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Abstract

Summary: Next-Generation Sequencing is widely used as a tool for identifying and quantifying microorganisms
pooled together in either natural or designed samples. However, a prominent obstacle is achieving correct quantifi-
cation when the pooled microbes are genetically related. In such cases, the outcome mostly depends on the method
used for assigning reads to the individual targets. To address this challenge, we have developed Exodus—a
reference-based Python algorithm for quantification of genomes, including those that are highly similar, when they
are sequenced together in a single mix. To test Exodus’ performance, we generated both empirical and in silico
next-generation sequencing data of mixed genomes. When applying Exodus to these data, we observed median
error rates varying between 0% and 0.21% as a function of the complexity of the mix. Importantly, no false negatives
were recorded, demonstrating that Exodus’ likelihood of missing an existing genome is very low, even if the
genome’s relative abundance is low and similar genomes are present in the same mix. Taken together, these data
position Exodus as a reliable tool for identifying and quantifying genomes in mixed samples. Exodus is open source
and free to use at: https://github.com/ilyavs/exodus.

Availability and implementation: Exodus is implemented in Python within a Snakemake framework. It is available
on GitHub alongside a docker containing the required dependencies: https://github.com/ilyavs/exodus. The data
underlying this article will be shared on reasonable request to the corresponding author.

Contact: iddo.nadav@gmail.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Next-Generation Sequencing (NGS)-based protocols have become
prevalent across many domains of life sciences (Levin et al., 2021;
Schweiger et al., 2011). A common task addressed by NGS is deter-
mination of the relative abundances of multiple microorganisms
mixed together in the same sample (David et al., 2014; Martin et al.,
2020). This is often achieved by competitively mapping the reads
obtained from the NGS-based experiment to a set of reference
genomes and transforming the coverage vectors on each reference to
relative abundance values. While such NGS-based protocols offer
many advantages, such as high throughput and generalism, a major
shortcoming is inability to differentiate between genetically similar
components. In cases of samples with similar components, the vast
majority of reads will be uninformative, as they could equally be
mapped to more than one reference. Naively using the remaining
reads will result in inaccurate results.

In the field of microbiome research, where samples are typically
composed of complex bacterial communities, taxonomic assignment
algorithms such as Kraken (Wood and Salzberg, 2014), MetaPhlAn
(Segata et al., 2012) and CoreProbe (Ai et al., 2018) are commonly
used to match the NGS data to large public databases at either genus
or species level. Notably, there are tools that were built to achieve
strain resolution from metagenomic data, such as TAEC (Sohn
et al., 2014) which uses genomic similarity to correct the initial
taxonomic assignment, and TAMER (Jiang et al., 2012) which uses
a mixture model to assign reads to detected genomes.

However, these tools are incongruent with non-microbiome use
cases, such as the development of biotherapeutic products. In such
use cases the reference genomes are not necessarily bacterial [for ex-
ample phage (Górski et al., 2020) or yeast (Mimee and Nagler,
2021)], not necessarily registered in public databases, their degree of
similarity to other potentially present genomes can be high (sub-
strain level), and still the error rate must be kept low enough to
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comply with regulatory bodies. These problems are often circum-
vented by devising ad hoc experimental setups, such as targeted-
NGS (Zhou et al., 2011) or custom DNA-chips (Quackenbush,
2001), however these solutions require specific calibrations and thus
undermine the generality of the NGS-based approach. To overcome
this tradeoff, we developed Exodus: an algorithm for accurate quan-
tification of highly similar custom references based solely on whole
genome NGS.

2 Algorithm description

The Exodus algorithm is a multistep process (Fig. 1A) implemented
in Python using a Snakemake workflow (Köster and Rahmann,
2012); thus it runs in parallel on the available resources of the ma-
chine at hand with no user intervention required.

2.1 Input
Exodus receives a configuration file containing (i) paths to standard
paired end short read sequencing fastq files and (ii) the paths to the
reference genomes of the organisms to be quantified.

2.2 Read filtering and mapping
Manually pre-processing the reads is recommended but depends on
the use case and the experimental setup (see documentation on
GitHub for more info). Exodus maps the reads to each of the given
reference genomes individually, using BWA mem (Li and Durbin,
2009) with default parameters. The resulting binary alignment map
(BAM) files (Li et al., 2009) are merged and filtered to keep only
properly paired reads where both reads of a pair had the same refer-
ence with the highest alignment score.

2.3 Assignment of unique reads
The merged BAM file is traversed in search of reads that perfectly
align to exactly one reference. These reads are assigned to their
matching references, and the temporary Relative Abundance (RA)
of each reference is computed:

Cref ¼
mbpref

gref

RAref ¼
CrefPn
i¼1 Ci

;

where C is the coverage of a quantified reference, mbp is the number
of bases mapped to a quantified reference, g is the genome length of
a quantified reference, n is the total number of references in the
given reference set, and i is an index representing a reference.

2.4 Assignment of tied reads
In the next step reads that perfectly align to more than one reference
are assigned to one of the tied references in a ratio matching the rela-
tive abundance between the references, as found in the previous
step. In this step, Exodus handles special cases where one of the tied
references has exactly zero perfect unique reads from the earlier
step; these cases are mapped out and the reads are all assigned to the
reference that did have unique reads. Subsequently relative abun-
dance is re-computed before moving on to the resolving other ties.
After assigning all perfectly matched reads (both unique and ties),
Exodus computes that final relative abundances (using the same
equations described above), and outputs them alongside a report
with crude data from the run.

3 Algorithm performance

3.1 Accuracy
Bacteriophage were used in this study for algorithm validation
purposes due to their quick growth, compact genomes and varying
levels of genomic similarity. Thus, to test Exodus we chose 10
double-stranded DNA bacteriophages (genome sizes are given in
Supplementary Table S1) presenting an array of genomic distances
(Fig. 1B). Empirical data was generated by mixing phage pairs in
known ratios. Phage DNA was extracted by Phage DNA Isolation
Kit (cat 46800). Library preparation was performed using Illumina’s
Tagment DNA Enzyme & Buffer (cat 20034197) (Baym et al.,
2015), and libraries were sequenced on an Illumina Miseq v2 PE250
platform, with roughly 100 000 reads/sample. In addition, in silico
data was generated by simulating reads for the same phage genomes
mentioned above using ART (Huang et al., 2012) with similar depth
and error profiles as obtained from the empirical sequencing data.
These simulations allowed us to test a wide array of phage combina-
tions, including complex cases of multiple phage and small ratios—
which are challenging to produce empirically, but can occur natural-
ly in real samples (Supplementary Table S2 shows all the empirical
and simulated combinations tested).

Each sample was analyzed by Exodus where the reference set
was always comprised the same 10 phage genomes. To determine
the quantification error of each genome in a sample, we simply com-
puted the absolute value of the margin between the expected and
observed relative abundance values. The median error over 860
observations was 0.12%. While the number of phages in the mix
was positively correlated with the error rate (higher error rates for

Fig. 1. Description and performance of the Exodus Algorithm. (A) Schematic flow

chart of the Exodus algorithm. (B) Distance matrix based on global alignment (Rice

et al., 2000) between all genomes used to benchmark Exodus. (C) Distribution of

errors (expressed as the absolute value of the margin between expected and

observed) in Exodus’ performance, as a function of the number of genomes that

were present in the sample

Exodus 3289

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac319#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac319#supplementary-data


samples with more phage), the effect size was still small in the mixes
comprising 10 phages (Fig. 1C).

False negative rate was defined as cases where Exodus did not as-
sign a positive relative abundance value to samples that were present
in the mix. Out of 632 cases where the true relative abundance of a
genome was positive, no false negative cases were observed. False
positive rate was defined as the relative abundance Exodus assigned
for reference genomes that were absent from the sample. Exodus’
maximum and median false positive rates were 0.4% and 0%, re-
spectively. Out of 228 cases where a genome was not present in the
sample, Exodus correctly assigned its relative abundance to zero in
211 cases (Supplementary Table S3).

3.2 Resource usage
Resource utilization was tested using our empirical data (Supplementary
Table S2) by varying the number of NGS samples included in a single
analysis run from one to 26 with the 10 relevant phage genomes in the
reference set. The benchmarking was run on AWS EC2 c5d.12xlarge
instances. In such setup, Exodus’ peak RAM usage was �69 mb and
the runtime was a linear function of the number of samples varying be-
tween 30 to 298 seconds (Supplementary Table S4).

4 Conclusion

In this work, we describe the development of Exodus—a reference-
based tool for quantification of genomes sequenced together in a sin-
gle mix. To test Exodus’ performance, we generated both empirical
NGS data and in silico simulations of complex cases where multiple
similar genomes in small relative abundances were mixed and
sequenced together. We observed that Exodus’ median error rate
varied between 0% and 0.21% as a function of the complexity of
the mix. Subsequently we observed that false identification of a gen-
ome was very rare (7% of cases) and was limited to extremely low
relative abundance values, thus users could consider applying a min-
imum relative abundance threshold as a noise filter. Notably, being
a reference-based tool, Exodus is not built to analyze unknown cul-
tures. However, based on this low false identification rate, in cases
of uncertainty we recommend including potentially relevant
genomes to the reference set, as the noise introduced by excessive
references is minimal. Importantly, no false negatives were recorded,
demonstrating that Exodus’ likelihood of missing an existing gen-
ome is very low, even if the genome’s relative abundance is low and
similar genomes are sequenced with it in the same mix. Taken to-
gether, these data position Exodus as a reliable tool for identifying
and quantifying reference genomes in mixed samples. Immediate use
cases for Exodus include detection and quantification of known
virus variants in environmental samples (Mart�ınez-Puchol et al.,
2021) or verification of the proper composition of a microbiological
product, such as probiotics (Williams, 2010) or phage cocktails
designed for therapeutic use (Górski et al., 2020).
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Górski,A. et al. (2020) Phage therapy: towards a successful clinical trial.

Antibiotics, 9, 827.

Huang,W. et al. (2012) ART: a next-generation sequencing read simulator.

Bioinformatics, 28, 593–594.

Jiang,H. et al. (2012) A statistical framework for accurate taxonomic assign-

ment of metagenomic sequencing reads. PLoS One, 7, e46450.
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