, with the exception
of HHS Region 7 and the states Wyoming, Puerto Rico, and
Kentucky.

Figure 5 shows forecast skill broken down by targets (left) and
flu seasons (right) for each geographic scale. Dante outperformed
DBM for all scales and targets, except for peak intensity regionally
and onset nationally. Improvement over DBM is largest for the 1-
week ahead forecast target. For context, in the 2018/19 FluSight
national and regional challenge, Dante placed first for all short-
term targets, season onset, and peak intensity (PI), while placing
ninth for peak timing (PT). In the state challenge, Dante placed
first in all short-term targets and PT, while placing second for PI.
Dante also outperformed DBM for all scales and flu seasons,
except for 2017 nationally. While forecast skill for DBM and
Dante are close for all seasons nationally (sans 2016), Dante
consistently and appreciably outperformed DBM for all seasons at
the regional and state scales.

Figure 6a provides context as to how Dante is outperforming
DBM. Figure 6a displays the ratio of forecast skills at each scale
for all short-term forecasts against the difference in the 90%
highest posterior density (HPD) predictive interval widths for
each of the short-term target’s posterior predictive distributions.

See Supplementary Note 9 for calculation details. HPD predictive
intervals are similar to equal-tailed predictive intervals as they
capture the range of probability concentration, but are more
appropriate than equal-tailed predictive intervals for distributions
that are not unimodal and symmetric. Figure 6a shows that for all
scales and short-term forecasts, Dante has smaller HPD interval
widths, indicating that Dante’s forecasts are more concentrated
(ı.e., sharper) than DBM. Dante’s increased forecast sharpness
resulted in higher forecast skill than DBM. This is a promising
finding, as sharper forecasts, if well-calibrated, provide more
information to public health decision makers.

Figure 6b shows that Dante’s forecasts are sharper than DBM’s
for all short-term targets at all geographic scales. For each short-
term target, forecasts for both DBM and Dante become sharper as
the geographic scale coarsens. DBM makes sharper short-term
forecasts because the (w)ILI DBM is modeling less volatile, i.e.,
because (w)ILI becomes less volatile as geographic scales coarsen.
Dante makes sharper short-term forecasts at coarsening geo-
graphic scales as a result of the aggregation model. Dante’s 3-
week-ahead 90% HPD interval widths nationally and regionally
are 1.4 and 2.1%, respectively, about the same as Dante’s 1-week-
ahead 90% HPD interval widths are regionally and at the state-
level, respectively. Said another way, Dante loses about 2 weeks of
sharpness in its short-term forecasts for each disaggregating
geographic scale.

Though Dante won the 2018/19 FluSight challenge and out-
performed a leading flu forecasting model, DBM, in a retro-
spective comparison, Dante is still a work in progress. Figure 7
shows Dante’s 90% empirical coverages for short-term targets and
represents an opportunity for future Dante improvement. Over-
all, empirical coverages for states are close to their nominal
coverages. Those empirical coverages drop, however, as geo-
graphic scales coarsen. Furthermore, empirical coverages drop
with a growing forecast window. The right of Fig. 7 breaks down
empirical coverages into the stages relative to the season peak.
Empirical coverages are generally good in the post-peak stage of
the flu season, arguably when forecasts are least useful. Fig. 7
makes clear that while Dante represents the state of the art, flu
forecasting is a field ripe for improvement, advancement, and
innovation.

Discussion
The plot of skill score (Fig. 5) and total patients seen and volatility
(Fig. 3) suggests that Dante (and DBM) can forecast geographic
regions better when the forecasted estimate is based on more data
than less. This result suggests that expanded ILI surveillance
participation plays a role in improving model forecasts, not just
improvements to the models themselves. This idea is not sur-
prising. Disease forecasting has been compared to weather
forecasting29, a field that has continued to make consistent pro-
gress through parallel efforts of improved modeling and data
collection.

We found that Dante made sharper forecasts, as measured by
smaller 90% HPD interval widths than DBM, a model that fits
aggregate data directly. Similar findings were noted by25 when
comparing models fit to norovirus data in Berlin stratified by
regions and age groups—models fit to the finest scales and sub-
sequently upscaled had sharper predictions than models fit to the
aggregated scales directly. This suggests that continued stratifi-
cation of ILI, such as partitioning state-level ILI by age groups, by
flu strain type, or county-level, may provide further sharpening of
forecasts at aggregate scales.

Dante’s first place finish in the 2018/19 FluSight challenge may
come as a surprise given that it is a purely statistical model and
uses only ILINet data, while many of its competitors are based in

Table 1 Comparison of forecast performance between Dante
and DBM.

Metric Model States HHS Regions National

Skill Dante 0.372
(0.060)

0.413
(0.073)

0.439
(0.078)

DBM 0.337
(0.053)

0.383
(0.066)

0.426
(0.074)

MSE Dante 3.164 2.441 1.921
DBM 3.390 2.674 2.244

Dante and DBM average forecast skill and mean squared error (MSE) comparisons across
geographic scales. For skill results both the FluSight challenge’s forecast skill and the
exponentiated, proper log score are reported, with the proper skill in parentheses. Forecast skill
and MSE each improve for both models as the geographic scale coarsens. Dante outperformed
DBM at all geographic scales under both performance metrics.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-23234-5 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:2991 | https://doi.org/10.1038/s41467-021-23234-5 |www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


Fig. 4 Dante’s forecast skill relative to DBM’s by geographic region. Ratio of forecast skill of Dante to that of DBM, for all states, regions, and nationally.
Dante had higher forecast skill for all geographic regions except for HHS Region 7, Kentucky, Wyoming, and Puerto Rico.
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full or in part on mechanistic disease transmission models and/or
are augmented with alternative data sources (e.g., Google search
data). Dante’s superior performance suggests that these
mechanistic components or alternative data sources may be
integrated into those models in a way that is improperly aligned
with the truth. For example, DBM includes an SIR model com-
ponent via a season-specific “I” term but a given season may have
multiple circulating influenza strains responsible for the “true” flu
component in the ILI data, thus rendering the use of a single “I”
term inappropriate.

Revisions made to ILI data after its initial release are referred to
as backfill and constitute a meaningful source of uncertainty when
prospectively forecasting ILI. In this work, backfill was ignored for
the forecasting of both Dante and DBM. As a result, the forecasting
results for Dante and DBM are directly comparable to each other in
this paper but are not directly comparable to previous FluSight
challenge results. The reason backfill was ignored in this paper is
because Dante uses state-level ILI data directly, and state-level
backfill data is only available starting for the 2017/18 season.
Though backfill was not addressed in this paper, Dante’s winning
2018/19 FluSight challenge entry did include a backfill model to
account for the revision process of real-time ILI data.

Linking understandable processes to observed patterns in the
data via models while maintaining high performance is the next
frontier in ILI modeling. To do so will require a fuller con-
sideration of the “ILI data generating process.” This process non-
exhaustively includes a disease transmission process(es) (e.g.,
things often modeled with a compartmental model(s)), a
healthcare visitation process (i.e., a set of processes related to who
interacts with the healthcare system and when), an ILINet par-
ticipation process (i.e., certain providers participate in ILINet
while others do not, and the composition of provider networks
varies temporally and spatially), and a reporting process (e.g.,
backfill).

Further stratification is a promising direction for incorporating
known facets of the ILI data generating process into Dante in a
flexible way. For example, if provider-level ILINet data were
available state-level models could be decomposed into models for
emergency department (ED) ILI and non-ED ILI. We hypothe-
size that a systematic difference exists between patients visiting
ED and non-ED providers, specifically that the proportion of ED
patients with ILI is higher than that of non-ED patients. If so,
then provider composition could help explain some state-level
variation in ILI magnitude (we expect states with more ED

Fig. 5 Dante’s and DBM’s forecast skill by target and season. a Average forecast skill by scales and targets. PI and PT stand for peak intensity and peak
timing, respectively. Dante outperformed DBM for all scales and targets, except for onset nationally and for PI regionally. b Average forecast skill by scales
and flu seasons. Dante outperformed DBM for all scales and targets, except for 2017 nationally.
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providers have higher reported ILI). It could also explain part of
the holiday-specific spikes in observed ILI (we expect that spikes
in ILI activity on holidays are partially due to the provider
composition in ILINet changes for that week—more clinics are
closed and thus ED providers have a relatively higher
contribution).

Modeling across geographic scales in a single, unified model
ensures forecasts are simultaneously coherent, a feature that is not
present in many FluSight submissions. Ongoing work by our
team will provide a model-agnostic tool by which users can
modify outputs from a non-unified model so as to attain
coherency30. Our team is also working to incorporate internet
data sources (i.e., nowcasting) into future iterations of Dante.

When internet data sources were incorporated into DBM the
performance increased, which leads us to be hopeful that Dante
will also be improved by the thoughtful incorporation of
internet data.

While Dante has utility forecasting seasonal influenza, it would
not be particularly useful for forecasting in an emerging outbreak
setting. At its core, Dante is learning exploitable structure from
data of historical flu seasons. An emerging outbreak, on the other
hand, would by its very nature not have sufficient training data
from which to learn about expected baseline trajectories. Swap-
ping out the common process model term (μ all

t – see the Methods
section) for something resembling the infectious compartment of
an SIR model might be one way to steer Dante towards emerging
outbreak settings, but Dante’s core strength is its ability to exploit
historical data.

Methods
Dante is a probabilistic, Bayesian flu forecasting model that is decomposed into two
submodels: the fine-scale model (i.e., the state model) and the aggregation model
(i.e., the regional and national model).

Dante’s fine-scale model. Dante’s fine-scale model is itself described in two parts:
the data model and the process model.

Dante’s data model. Let yrst∈ (0, 1) be ILI/100 for state r= 1, 2, …, R in flu season
s= 1, 2, …, S, for epidemic week t= 1, 2, …, T= 35, where t= 1 corresponds to
epidemic week 40, roughly the first week of October and T= 35 most often cor-
responds to late May. Dante models the observed proportion yrst with a Beta
distribution as follows:

yrstjθrst; λr � Beta ðλrθrst; λrð1� θrstÞÞ; ð1Þ
where

E ðyrstjθrst; λrÞ ¼ θrst; ð2Þ

Var ðyrstjθrst; λrÞ ¼
θrstð1� θrstÞ

1þ λr
: ð3Þ

In Dante, θrst is the unobserved true proportion of visits for ILI in state r for
season s during week t and λr > 0 is a state-specific parameter that captures the level
of noise in the ILINet surveillance system and thus the level of volatility in the ILI
time series. In Dante, yrst is modeled as unbiased for the latent state θrst. The
observation yrst, however, is not equal to θrst due to variability in the measurement
surveillance process (i.e., the true proportion of ILI in state r for season s during
week t is not going to be perfectly captured by ILINet surveillance). Motivated by
Fig. 3, λr is likely to be related to ILINet participation as measured by the total
number of patients seen weekly in state r. As λr increases, the variance of yrst
decreases and observations will tend to be closer to θrst. Because we do not know
the relationship between patient count and λr a priori, we model λr hierarchically,
allowing them to be learned from data (details in Supplementary Note 1.1).
Specifically, each λr is given a central, non-standardized t-distribution prior with
support in the interval [0, ∞) and a shared precision parameter that itself has a
weakly informative Gamma prior.

Figure 8 shows the posterior mean of λr versus the average number of patients
seen weekly by each state. A clear linear relationship is observed on a log-log scale,
where the variance of yrst goes down (i.e., λr increases) as the total weekly seen
patients increases. What is particularly striking about Fig. 8 is that Dante has no
knowledge of the number of patients seen each week as it is not an input to Dante,
illustrating how structure can be learned rather than prescribed with a flexible,
hierarchical model, provided sufficient training data.

Dante’s Process Model. Dante’s process model models the unobserved true pro-
portion of ILI, θrst∈ (0, 1), as a function of four components:

θrst ¼ logit�1ðπrstÞ; ð4Þ

πrst ¼ μ all
t þ μstatert þ μseasonst þ μinteractionrst : ð5Þ

The two season independent terms in Eq. (5), μ all
t and μ state

rt , are modeled as
random walks, and the two season dependent terms, μ season

st and μ interaction
rst , are

modeled as reverse-random walks. Random and reverse-random walks allow
patterns in the process model to be flexibly learned while capturing week-to-week
correlation. Standard random walk priors are used for μ all

t and μ state
rt , with the latter

being specified hierarchically. This specification involves placing a mean-0 normal
prior on the first week of the flu season, and assuming a priori that subsequent
weeks are normally distributed and centered at the previous week’s value. The
reverse random walk term μ season

st requires a prior specification for the value in the

Fig. 6 Dante’s and DBM’s short-term forecast skill and sharpness by
geographic scale. a Ratio of average forecast skills versus difference in
90% highest posterior density (HPD) interval widths for short-term
forecasting targets. For all short-term forecasting targets and geographic
scales, Dante produced sharper (i.e., smaller 90% HPD interval widths) and
higher scoring forecasts than DBM. b Average 90% highest posterior
density (HPD) interval widths for the short-term forecasting targets. Both
Dante and DBM produce sharper (i.e., smaller 90% HPD interval widths)
forecasts for coarser geographic resolutions. For all short-term forecasting
targets and geographic scales, Dante produced sharper forecasts
than DBM.
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final week of the flu season rather than the first week of the season, which allows
the forecasting extrapolation problem to become an interpolation problem. The
state-season specific term μ interaction

rst is the most challenging for Dante to learn
because it is only directly informed by state r and season s, and for forecasting
purposes there is either no or partial information available from season s. For that
reason, an autoregressive term is included in the hierarchical reverse random walk
prior specification to help regularize μ interaction

rst towards 0. Prior choice is an aspect
of the model which could still be improved, and it is possible that alternative prior
specifications may yield improved performance. More details are available in
Supplementary Note 1.2.

Figure 9 illustrates the fits for all model components for Alabama and Iowa for
the 2015 and 2017 flu seasons. The component μ all

t is common to every state and
season and acts as the anchor for the process model. The shape of μ all

t is similar to
the national average ILI trajectory of Fig. 1, capturing the profile for a typical state
and season. The component μ state

rt captures the state-specific deviation from μ all
t

and is common to every season for a given state, but is distinct for each state. As
can be see in Fig. 1, Alabama typically sees ILI above the national average, hence
why μ state

rt for Alabama is learned to be greater than zero. Iowa, however, typically
sees ILI below the national average, explaining why μ state

rt is learned to be less than
zero for Iowa. The component μ season

st captures the season-specific deviation from
μ all
t and is common to every state for a given season, but is distinct for each season.

This component captures the fact that seasons can have effects that are shared by
nearly all states, as illustrated in Fig. 2. The shape of μ season

st for 2015 and 2017 has a
similar shape to the average residuals for 2015 and 2017, respectively, in Fig. 2.
Finally, μ interaction

rst captures the remaining signal in πrst that cannot be accounted for
by μ all

t , μ state
rt , and μ season

st . The term μ interaction
rst is distinct for each state and season.

Dante’s process model is purposely over-specified. If our interest were purely to
fit ILI data, the term μ interaction

rst alone would suffice. However, there is not enough
structure to forecast effectively with only μ interaction

rst . On the other hand, the non-
interaction terms in the decomposition of πrst (μ all

t , μ state
rt , and μ season

st ) provide
structure for forecasting but not enough flexibility to capture all the signal in the
ILI data. Thus, the μ interaction

rst term provides the flexibility needed to fit the data, but
is specified so that it plays as minimal a role as possible so that signal is captured in
the non-interaction terms and can drive the shape of forecasts.

Inference for unobserved components of Dante, as well as state-level forecasts
of yet-to-be-observed yrst are generated by sampling from the posterior distribution
with Markov chain Monte Carlo (MCMC), resulting in a sample of M draws that
summarize the posterior distribution (details in Supplementary Note 2). We use
the software JAGS (Just Another Gibbs Sampler)31, as called by the R package
rjags32 within the programming language R33 to perform the MCMC sampling.
We denote each MCMC draw by the index m. Notationally, we denote the mth
sample for a yet-to-be-observed yrst as yrstm.

Dante’s aggregation model. Dante’s regional and national forecasts are computed
as linear combinations of state forecasts, where weights are proportional to 2010
US Census population estimates (Supplementary Fig. 6). Let wr∈ [0, 1] be the
population of state r divided by the US population such that ∑R

r¼1 wr ¼ 1. For each
MCMC draw m, we compute the ILI forecast for aggregated region ρ (indexing all
ten HHS regions and nationally) as:

yρstm ¼ ∑
R

r¼1
wðρÞ
r yrstm: ð6Þ

For ρ= region X (e.g., ρ=HHS Region 1), wðρÞ
r ¼ 0 if state r is not a member of

region X and

wðρÞ
r ¼ wr I ðr 2 regionX Þ

∑R
r¼1 wr I ðr 2 regionX Þ ð7Þ

and I(r∈ region X) is an indicator function equal to 1 if state r is in region X and 0

otherwise. By construction, ∑R
r¼1 w

ðρÞ
r ¼ 1 for any ρ. The aggregation model

constitutes a bottom-up forecasting procedure and ensures forecasts are coherent

Fig. 7 Dante’s empirical coverage. Dante’s 90% empirical coverages for short-term targets, broken down by geographic scales. b Empirical coverages by
target averaged over all seasons, geographic units within scale, and stages of flu season. a Empirical coverages broken out by stages of flu season. The
“Around Peak” stage is defined as the peak week, plus/minus 2 weeks inclusively. Generally, empirical coverages degrade as the forecast window
increases, as geographic scales coarsen, and as we get earlier in the flu season. The disagreement between empirical and nominal coverage for Dante
represents an opportunity for iteration and improvement.

Fig. 8 Dante’s posterior means for λr. The posterior mean for λr versus the
average number of patients seen weekly by each state. Both axes are on a
log scale. A clear linear relationship is observed. Dante learns this
relationship, as it has no explicit knowledge of the average number of
patients.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-23234-5 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:2991 | https://doi.org/10.1038/s41467-021-23234-5 |www.nature.com/naturecommunications 9

www.nature.com/naturecommunications
www.nature.com/naturecommunications


across scales. An example of resulting aggregated forecasts can be found in
Supplementary Note 7.

Reporting Summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Up-to-date national, regional, and state ILI data are available from the CDC’s FluView
Interactive application: https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html. Select
“ILINet” as the data source, “National,” “HHS Regions,” and “State” as the regions, and
“Select All” for the seasons.

Code availability
The code to run Dante has been provided in the Supplementary Information document.
A minimum working example of the code can be found here: https://github.com/lanl/
Dante.
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