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Abstract: With the advantages that long-read sequencing platforms such as Pacific Biosciences
(Menlo Park, CA, USA) (PacBio) and Oxford Nanopore Technologies (Oxford, UK) (ONT) can offer,
various research fields such as genomics and transcriptomics can exploit their benefits. Selecting an
appropriate sequencing platform is undoubtedly crucial for the success of the research outcome,
thus there is a need to compare these long-read sequencing platforms and evaluate them for specific
research questions. This study aims to compare the performance of PacBio and ONT platforms for
transcriptomic analysis by utilizing transcriptome data from three different tissues (hepatopancreas,
intestine, and gonads) of the juvenile black tiger shrimp, Penaeus monodon. We compared three
important features: (i) main characteristics of the sequencing libraries and their alignment with the
reference genome, (ii) transcript assembly features and isoform identification, and (iii) correlation of
the quantification of gene expression levels for both platforms. Our analyses suggest that read-length
bias and differences in sequencing throughput are highly influential factors when using long reads in
transcriptome studies. These comparisons can provide a guideline when designing a transcriptome
study utilizing these two long-read sequencing technologies.

Keywords: long read sequencing; transcriptomics; Oxford Nanopore Technologies; PacBio; Penaeus
monodon

1. Introduction

The advent of single-molecule, third-generation sequencing technologies, mainly rep-
resented by Pacific Biosciences (PacBio) and Oxford Nanopore Technologies (ONT), marked
the beginning of a new era in genomics [1]. Thus, many other “-omics” are quickly adapting
to these technologies, further improving the accumulated scientific knowledge obtained
during the past decades using short-read sequencing methods. Although Illumina (short
read) is still a widely used sequencing platform for transcriptomic studies, it has some
technological limitations that can be overcome using long-read sequencing [2–4]. The main
limitations of short-read sequencing are that assembled transcripts from short reads do
not cover full-length transcripts in eukaryotic genomes, and PCR amplification bias can be
introduced during library construction [5,6]. Read lengths are over 15 kb for PacBio and
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30 kb for ONT, exceeding the length needed to cover most RNA molecules in eukaryotes [2].
Additionally, sample preparation for ONT long-read sequencing does not require PCR
amplification, thus reducing possible bias, although with the consequence of reduced
sequencing throughput [1,2,7]. Moreover, previous work comparing Illumina and ONT
quantification of gene expression assessed the existence of a high level of correlation be-
tween the quantification of transcripts for both technologies [8–11], confirming that results
obtained with ONT RNA-seq approaches are comparable to those obtained with short-read
sequencing platforms. All of these characteristics make these two long-read sequencing
technologies—ONT and PacBio—very attractive and suitable options for isoform and
fusion transcript discovery and de novo transcriptomic analysis [12].

While encouraging, third-generation sequencing platforms are still improving, and anal-
ysis of long-read transcriptomes is still challenging. One of the main drawbacks of leveraging
third-generation sequencing technologies is the relative lack of bioinformatic tools and
standardized pipelines designed for downstream analysis [13]. In the same vein, the raw
base-called error rate, although improved in recent years, is still reported to be <1% in
circular consensus reads (CSS) from PacBio [14] and <5% for ONT sequences [15]. Charac-
teristics of the error distribution also vary between both technologies [6,16], with mainly
randomly distributed indels for PacBio reads and indels in homopolymer regions for ONT
reads [16]. Nonetheless, recent improvements in the sequencing throughput of both third-
generation sequencing technologies have made it possible to conduct the first studies of
full eukaryotic transcriptomes using only long-read sequencing platforms without Illumina
sequencing [13]. However, there is still a lack of benchmarking studies and information
about the suitability of applications for long-read sequencing technologies, especially when
applied to transcriptomic studies in eukaryotes and transcriptional landscape analysis.

In this study, we aimed to compare PacBio and ONT reads by investigating the
transcriptomic landscape of an economically important shrimp species, the black tiger
shrimp, Penaeus monodon. With an origin in the Indo-West Pacific waters, this shrimp
species is one of the dominant cultured species worldwide, accounting for 9% of total
crustacean production [17]. Characteristic of decapod crustaceans, the P. monodon genome
is large and highly repetitive, making long-read sequencing techniques very well suited
for genomic characterization. The first genome assembly of P. monodon was carried out in
2016 using Illumina paired-end reads [18], resulting in a highly fragmented draft genome
with over 2 million scaffolds and less than 35% completeness [18]. An improved P. monodon
genome assembly was released in 2019 [19], leveraging a hybrid approach using long reads
from ONT MinION sequencing and short reads from paired-end Illumina sequencing.
Recently, a high-quality chromosome-level P. monodon genome was achieved by our team
using a combination of PacBio high-depth sequencing and Illumina sequencing, with the
final scaffolding performed using long-range Chicago and Hi-C technologies [20].

In this study, we took advantage of the recent high-quality P. monodon assembly,
which is a prerequisite for transcriptomic landscape analysis, to assess the performance
of PacBio and ONT reads; our goal was to evaluate and compare both technologies in
each of the different stages of a general transcriptomic pipeline using samples from three
different tissues from male and female P. monodon (Figure 1). The library generated by
PacBio rendered 542,686 high-quality circular consensus sequence (CCS) reads with an
average length of 2764 base pairs (bp), while the library generated by ONT rendered
34,202,609 filtered reads with an average length of 1216 bp. First, we compared the
main characteristics of the two sequencing libraries. Second, we used StringTie2 [21] to
compare the different profiles of assembled transcripts for both technologies, using their
assembled intron chains and comparing them with those from the transcripts annotated in
the reference genome. Third, we determined the degree of correlation of the level of gene
expression between all samples of the study. Finally, we assessed the level of completeness
of the final assembled transcriptomes using the Benchmarking Universal Single-Copy
Orthologs (BUSCO) genes from 90 arthropod species.
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Our findings highlight that read-length bias and differences in sequencing throughput
between both technologies are key aspects to consider when designing transcriptomic
studies that use these long-read sequencing technologies.

2. Materials and Methods
2.1. Sample Collection and RNA Preparation

Two four-month-old (male and female) juvenile P. monodon (black tiger shrimp) were
collected from the Prachuapkhirikhan province in Thailand. The hepatopancreas, intestine,
and gonads (testes and ovaries) were dissected and immediately frozen in liquid nitrogen
and stored at −80 ◦C before RNA extraction. Total RNA was extracted from 50 mg frozen
tissues using a TRI Reagent method according to the manufacturer’s instructions (Molecular
Research Center, Cincinnati, OH, USA). Genomic DNA was eliminated using 0.5 U/µg of
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RNase-Free DNase I (Promega, Madison, WI, USA) at 37 ◦C for 30 min. The purified RNA
was then aliquoted for PacBio and ONT sequencing.

2.2. PacBio Library Preparation and Sequencing

Total RNA (1 µg per sample) from the male and female P. monodon hepatopancreas,
intestine, and gonads was sequenced using the IsoSeq method (NovogeneAIT, Singapore).
The RNA quality measurements are provided in Supplementary Table S1. Six libraries were
constructed using the SMRTbell Template Prep Kit 2.0 (Pacific Bioscience, Menlo Park, CA,
USA) and NEBNext single cell/low input RNA library (New England BioLabs, Ipswich,
MA, USA). Each library was constructed for each sample, and they were run on PacBio
Sequel to generate minimum output of 4G per sample. The sequencing was performed
on a Sequel sequencing kit 3.0, SMRT cell 1 M v3 LR. SMRTlink software v7.0 was used
to filter and process the raw sequencing subreads with the cutoff or read quality ≥ 0.8
126 (minReadScore = 0.8). SMRTlink software v7.0 was used to filter and process the raw
sequencing subreads with the cutoff or read quality ≥ 0.8 (minReadScore = 0.8). Filtered
subreads were processed using the IsoSeq3 pipeline to obtain highly accurate long reads.
The IsoSeq3 pipeline included three main steps. First, the subreads were clustered based on
circular consensus sequences (CCS) using the “ccs” module from SMRTlink v7.0 software
with the following parameters: at least a single polymerase on a single strand of an insert
within a SMRTbell™ template and no adapter sequences (minPasses = 1) and minimum
predicted accuracy of 0.9 (minPredictedAccuracy = 0.9). The CCS produced HiFi (high
fidelity) reads that could improve > 99% single-molecule read accuracy. Second, the HiFi
reads were defined as full-length non-chimeric (FLNC) or non-full-length, depending
on the presence or absence of both 5′ and 3′ primers at the read ends. The “lima” and
IsoSeq3 “refine” modules in SMRTlink were applied for this step. The “lima” identified
and removed the 5′ and 3′ cDNA primers, while IsoSeq3 “refine” removed polyA tails and
artificial concatemers to produce refined CCS reads. Finally, FLNC reads were clustered into
isoforms using the IsoSeq3 “cluster” module in SMRTlink. The clusters were polished using
IsoSeq3 polish, and a consensus sequence was created for each clustered transcript. All six
final sequencing read libraries are available in GenBank under project ID PRJNA602748.

2.3. ONT Library Preparation and Sequencing

The ONT Direct cDNA 1D Kit (SQK-DC109) was used for PCR-free cDNA library
preparation according to the ONT-recommended protocol for each sample (male and
female P. monodon hepatopancreas, intestine, and gonads). To avoid RNA shearing, total
RNA (4000 ng) was used for the input material for library preparation without purification
for mRNA. Each prepared library was loaded onto a MinION flow cell (R9.4.1 version/FLO-
MIN106) with MinKNOW software version 1.7.14 (ONT) for a sequencing run lasting 48 h
to generate fast5 files. The fast5 files were converted to base-called .fastq files using the
base-caller Guppy version 2.3.4 software. ONT reads were pre-processed with Porechop
v0.2.3 (https://github.com/rrwick/Porechop, accessed on 1 August 2020). They were also
filtered to be longer than 200 nt using NanoFilt from NanoPack [22]. Read quality was
calculated with NanoStat v1.2.0 from NanoPack [22]. All six final sequencing read libraries
are available on GenBank database under project ID PRJNA602748.

2.4. ONT Self-Correction of Reads

To overcome the sequencing accuracy limitations of ONT MinION, four algorithms
were used for error-correction of ONT reads. Canu v2.0 [23] and LoRMA [24] did not
produce results for our dataset after 1 month of execution using a compute node with 36
2.1 GHz-Xeon cores and 128 GB of RAM, with parameters “–correct stopOnReadQual-
ity = false stopAfter = readCorrection” for Canu V2.0 and default parameters for LoRMA
v0.5 due to the high-throughput ONT reads. However, these software have been used
successfully for this purpose with smaller datasets [25].

https://github.com/rrwick/Porechop
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TranscriptClean v2.0.2 [26] was used with “basic options” with SAM file format of
aligned reads as an input. MECAT v1.0 [27] software was used with options “-j 0 -x 1 -n 50
-a 100” for mecat2pw and options “-I 0 -x 1 -a 100 -c 1 -l 200” for mecat2cns.

2.5. Transcriptome Analyses: Assembly of High-Quality Long-Reads Using StringTie2

Transcriptomic analyses were performed using the 1D-trimmed and -filtered ONT
mapped reads, as well as mapped products from TranscriptClean v2.02 along with the
refined CCS mapped reads from the IsoSeq3 pipeline. ONT and PacBio reads were aligned
against the reference genome using minimap2 [28] in spliced alignment mode. The resulting
SAM files were converted into BAM files and then sorted and indexed with SAMtools
v1.9. Comparison of the resulting set of BAM files and further statistical analyses of
mapped reads and BAM files were performed using SAMtools v1.9 [29,30], NanoStat
v1.2.0 [22], Nanoplot v1.29.0 [22], QualiMap v2.2.2 [31], BedTools v2.29.2 [30], and BEDOPS
v2.4.39 [32]. BAM files from ONT and PacBio samples were used as input for StringTie2
v2.1.4 [21] to generate expression estimates with parameters -L -A -C -B -G. Resulting
general transfer format (GTF) files with assembled transcripts from the first round were
used with “merge” mode (–merge). The merge mode of StringTie2 merges the transcripts
annotated in the GTF files from multiple experiments, into a non-redundant, unified set
of transcripts. Thus, this option creates a consensus annotation of all transcripts (from
the reference provided annotation and de novo). Final transcripts were obtained after
filtering the transcript length by >200 nt. Junctions were supported by a coverage of at
least 1. Assembled transcripts from StringTie2 using the merged GTF file were used with
GffCompare from GFF utilities v0.11.5 (https://ccb.jhu.edu/software/StringTie/gff.shtml,
accessed on 1 August 2020) provided by Cufflinks [33] to compare the outputs with the
original annotation file and to estimate the accuracy of all the GTF files obtained after
StringTie2 assembly. A python script provided with StringTie2 (prepDE.py) was used to
generate the gene and transcript count matrices from StringTie2 coverage values [34]. Final
isoform sequences for transcripts from ONT samples were obtained with FLAIR v1.5.1 [35].

2.6. Correlation Analysis of Gene Expression Level

Mapped reads were quantified for each transcript and gene using the python script
provided with StringTie2 (prepDE.py), generating transcripts and gene matrices of counts
for ONT and PacBio data [34]. As previously reported, the negative binomial statistic is a
proper method for gene expression analysis of long-read data [1]. Therefore, raw counts
were normalized using DESeq2 [36] in R [37]. Spearman’s correlation coefficient was used
to evaluate the correlation between normalized read values by tissue using the cor function
from R [37] and by genes using a python script with corrwith function from pandas.

2.7. Assessment of Final Transcriptomes for Completeness and Functional Assignment

Completeness of isoforms obtained for both technologies was assessed with BUSCO
v.4 [38] using the arthropoda_odb10 database [39]. The final isoforms were functionally
annotated using their nucleotide sequence with the KEGG database using the online
KEGG Automatic Annotation Server (http://www.genome.jp/tools/kaas/, accessed on
1 August 2020) with bi-directional best hit (BBH) method [40] and UniprotKB database
(https://www.uniprot.org/, accessed on 1 August 2020) [41].

3. Results and Discussion
3.1. Assessment of Characteristics of PacBio SMRT and ONT Read Libraries

To compare the performance of Pacific Biosciences (PacBio) and Oxford Nanopore
Technologies (ONT) methodologies, we sequenced cDNA libraries from three different tis-
sues (hepatopancreas, intestine, and gonads) from male and female Penaeus monodon (black
tiger shrimp) using the PacBio Sequel System and ONT MinION sequencer. These tissues
were chosen because they are metabolically active tissues in both sexes that will increase
the proxy of number expressed genes obtained from the genome. The experimental and

https://ccb.jhu.edu/software/StringTie/gff.shtml
http://www.genome.jp/tools/kaas/
https://www.uniprot.org/
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RNA-seq analysis pipelines are presented in Figure 1. Unlike the PacBio approach, ONT
reads were produced by direct cDNA sequencing without PCR amplification. A summary
of the sequencing throughput for both technologies is shown in Table 1, and detailed
statistics on the final reads used in the study are provided in Supplementary Table S1.
Note that numbers for PacBio libraries in Table 1 correspond to “subreads.” In PacBio
IsoSeq3 technology, each polymerase read is partitioned to form one or more subreads.
These contain the sequences from a single pass of the polymerase on a single strand of an
insert within a SMRTbell™ template without adapter sequences.

Table 1. Overview of the samples and summary of the sequencing output obtained from 12 libraries using ONT and PacBio
sequencing technologies. Sample abbreviations showed in this results: female-hepatopancreas (FHP), male-hepatopancreas
(MHP), female-intestine (FIN), male-intestine (MHP), ovary (FOV), and testis (MTT); samples sequenced using Pacbio (PB)
and samples sequenced using ONT (ON).

Sample ID Platform Sex Tissue Reads, Total
Bases (Gb)

Read
Number

Average Read
Length (b)

Read Length
N50

FHP_PB PacBio Female Hepatopancreas 3562 1,550,060 2297 2487
FIN_PB PacBio Female Intestine 4980 1,967,020 2531 2962
FOV_PB PacBio Female Ovary 4553 1,589,542 2864 3752
MHP_PB PacBio Male Hepatopancreas 5199 2,701,407 1924 2367
MIN_PB PacBio Male Intestine 4221 1,949,961 2164 2738
MTT_PB PacBio Male Testis 4787 2,081,856 2299 3023

FHP_ON ONT Female Hepatopancreas 12,465 10,556,858 1181 1681
FIN_ON ONT Female Intestine 5973 5,944,869 1005 1230
FOV_ON ONT Female Ovary 14,093 8,359,907 1686 2613
MHP_ON ONT Male Hepatopancreas 8178 6,570,975 1245 1845
MIN_ON ONT Male Intestine 5541 5,344,621 1037 1325
MTT_ON ONT Male Testis 10,919 9,223,658 1184 1746

(Gb, gigabases; b, bases).

As observed in Table 1, the sequencing yield for ONT libraries was much higher than
for PacBio libraries. However, the full-length cDNA libraries generated for each sample
had different sizes, ranging from 5.5 to 14 sequenced Gb for ONT and 3.5 to 5 sequenced Gb
for PacBio (Table 1, Supplementary Figure S1A). The overall read lengths of libraries differ
for both technologies (Supplementary Figure S1B). While the longest reads of the dataset
belonged to ONT libraries (>27 kb in all 6 samples), the highest proportion of longer long-
reads was found in PacBio libraries (>2.2 kb mean read length). Thus, mean read lengths
from CCS PacBio libraries were in all cases longer than those from ONT, with more than
~1 kb difference (Supplementary Table S1). Figure 2A shows an irregular distribution of
the read lengths from ONT libraries with many read length peaks at different sizes and the
main read length distribution skewed to the left when compared to the PacBio read length
distribution, which appears to have a more normalized shape (Figure 2B). Lower values
in mean read length in ONT libraries might have been due to the presence of a higher
proportion of fragmented reads that could be the sequencing product of non–full-length
transcripts. This could have been caused by RNA degradation during library preparation
protocols or software artifacts during the base-calling process [21,42].

After polyA tail trimming and concatemer removal steps using the IsoSeq3 pipeline,
an average of 0.1 Mb full-length non-chimeric (FLNC) CCS reads were obtained from
PacBio libraries (Supplementary Table S1). Once ONT reads were trimmed and filtered,
ONT libraries contained more than 7 Gb on average, which is within the normal range
for direct cDNA sequencing libraries according to ONT cDNA sequencing guidelines
(https://nanoporetech.com, accessed on 1 August 2020). The distribution of final read
lengths for both platforms is shown in Figure 2C. The PacBio IsoSeq3 pipeline produces
highly accurate consensus reads by definition (>99% accuracy, Q > 20, https://www.pacb.
com/smrt-science/smrt-sequencing/, accessed on 1 August 2020), but quality measure-
ments of the CCS reads are not provided. Analysis of the average read quality of ONT

https://nanoporetech.com
https://www.pacb.com/smrt-science/smrt-sequencing/
https://www.pacb.com/smrt-science/smrt-sequencing/
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1D reads showed that most of the filtered sequencing products had mean quality scores
(Q-scores) ranging from 9 to 12.5 (Figure 2D).
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3.2. Analysis of Aligned Reads

The recently published chromosome-level P. monodon assembly [20] was used as the
reference genome for read alignment using minimap2 [28]. The alignment rates were 98.8%
for the ONT reads and 98.5% for the PacBio reads (Supplementary Table S3), while the
average percent identity of the aligned reads to the reference, as calculated by NanoStat [22],
was 90.1% for ONT and 94.5% for PacBio. The general alignment error rates, calculated
as the sum of the number of mismatches (given by the NM auxiliary tag) divided by
the number of aligned bases [31], were <0.12 for ONT and <0.06 for PacBio samples
(Supplementary Table S3). Analysis of the distribution of the percent identity of the reads
and their lengths when aligned to the reference genome for both technologies showed
that the distribution of refined PacBio CCS reads was densest around values >90% percent
identity, reflecting the lower error rate of the refined CCS reads when compared to the
ONT reads, which presented a more relaxed distribution along the Y axis (Supplementary
Figure S2). When analyzing the read alignments, >70% of the ONT reads and >75% of the
PacBio reads overlapped with full-length coding sequences according to the annotation of
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the reference genome (Figure 3). Despite the higher number of ONT (Figure 3A) alignments
relative to PacBio (Figure 3B) CCS mapped alignments (~60 fold greater for ONT) and the
slightly higher error rate of the ONT reads, the percentage of unmapped reads in ONT
samples (1.2% on average) was smaller than that of PacBio (1.5% on average) in almost all
cases (Figure 3B and Supplementary Table S3).
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Supplementary alignments are those from reads that cannot be mapped in a lin-
ear fashion; therefore, they are aligned to multiple parts of the reference genome [43].
Such alignments are also called chimeric alignments. Chimeric transcripts can be indica-
tive of structural variations and genomic rearrangements in transcriptomic studies [44].
However, chimeras can also be due to technical artifacts from the reverse transcriptase
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polymerase chain reaction (RT-PCR) or failure to remove read adapters [44,45]. In our
dataset, ONT samples presented a higher proportion of supplementary reads (4.89% on
average) than PacBio. However, the number of alignments classified as supplementary was
higher for PacBio samples (7.28% on average for each sample), while ONT supplementary
alignments had a mean value < 5%.

3.3. Error Correction for ONT Reads

Due to possible differences in quality between ONT and PacBio reads (Supplementary
Figure S2), we evaluated the outputs from two DNA self-correction tools for ONT reads:
TranscriptClean v2.0.2 [26], and MECAT v1.0 [27]. The selection of these tools was based
on results of previous benchmarking studies in which the effect of correction on detection
of gene families, isoform diversity, bias toward the major isoforms, and splice site detection
was evaluated [24,25]. The performance of these two error-correction programs is shown
in Table 2. Due to the high throughput of the ONT reads, error correction steps from Canu
and LoRMA software did not produce results for our dataset after 1 month of execution
(using different configurations on a compute node with 36 2.1GHz-Xeon cores and 128 GB
of RAM). On the other hand, TranscriptClean [26] and MECAT [27] were able to generate
the corrected output (Table 2).

Table 2. Summary of output obtained after using two error-correction algorithms on ONT filtered reads.

Sample ID Read
Number

Average
of Reads
Length

Mapped Bases
(%)/Clipped (%)

Mapped
Reads (%)

Unmapped
Reads

Supplementary
Alignments

General
Error Rate

ONT filtered

FHP_ON 7,794,835 1147 99.57/96.51 99.48 40,170 273,464 0.12
FIN_ON 5,237,429 996 99.01/93.18 98.84 60,905 290,981 0.12
FOV_ON 5,641,133 1719 98.73/90.59 97.68 130,620 596,976 0.12
MHP_ON 4,925,279 1222 99.61/96.90 99.46 26,745 143,951 0.12
MIN_ON 3,883,617 1029 99.25/93.62 99.16 32,594 185,252 0.12
MTT_ON 6,720,316 1185 98.78/95.00 98.24 118,541 288,694 0.12

TranscriptClean

FHP_ON 7,794,835 1174 99.58/96.59 99.48 40,170 273,464 0.02
FIN_ON 5,237,429 1016 99.03/93.31 98.84 60,905 275,315 0.02
FOV_ON 5,641,133 1728 98.74/90.64 97.68 130,620 596,976 0.02
MHP_ON 4,925,279 1247 99.62/96.97 99.46 26,745 143,951 0.01
MIN_ON 3,883,617 1050 99.26/93.75 99.16 32,594 185,252 0.02
MTT_ON 6,720,316 1207 98.80/95.09 98.24 118,541 288,694 0.02

MECAT

FHP_ON 712,368 1395 97.10/92.63 96.5 24,736 114,199 0.06
FIN_ON 715,312 1282 96.42/91.45 95.64 31,215 125,218 0.06
FOV_ON 1,701,918 1747 97.37/92.31 96.2 64,661 242,980 0.05
MHP_ON 438,541 1321 96.94/92.41 96.06 17,286 60,668 0.06
MIN_ON 427,321 1327 96.29/91.49 95.64 18,613 71,757 0.06
MTT_ON 1,033,153 1346 97.34/92.82 96.73 33,799 163,571 0.07

TranscriptClean corrects mismatches, microindels, and non-canonical splice junctions
on reads already aligned to the reference genome [26]. The average read length and the
general error rate (as provided by samtools stats v1.9) were improved in all samples when
using both error-correction algorithms. In the case of MECAT, although computationally
efficient, this software is oriented to produce reference-quality assemblies [27], and it works
by overlapping candidate reads to reduce their “noise.” Therefore, although the quality of
the reads was improved, the coverage was greatly reduced, making its output less desirable
for quantification studies (Table 2).

3.4. Transcript Assembly and Identification of New Transcripts Using StringTie2

Although reads produced by third-generation sequencing methods are, in theory,
long enough to cover whole transcripts, there are some scenarios where recovery of entire
transcripts is not possible: quick degradation of RNA molecules before sequencing; long-
read molecule rupture during library preparation; and failure of the reverse transcription
step in cDNA sequencing [21,42]. To address these issues, we used StringTie2, which is
a transcriptome assembler that can estimate transcript abundance based on the number
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of long reads mapped to each transcript. StringTie2 also offers a reference-free assembly
method that allows detection of novel genes and isoforms that are not covered by the
reference annotation file [21].

The number of genes identified by StringTie2 in the P. monodon genome was 32,664,
which corresponds to 60,594 transcripts. This is a difference of 1114 genes and 24,218 tran-
scripts with respect to the original genome annotation [20]. Although these numbers seem
strikingly high, they are within the range of other studies using eukaryotic genomes that
leveraged long-read sequencing to improve the genome annotation using transcriptomic
analysis [13,46,47]. Despite the refinement of the transcript sequences, comparison of the
individual merged transcript files obtained using ONT and ONT-corrected reads from
TranscriptClean showed that the number of genes and transcripts annotated by StringTie2
were exactly the same. However, TranscriptClean is able to correct microindels and non-
canonical splice junctions apart from mismatches of the aligned reads. Thus, assembled
transcripts generated by StringTie2 were further analyzed to find structural changes in the
identified transcripts, as against the reference annotation.

GffCompare [33] utility provides “class codes” (detailed in https://ccb.jhu.edu/
software/StringTie/gffcompare.shtml, accessed on 1 August 2020, and in Supplemen-
tary Table S4) for each of the assembled transcripts annotated by StringTie2, as well as
various statistics related to the accuracy of the input transcripts when compared to a refer-
ence annotation file. Table 3 shows measurements of sensitivity and precision, calculated
at three levels: base, intron chain, and transcript. In short, measurements of sensitivity
and precision were calculated according to the presence/absence of each of the features
(bases in exons, intron chain, and transcripts: single and multi-exon) in each sample and in
the reference annotation file. Statistical analyses were performed using two reference files.
First, the original reference annotation file for P. monodon (GenBank: GCA_015228065.1)
and later, the final merged file obtained with the -merge option of StringTie2, which is a
global GTF file that contains the original set of annotated transcripts with a non-redundant
set of novel transcripts annotated by StringTie2 after its first execution on our samples.

Table 3. Measurements of accuracy, sensitivity (S), and precision (P) calculated as in Burset and Guigó (1996) [48] for
all samples. For more information on these measurements: https://ccb.jhu.edu/software/StringTie/gffcompare.shtml
(accessed on 1 August 2020).

Base Level Intron Chain Level Transcript Level

Reference File Merged File Reference File Merged File Reference File Merged File

S P S P S P S P S P S P

FHP_ON 100 57.7 99.9 96.7 100 60.1 100 99.7 99.5 59.7 100 96.8
FIN_ON 100 57.7 99.9 96.7 100 60.1 100 99.7 99.5 59.6 100 96.7
FOV_ON 100 57.7 99.9 96.7 100 60.1 100 99.7 99.5 59.7 100 96.8
MHP_ON 100 57.7 99.9 96.7 100 60.1 100 99.7 99.5 59.6 100 96.7
MIN_ON 100 57.7 99.9 96.7 100 60.1 100 99.7 99.5 59.7 100 96.7
MTT_ON 100 57.7 99.9 96.8 100 60.1 100 99.7 99.5 59.6 100 96.7
FHP_ONt 100 57.7 99.9 96.7 100 60.1 100 99.7 99.5 59.7 100 96.8
FIN_ONt 100 57.7 99.9 96.7 100 60.1 100 99.7 99.5 59.6 100 96.7
FOV_ONt 100 57.7 99.9 96.7 100 60.1 100 99.7 99.5 59.7 100 96.8
MHP_ONt 100 57.7 99.9 96.7 100 60.1 100 99.7 99.5 59.6 100 96.7
MIN_ONt 100 57.7 99.9 96.7 100 60.1 100 99.7 99.5 59.7 100 96.7
MTT_ONt 100 57.7 99.9 96.8 100 60.1 100 99.7 99.5 59.6 100 96.7
FHP_PB 100 57.7 99.9 96.8 100 60.1 100 99.7 99.5 59.7 100 96.8
FIN_PB 100 57.7 99.9 96.8 100 60.1 100 99.7 99.5 59.7 100 96.8
FOV_PB 100 57.7 99.9 96.8 100 60.1 100 99.7 99.5 59.7 100 96.8
MHP_PB 100 57.7 99.9 96.8 100 60.1 100 99.7 99.5 59.7 100 96.8
MIN_PB 100 57.7 99.9 96.8 100 60.1 100 99.7 99.5 59.7 100 96.8
MTT_PB 100 57.7 99.9 96.8 100 60.1 100 99.7 99.5 59.7 100 96.8

https://ccb.jhu.edu/software/StringTie/gffcompare.shtml
https://ccb.jhu.edu/software/StringTie/gffcompare.shtml
https://ccb.jhu.edu/software/StringTie/gffcompare.shtml
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As observed in Table 3, all measurements of sensitivity and precision were improved
when using the merged file with the novel annotated transcripts as a reference, indicating
that transcripts annotated in the merged reference file matched with higher fidelity to the
aligned transcripts from the bam files for all samples. Moreover, both technologies iden-
tified transcripts not previously annotated without significant variation in the estimated
accuracy when evaluating the correctness of the set of predicted transcripts against the
reference file. However, not all samples contributed the same number of novel transcripts
to the final GTF annotation file.

Results from the comparison of the transcripts assembled by StringTie2 to the an-
notated transcripts of the original reference file are presented in Figure 4 and in Sup-
plementary Table S4. Transcripts were classified in different classes according to how
their intron chains are mapped to the reference genome file using GffCompare (https:
//ccb.jhu.edu/software/stringtie/gffcompare.shtml, accessed on 1 August 2020). A high
number of the annotated transcripts (25% of ONT and 16% of PacBio transcripts) belonged
to the class code j, which corresponds to multi-exon transcripts in which at least one
junction matches the annotation from the reference file (Figure 4). These are transcripts that
do not fully match the reference but share at least one exon–intron junction. The transcripts
annotated with the symbol “=” (22% of ONT and 17% of PacBio transcripts) correspond to
those with intron chains that completely match the annotation in the reference file (a varia-
tion of 100 bases in the coordinates of the first and final exons was allowed). Interestingly,
a high number of transcripts (34%) from PacBio samples (Figure 4B) were classified as class
code s, which corresponds to transcripts in which the intron matched the opposite strand
from the reference file. Further comparisons using the final output of IsoSeq3 pipeline (after
“cluster” step), showed that this mapping errors observed in PacBio transcripts, are due to
the presence of misoriented reads as a consequence of using refined CCS reads, which are
not the final product of the IsoSeq3 pipeline (Supplementary Figure S3). Class m (4% of
ONT and 3% of PacBio transcripts) and n (9% of ONT and 5% of PacBio transcripts) tran-
scripts correspond to transcripts with retained introns, while class code k represents longer
chains of transcripts that contain the reference (6% of ONT and 4% of PacBio transcripts).
Transcripts classified as u (25% of ONT and 14% of PacBio transcripts) represent putative
new transcripts that were not annotated in the reference file. This category would represent
all novel transcripts identified by StringTie2 in the first round of assembly. As can be seen
in Figure 4, most of the annotated unknown transcripts came from ONT sample MTT-ON,
with more than 5000 of these novel (redundant) transcripts found in the MTT-ON testis
sample (34% of all MTT-ON annotated transcripts). It is worth noting that sample MTT-
PB also harbored the highest number of newly identified transcripts in PacBio samples,
although fewer than those found in MTT-ON, due to the difference in throughput between
both technologies. Other studies analyzing testis cDNA libraries from juvenile P. monodon
acknowledged the existence of a high number of over-expressed transcripts in this tissue
type [49]. This seems to be a common trait between cultured crustacean species [50–52] that
share the same juvenile stage. Moreover, male-biased gene expression has been identified
in juvenile stages of other arthropods such as insects [53,54].

https://ccb.jhu.edu/software/stringtie/gffcompare.shtml
https://ccb.jhu.edu/software/stringtie/gffcompare.shtml
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Figure 4. Analysis of transcript class codes. Analysis of transcripts obtained after alignment using StringTie2 and compared
with the reference file. Annotation codes correspond to transcript classification codes obtained using the transcript file
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GffCompare [33]. It should be noted that values obtained for ONT filtered samples and ONT samples after error correction
with TranscriptClean were identical; therefore, they are not shown here. Code letters on the horizontal axis are further
explained in Supplementary Table S4.
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3.5. Correlation of Gene Expression Levels between ONT and PacBio Samples

Due to differences in read length and throughput between both technologies, we de-
cided to evaluate the correlation of gene expression values rather than transcript expression
values between both technologies. To this end, levels of gene expression between the
sequencing products of ONT and PacBio technologies were quantified using the DESeq2
normalized numbers of mapped cDNA reads, using filtered ONT reads and refined PacBio
CCS reads (Supplementary Table S5). Refined CCS reads represent a highly accurate con-
sensus of the sequencing product of 1 cDNA molecule using PacBio SMRT sequencing
technology [55]. In the case of ONT, cDNA reads are linear fragments that correspond to the
product of a single RNA molecule after reverse transcription and that are sequenced only
once [6]. Thus, differences between the datasets should be due to the use of PCR products
before the sequencing step in the PacBio sequencing pipeline and the obvious differences
in sequencing throughput. Exploratory analysis of the samples using principal component
analysis (PCA) of the gene expression profiles for the 12 samples showed the association
between samples belonging to the same tissue (Figure 5A). However, samples from both
technologies were distributed differently across the two components, indicating a strong
technological bias, probably derived from the significant differences in sequencing depth.
Correlation analysis using Spearman’s rank coefficients calculated using means of nor-
malized gene expression values between both technologies by gene (Figure 5B) and by
sample (tissue) (Figure 5C) showed positive correlation (<0.6) in both sets of analyses.
The median of the Spearman’s rho coefficients when analyzing the average of normalized
gene expression values, for both technologies, was 0.54 (Figure 5B). Gene-wise correlation
levels between the two technologies ranged between 0.15 and 0.77, indicating that these
values were independent of the degree of gene expression (Figure 5B). This implies that
highly expressed genes are not better correlated, or vice versa.

The consistency of the expression values between the technologies by sample is shown
in the correlogram in Figure 5C. The variable distribution along with the Spearman’s
correlation values displayed on the right side of the plot indicate that, in general, there
was a certain relationship between the number of normalized counts mapped when using
ONT filtered reads and refined CCS reads when analyzed by sample. Spearman’s rho
coefficients ranged from 0.368 in testis samples, the lowest correlation value, to 0.505 in
ovary samples (p < 0.01). Levels of correlation were higher when comparing tissues from the
same technology, as expected, showing in general a moderate positive correlation between
their level of gene expression. Although outside the scope of this study, in which we are
leveraging only long-read technologies, further investigations using technical replicates
and Illumina RNA-seq sequencing should be done to cross compare gene expression levels
against the standard method.
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Figure 5. Correlation of gene expression between samples. (A) Principal component analysis showing the spatial relationship
of each of the samples in the study. (B) Spearman correlation analysis using mean of normalized gene expression values in
ONT and PacBio samples. The Y axis is showed in Log2 scale. (C) This correlogram shows level of correlation of normalized
gene expression values using ONT and PacBio samples. For each sample, the Spearman correlation coefficient of the
expression values was calculated (*** p < 0.01).

3.6. Comparison of Final Isoform Estimation and Functional Annotation

The final product of the PacBio IsoSeq3 pipeline consists of a set of final isoforms
resulting from a clustering step for the refined CCS (or FLNC) reads. To obtain the most
similar product between both technologies, we used FLAIR software v1.5.1 [35] to cluster
and collapse the filtered sets of ONT reads into isoforms according to their chains of
splice junctions. The total number of isoforms generated with the IsoSeq3 pipeline was
33,845. However, the total number of isoforms generated with the FLAIR workflow using
transcripts from ONT samples rose to 112,878. Due to the considerable differences in the
number of isoforms identified by the two technologies, we decided to further evaluate
the completeness of both transcriptomes. To do this, we used the BUSCO pipeline [38]
using the database of conserved arthropod genes, which contains 1013 BUSCO genes from
90 species. These analyses indicated that the P. monodon transcriptome obtained with
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ONT sequencing technology encoded for 71.3% BUSCO genes (Supplementary Table S6).
Of these, 5.9% were complete single-copy and 65.4% were complete duplicated BUSCO
genes. The percentage of fragmented BUSCOs was 9.7%, and 19% of BUSCOs from the
arthropod database were missing from our ONT samples. In the case of PacBio technology,
the isoforms obtained as final output of the IsoSeq3 pipeline represented 34.8% of complete
BUSCOs; 28.0% of the complete BUSCOs identified corresponded to single copy and 6.8%
corresponded to duplicated BUSCOs. The percentage of fragmented BUSCOs identified
was 1.0%; therefore, 64.2% of the BUSCOs from the arthropod database was not represented
in the PacBio transcriptome. As can be observed in Figure 6, the high number of fragmented
BUSCOs in the case of the ONT final isoforms was expected due to the smaller size of the
isoforms from the ONT samples, probably as a consequence of an elevated 3′ bias in our
ONT transcripts. However, although ONT isoforms were clearly over-represented in our
samples, the higher throughput obtained with ONT technology was crucial to achieve a
higher level of completeness for the transcriptome in this study. It should also be noted
that the level of completeness for these two transcriptomes, especially in the case of ONT
samples, was not expected to be higher, as we only used samples from three tissues of
juvenile P. monodon. Values above 98% completeness have been achieved in other studies
with samples from nine tissues and from different developmental stages [56].

Life 2021, 11, x FOR PEER REVIEW 16 of 21 
 

 

species. These analyses indicated that the P. monodon transcriptome obtained with ONT 
sequencing technology encoded for 71.3% BUSCO genes (Supplementary Table S6). Of 
these, 5.9% were complete single-copy and 65.4% were complete duplicated BUSCO 
genes. The percentage of fragmented BUSCOs was 9.7%, and 19% of BUSCOs from the 
arthropod database were missing from our ONT samples. In the case of PacBio 
technology, the isoforms obtained as final output of the IsoSeq3 pipeline represented 
34.8% of complete BUSCOs; 28.0% of the complete BUSCOs identified corresponded to 
single copy and 6.8% corresponded to duplicated BUSCOs. The percentage of fragmented 
BUSCOs identified was 1.0%; therefore, 64.2% of the BUSCOs from the arthropod 
database was not represented in the PacBio transcriptome. As can be observed in Figure 
6, the high number of fragmented BUSCOs in the case of the ONT final isoforms was 
expected due to the smaller size of the isoforms from the ONT samples, probably as a 
consequence of an elevated 3′ bias in our ONT transcripts. However, although ONT 
isoforms were clearly over-represented in our samples, the higher throughput obtained 
with ONT technology was crucial to achieve a higher level of completeness for the 
transcriptome in this study. It should also be noted that the level of completeness for these 
two transcriptomes, especially in the case of ONT samples, was not expected to be higher, 
as we only used samples from three tissues of juvenile P. monodon. Values above 98% 
completeness have been achieved in other studies with samples from nine tissues and 
from different developmental stages [56]. 

 
Figure 6. Size distribution of final isoforms obtained using ONT and PacBio sequencing 
technologies. The violet and yellow color for isoforms distribution of ONT and PacBio sequencing, 
respectively. 

The six sets of isoforms obtained were functionally annotated using gene ontology 
(GO) terms. A WEGO 2.0 [57] plot showing the distribution of the GO term annotations 
(at hierarchical level 2) for different tissue types is depicted in Supplementary Figure S4. 
The number of isoforms from ON samples annotated using GO terms was higher than 
those annotated from PacBio samples (Supplementary Table S7). However, the number of 
isoforms identified, and the number of isoforms annotated using GO terms did not follow 
a linear relationship (Pearson’s correlation coefficient, PCC > 0.54) in the case of ONT 
samples, but for PacBio samples, the number of functional annotated isoforms showed a 
very high correlation (PCC > 0.99) with regard to the total number of isoforms obtained. 
Thus, and independently of the number of isoforms obtained for both technologies, 
profiles of annotated GO terms between both technologies were in general very similar 
when plotted using a logarithmic scale to account for the low abundance of some GO term 
categories (Supplementary Figure S4). 

Commented [M5]: Please remove the comma of 4 
digits in the picture.(e.g., 5000) 

Commented [NI6R5]: Fixed 

Figure 6. Size distribution of final isoforms obtained using ONT and PacBio sequencing technologies. The violet and yellow
color for isoforms distribution of ONT and PacBio sequencing, respectively.

The six sets of isoforms obtained were functionally annotated using gene ontology
(GO) terms. A WEGO 2.0 [57] plot showing the distribution of the GO term annotations
(at hierarchical level 2) for different tissue types is depicted in Supplementary Figure S4.
The number of isoforms from ON samples annotated using GO terms was higher than
those annotated from PacBio samples (Supplementary Table S7). However, the number of
isoforms identified, and the number of isoforms annotated using GO terms did not follow
a linear relationship (Pearson’s correlation coefficient, PCC > 0.54) in the case of ONT
samples, but for PacBio samples, the number of functional annotated isoforms showed a
very high correlation (PCC > 0.99) with regard to the total number of isoforms obtained.
Thus, and independently of the number of isoforms obtained for both technologies, profiles
of annotated GO terms between both technologies were in general very similar when
plotted using a logarithmic scale to account for the low abundance of some GO term
categories (Supplementary Figure S4).

Annotation of final isoforms using KEGG orthology (KO) terms from the KEGG Au-
tomatic Annotation Server (KAAS) rendered a total of ~390 KEGG pathway categories.
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Similarly, the number of isoforms from ONT samples annotated using KO terms was higher
than those annotated from PacBio samples in almost all cases, with the exception of sample
MIN_ON. In this case, the number of isoforms annotated using KO terms followed a linear
correlation in relation to the total number of isoforms in both technologies (ONT PCC
~0.8, PacBio PCC > 0.99), with this linear relationship higher in the case of PacBio samples,
as in the previous analysis (Supplementary Table S8). In the same vein, the number of
KO terms annotated for each KEGG category was highly correlated between technologies,
with PCC > 0.83 (Supplementary Table S8). Although further exploration of the results ob-
tained from the functional annotation of the final obtained isoforms was outside the scope of
this study comparing the sequencing technologies, a relationship of the KO terms obtained
for each sample is provided in Supplementary Table S9 and can be visualized using KEGG
Mapper suite from KEGG (https://www.genome.jp/kegg/mapper.html, accessed on
1 August 2020).

4. Final Remarks

Here, we compared the main characteristics of the results obtained from the analysis
of two transcriptomes of juvenile Penaeus monodon generated with the Oxford Nanopore
Technologies (ONT) MinION platform and the Pacific Biosciences (PacBio) SEQUEL plat-
form with IsoSeq3 workflow. The primary purpose of this work was to evaluate the
bioinformatic workflows and combinations of software commonly used for transcriptomic
analysis using long-read sequencing technologies alone. In the same vein, this work was
motivated by the lack of benchmarking and comparative studies, mainly in non-model
eukaryotes, leveraging both technologies with transcriptomic data. Thus, our results and
analysis highlight the main differences between both technologies that, in light of the
findings shown, should not be used indiscriminately in transcriptomic studies. While the
PacBio IsoSeq3 protocol produces highly accurate consensus reads, the mappability of
these reads to the reference genome was only slightly better than the mappability of ONT
reads. Nevertheless, the higher accuracy values of PacBio reads obtained when aligned
against the reference genome could be crucial in performing rigorous analyses such as
sensitive identification of novel junctions and isoforms [33]. However, the ONT platform
produced libraries with smaller mean read sizes and higher error rates than PacBio. Still,
our data indicate that the substantially higher sequencing throughput obtained with ONT
MinION sequencing compared to PacBio sequencing makes ONT more suitable for lever-
aging quantitative analysis and discovering novel transcripts. It should be noted that the
smaller sizes of ONT reads obtained (and therefore the final isoforms) could be due to the
known 3′ bias toward the end of the transcripts [6,7,42] (possibly derived from 3′ bias of
first strand cDNA synthesis step). The 3′ bias was also found in direct-RNA sequencing of
ONT as well [1,58]. This bias could be due to fragmentation during the library preparation
process (mainly when using cDNA reads) or as a result from technical limitations such as
pore blocking [6]. One consequence of the 3′ bias is that the quantification of transcripts is
yet another challenge to overcome when using cDNA reads from ONT [42]. Our study, has
no technical replicates, which is a limitation. However, RNA samples were aliquots from
the same pool for ONT and PacBio sequencing, enabling a fair technical comparison.

Differences observed in sequencing depth between ONT and PacBio technologies
could likewise cause the lack of correlation between gene expression levels found for both
technologies. An investigation of optimal sequencing depth for gene/isoform expression
level quantification using long-read sequencing technologies would be required to mean-
ingfully compare both technologies in this regard. Indeed, it is still a common practice
to use short reads to improve abundance estimation of transcripts and genes produced
by long-read sequencing technologies [42,59]. We also identified other limitations not
directly related to the sequencing technology but to applying and scaling existing tools
to larger genomes. The rapid development of these technologies has produced a large
number of new tools and software that should be comprehensively evaluated to allow
the scientific community to identify and choose adequately between them. Some open-

https://www.genome.jp/kegg/mapper.html
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source resources and repositories for long-read software and tools are available on GitHub
(https://github.com/B-UMMI/long-read-catalog, accessed on 1 August 2020) and on the
long-read-tools.org database [4].

In conclusion, although both ONT and PacBio technologies can overcome the main
limitations of using short-read technologies for transcriptome sequencing, they still present
a number of challenges that need to be addressed to provide a definitive solution that marks
the end of short-read sequencing in the transcriptomic area [60]. Our study highlights
the high sequencing throughput achieved using ONT, as one of the strengths of this
technology over PacBio. However, one of the greatest advantages of the IsoSeq approach
is the possibility of leveraging a standardized pipeline that provides a final output of
high-quality isoforms. Thus, each of these technologies have their own strengths and
weakness and should therefore not be used interchangeably in transcriptomic studies.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/life11080862/s1. Table S1. Quality values from Penaeus monodon RNA samples. Table S2.
Sequencing summary and detailed statistics of the filtered ONT reads and refined CCS reads used
in the analysis. Table S3. Detailed statistics of the alignments of the filtered ONT reads and refined
CCS reads against the P. monodon genome. Table S4. GFFCompare results from the comparison of
the transcripts assembled by StringTie2 to the annotated transcripts of the original reference file,
represented also in Figure 4. Table S5. DESeq2-normalized gene expression values for the 12 libraries
in the study. Table S6. Detailed results from the analysis of the final isoforms using BUSCO pipeline.
Table S7. Summary of functional annotated isoforms using WEGO 2.0. Pearson correlation coefficient
was obtained using “correl” function in each paired dataset. Table S8. Summary of functional
annotated isoforms using KAAS. Pearson correlation coefficient was obtained using “correl” function
in each paired dataset. Table S9. Detailed annotation of isoforms using KO terms. Figure S1.
(A) Summary of the sequencing throughput obtained using for ONT (reads) and PacBio (subreads)
samples. (B) Violin plots representing the distribution of the base 10 logarithmic transformation of
the read length obtained after sequencing for each sample from each technology. Figure S2. Bivariate
plot of aligned read length against read percent identity and marginal histograms. ONT samples
shown in blue; PacBio samples shown in red. Plots generated with Nanopack package [22]; Figure S3.
Analysis of transcripts obtained after alignment using StringTie2 and compared with the reference
file using filtered and trimmed ONT reads and high quality clustered reads from IsoSeq3 pipeline
in case of PacBio samples. Annotation codes correspond to transcript classification codes obtained
using the transcript file output from StringTie2 for each sample and the reference file and compared
using GffCompare [33]. Figure S4. Distribution of the GO term annotations at hierarchical level 2 in
each tissue using WEGO 2.0 [57]. Supplementary Data: Set of final isoforms obtained using FLAIR
for ONT samples and from IseoSeq3 pipeline in case of PacBio samples.
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