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Abstract: Smoking-cessation drugs bind many off-target nicotinic acetylcholine receptors (nAChRs)
and cause severe side effects if they are based on nicotine. New drugs that bind only those recep-
tors, such as α6β2* nAChR, implicated in nicotine addiction would avoid the off-target binding.
Indolizidine (-)-237D (IND (-)-237D), a bicyclic alkaloid, has been shown to block α6β2* containing
nAChRs and functionally inhibit the nicotine-evoked dopamine release. To improve the affinity of
indolizidine (-)-237D for α6β2*, we built a library of 2226 analogs. We screened virtually the library
against a homology model of α6β2 nAChR that we derived from the recent crystal structure of α4β2
nAChR. We also screened the crystal structure of α4β2 nAChR as a control on specificity. We ranked
the compounds based on their predicted free energy of binding. We selected the top eight compounds
bound in their best pose and subjected the complexes to 100 ns molecular dynamics simulations to
assess the stability of the complexes. All eight analogs formed stable complexes for the duration
of the simulations. The results from this work highlight nine distinct analogs of IND (-)-237D with
high affinity towards α6β2* nAChR. These leads can be synthesized and tested in in vitro and in vivo
studies as lead candidates for drugs to treat nicotine addiction.

Keywords: validation of virtual screening; hetero-oligomer membrane protein modeling; membrane
protein-drug complexes; membrane protein dynamics simulations; smoking cessation; lung cancer;
antagonists; lead compounds; drug discovery; pore dynamics

1. Introduction

The World Health Organization estimates that lung cancer from tobacco smoking
causes more than 7 million deaths each year worldwide [1]. Due to high nicotine depen-
dence and adverse withdrawal symptoms, most tobacco smokers who try to quit relapse
within the first month of cessation [2]. Nicotine replacement therapy, the most widely used
pharmacological intervention for achieving cessation, reduces cravings and withdrawal
symptoms in the first eight weeks of treatment but then becomes ineffective [3,4]. Nicotine
activates neuronal nicotinic acetylcholine receptors (nAChRs) in the brain. The involve-
ment of nicotinic receptors includes their interactions with the dopaminergic system in
substance abuse and neurodegenerative disorders [5–7].

Substantial shifts in our understanding of the function of nAChRs have occurred over
the last two decades. Initially, all nAChRs were classified as a pentameric ion channel
receptor. Early reviews did not mention the α6 subunit [6], stated that the α6 subunit did
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not form a complex with β subunits, or did so with great difficulty [8]. We now understand
that the α6 subtype can complex with the β2 subunit to form the α6β2* nAChR complex
and that nAChRs are widely distributed in the brain dependent on their α subunits [7,9].
Normal functioning of nAChRs in the brain involves modulation of transmitter release due
to nAChR presynaptic localization [5,8]. Nicotine stimulation of nAChRs has been shown
to increase the release of dopamine, norepinephrine, and glutamate [5]. However, not all
nAChRs are located on the presynaptic terminal; in some instances, nAChRs have been
found on the axon and postsynaptic terminal [5,8]. The activation of these receptors increase
the release of dopamine and norepinephrine in the mesolimbic and nigrostriatal areas of
the brain. Their release induces rewarding psychoactive effects [10,11]. Thus, nicotinic
receptor-based cessation agents offer viable alternatives to nicotine replacement therapy.

Nonetheless, the current nicotinic-receptor-based cessation agents cause adverse side
effects, including hypotension and psychiatric symptoms, because they bind to many
off-target nAChRs subtypes [12]. More selective drugs would block nicotine-induced
dopamine release without off-target effects. We are interested in α6β2* nAChR because it
is restricted to the ventral tegmental area (VTA) and nucleus accumbens, regions known
for their involvement in reinforcement, sensitization, and locomotion [7,13]. The use of in
vivo voltammetry has permitted the application of agents that are selective antagonists
for the β2 subunit in the VTA, followed by real-time measurement of in vivo dopamine
release in different regions of the limbic system. The addition of dihydro-β-erythroidine
(β2 antagonist) significantly reduced dopamine release in the nucleus accumbens, and
caudate of mice [14]. Administration of the α6 antagonist, α-conotoxin-MII, significantly
reduced dopamine release in the nucleus accumbens, but to a lesser extent in the caudate,
suggesting that the α6β2* subtype is the predominate nAChR in the nucleus accumbens. In
contrast, the caudate contains other subtypes, such as the α4β2* nAChR [14]. Gotti et al.
have continued earlier work to substantiate the importance of the α6β2* subtype in the
nucleus accumbens as a critical regulator of dopamine release and a potential mediator of
the addictive effects of psychoactive compounds [13]. Using α-conotoxin-MII (α3/α6/β2*-
selective) and α-conotoxin-PIA (α6/β2*-selective), they also extended earlier findings by
characterizing the nAChR subtype that is found in the caudate, the α4/α6/β2* subtype. The
relationship between nAChRs and dopamine release in the nucleus accumbens has led to
speculation about the use of compounds that are selective for nAChRs as smoking cessation
agents [12]. Recently, interest has increased regarding the potential for α6/β2* subtype-
selective indolizidine-type compound development as smoking cessation agents [15,16].
Previous studies found that α6β2* containing nAChRs subtype in the mesolimbic and
nigrostriatal areas might play a major role in regulatory dopamine and norepinephrine
release [17,18]. Consequently, drugs that target α6β2* containing nAChRs may benefit
nicotine addiction treatment.

The bicyclic indolizidines (IND) compounds show promising activity against α6β2*
containing nAChRs. For examples, IND (-)-237D has been shown to inhibit nicotine-evoked
[3H]DA release (IC50 = 0.18 nM) in rat striatal slices. Furthermore, good data support IND
(-)-237D as a selective inhibitor of α6β2* containing nAChRs [16,19]. These data support
our hypothesis that analogs of IND (-)-237D can provide lead compounds that are more
potent and selective inhibitors of α6β2* nAChRs.

In this study, we probe our hypothesis in silico by characterizing the inhibitor potential
of analogs of IND (-)-237D to inhibit α6β2* nAChRs. We used homology modeling, virtual
screening, and molecular dynamic simulations to identify high-affinity analogs of IND
(-)-237D with antagonism potential. We found eight compounds out of 2226 screened that
formed stable complexes in 100 nanosecond molecular dynamics (MD) simulations. We
repeated the simulations with the closely related α4β2 nAChR as control on selectivity.
However, we did not test all subtytpes, so we did not assess off-targets effects. These
results will be of particular interest to medicinal chemists and pharmacologists who are
developing potential therapeutics to treat nicotine addiction. The results will also interest
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neurobiologists seeking more selective inhibitors to better delineate the role of α6β2*
nAChR in smoking cessation.

2. Results

Below, we present the virtual screening results of 2226 IND (-)-237D analogs and sev-
eral control compounds against a refined homology model of α6β2 nAChR and the crystal
structure of α4β2 nAChR. We selected the analogs with the most favorable docking energies
towards the α6β2 but not the α4β2 receptor binding site. Next, we did MD simulations of
these complexes to determine if these lead compounds maintained stable interactions with
the receptors for the duration of the simulations. Following the simulations, we compared
the residence time in the binding pocket and the binding thermodynamics of the ligands.
Our analysis showed that the top-ranked IND (-)-237D analogs formed more stable inter-
actions with α6β2* nAChR than nicotine (the native agonist), dihydro-beta-erythroidine
(a competitive antagonist), and the parent IND (-)-237D compound in silico. Additionally,
comparison of the set of ligands against the two receptors showed higher binding affinities
towards the α6β2 subtype over the α4β subtype. Because of the large computational effort,
we did not extend the analysis to the remaining subtypes, so this study does not assess
off-target effects. We also probed the impact of the binding of the analogs on the pore size
of the receptor ion channel.

2.1. Homology Model of α6β2 Nicotinic Acetylcholine Receptor

The initial homology model obtained from SWISS-MODEL maintained the canonical
structure of nicotinic receptors (i.e., a pentamer with subunit ordering of α6-β2-β2-α6-β2).
The subunits had rotational pseudosymmetry around a central ion pore. We modeled
the nicotine in the binding site at the α-β interface (Figure 1). Refinement of the atomic
coordinates by the YASARA energy minimization server resulted in a model with a low
Molprobity clash score (0.16) and few Ramachandran outliers (1.23%) (Table 1). The homol-
ogy model has 72% overall sequence identity with the crystal structure and 100% identity
with the residues within 4 Å around the ligand-binding sites. The results of the structure
validation and high sequence identity suggested that the refined homology model was
sufficiently accurate for the molecular docking of small molecules.

Table 1. Homology model stereochemistry validation with Molprobity [20].

Parameter Results (Initial Model) Results (Refined Model)

Molprobity score 2.49 1.29
Clashscore 5.69 0.16
Ramachandran Favoured 87.36% 92.33%
Ramachandran Outliers 3.04% 1.23%

2.2. Library of Indolizidine Analogs

We made a library of 5000 analogs of Indolizidine (-)-237D (Figure 2). We then
applied filters for favorable pharmacophore properites. These filters reduced the library to
2226 compounds.
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Figure 1. Homology model α6β2 nicotinic receptor. (Left) View through the plasma membrane. The
alpha helices span the plasma membrane. The two α6 subunits are colored green and yellow, and the
three β2 subunits are colored brown, blue, and magenta. Orange van der Waals spheres represent the
nicotine. (Right) Binding pocket of the receptor showing nicotine as orange sticks and the various
binding site residues from α6 chain (green) and β2 chain (blue).

Figure 2. Parent structure of Indolizidine (-)-237D.

2.3. Docking Analysis of IND (-)-237D against α6β2 nAChR

To rank the IND (-)-237D analogs by binding affinity towards α6β2 nAChR for com-
putational studies, we docked the analogs with AutoDock Vina [21]. Docking energies
ranged from −8.8 to 5.1 kcal/mol for the α6β2 receptor (Figure 3A). From Figure 3A, com-
pounds in the first and second bins had mean docking energies of −8.44 ± 0.13 kcal/mol
and −7.9 ± 0.13 kcal/mol respectively. Welch’s t-test comparison of the two bins showed
significant difference between the two groups docking energies (p value < 0.0001; Welch-
corrected t = 13.42; df = 18.75). Compounds in the first bin were considered as the top
ranked ligands with most favorable energies at the binding site. The results also revealed
that docking energies between these ligands at the two receptor binding site show a higher
affinity towards the α6β2 subtype with an average docking energy of −8.5 ± 0.1 kcal/mol
and −6.8 ± 0.3 kcal/mol for the α4β2 subtype. Also their docking energies at the α4β2
receptor binding site placed them in the third bin of the frequency distribution (Figure 3B).
Thus, these compounds were selected for further comparisons and analysis. The docking
scores of the top eight compounds in the first bin, parent IND (-)-237D compounds, and
the standard compounds at one of the binding sites of the two receptors are displayed
as kcal/mol (Table 2). Top-ranked IND (-)-237D analogs had docking energies two times
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greater than nicotine and dihydro-beta-erythroidine. Docking analysis showed that the
analogs fit snugly into the binding site with the R1 substituent pointing out of the binding
site and the R2 substituent pointing inward (Figure 4A). While the major forces driving
the interactions between the analogs and the receptor are hydrophobic, the top-ranked
compounds make specific polar contacts with the active site residues (Figure 4C–H). Major
interactions made include the R1-substituents forming hydrogen-bonds with Glu-224, Cys-
223 (β2), Tyr-227 (α6) while R2-substituents make hydrogen-bond contacts with Trp-179
(β2), Leu-146, Ser-133, Asn-134, Val-136, Phe-144 (α6) (Figure 4B).

Figure 3. Frequency distribution of docked compounds by their docking energy energies of the 2226 IND analogs against
α6β2 (A) and α4β2 (B) nicotinic receptor. Histogram is divided into bins using a bin width of 0.5 kcal/mol.

Figure 4. Receptor–analog interactions using PyMOL and LigPlot. (A) The docked pose of model-292 in the binding pocket
of α6β2 nAChR. Model-292 is shown as a stick model with cyan-colored carbon atoms; the receptor is shown as a molecular
surface. (B) Model-292 interactions with binding pocket residues. Model-292 is shown as a stick model; α6 chain residues
are shown as yellow sticks whiles that of β6 chain residues are shown as brown sticks. (C–H) LigPlot diagrams of the
interactions between top-ranked compounds and the binding site residues of the α6β2 nAChR.
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Table 2. Substitution patterns and docking energies of IND (-)-237D analogs with top docking energies.

Docking Energy (kcal/mol)

Analog # R1 R2 α6β2 α4β2

Model-292 =CH2 OH −8.8 −7.0

Model-2109 –CH3 OH −8.6 −6.9

Model-646 N

H

OH −8.5 −6.9

Model-1258 –NH2 OH −8.5 −6.8

Model-1716
O

H
N

O
H
N −8.5 −7.2

Model-1783 O
H
N

N

O

OH −8.5 −6.3

Model-2221 =CH2

OH

−8.4 −6.7

Model-46 =CH2
N

O

OH −8.4 −7.1

Indolizidine (-)-237D –H –H −5.9 −5.3

Nicotine - - −4.6 −5.4

Dihydro-beta-erythroidine - - −5.2 −6.5

2.4. Molecular Dynamic Simulation and Analysis

Next, MD simulations were carried out on each of the top eight ranked receptor-analog
complexes to validate the complexes. We checked the stability of the docked complex
during the simulation, and we verified the binding affinity results from the docking
operations. We extracted the α6β2 and α4β2 nAChRs backbone root-mean-square deviation
(RMSD) from the simulation trajectories to check the convergence of the simulation. The
RMSD of both receptors in the complexes equilibrated after 20 ns (Figure S1A–F).

Analysis of the RMSD of the analogs in the α6β2 binding sites showed equilibration in
the binding pocket for seven out of the top eight analogs simulated (Figure 5C). However,
equilibration was only observed for 4 of the analogs at the α4β2 receptor binding sites.
Most of the analogs quickly move out of the binding pocket into the bulk solvent after 20 ns
resulting in high RMSD values (Figure 5D). Interestingly, at one binding site of the α6β2
receptor, 80% of the analogs that moved out of the pocket and gave high RMSD values were
compounds that had low docking energies. These were the lowest-ranked analogs or the
classical ligands of the nicotinic receptor. Only one out of the nine top-ranked compounds
had high RMSD values. At the two binding sites, high docking energies correlated with



Int. J. Mol. Sci. 2021, 22, 7934 7 of 16

low RMSD values during simulation. Conversely, analogs with low docking energies
showed high RMSD values, indicating instability and short residence time at the binding
sites. Consequently, subsequent analysis focused on the α6β2 nAChR.

Figure 5. Stability analysis of ligands during simulations. The root-mean-square deviation (RMSD) plot of the compounds
in complex with α6β2 (A,B) or α4β2 (C,D) receptor with respect to their starting structures as a function of simulation time.
[beta-erthry = Dihydro-beta-erythroidine].

From the simulation trajectories, gmx_MMPBSA tool [22,23] was utilized to compute
the binding free energy of the MD complexes based on 1000 snapshots taken from the
beginning to the end of the simulations using the molecular mechanics-generalized Born
surface area (MMGBSA) method. Consistent with previous results, analogs with low
average RMSD values also had low binding free energies and vice versa (Figure 6).

To better understand the specific factors that mediate interactions between the top-
ranked analogs and the receptor, we analyzed the hydrogen bonds between them by
running the gmx hbond utility in GROMACS version 2020.3 [24]. The number of hydrogen
bonds for the top four binding analogs ranged from one to four and one to three throughout
the simulation. Conversely, the number of hydrogen bonds for the analogs with low
docking energy ranged between one and two (Figure 7).

These results support the idea that the lead IND (-)-237D analogs are high-affinity
binders of α6β2 nAChR with potential antagonism activity. To ask a more biologically
relevant question of how the binding of the compounds affects the dynamics of the ion
channel, we analyzed the variation in the pore radius during the simulations. Ideally, for
compounds to be considered as agonists or antagonists of an ion channel at the orthosteric
site, they should stabilize the protein in a conformation that favors a more open or closed
ion channel pore respectively. Analysis of the minimum radius profile along the ion
channel of the analog-bound receptors showed a trend towards a more constricted pore at
the opening of the transmembrane domain (Figure 8), especially for the for last 50 ns of the
simulations (Table 3). Nicotine, the classical agonist for the nicotinic receptor, on the other
hand, showed a receptor stabilization towards a more open ion channel.
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Table 3. Average minimum radius of ion channel pore for last 50 ns of simulation.

Analog Average Minimum Radius of Pore (Å)

No-model 1.61 ± 0.3
Nicotine 1.88 ± 0.2

Model-688 1.79 ± 0.2
Parent-IND 1.57 ± 0.2
Model-2109 1.56 ± 0.5

Model-46 1.3 ± 0.3
Beta-ery 1.30 ± 0.6

Model-1258 1.26 ± 0.7
Model-84 1.15 ± 0.3
Model-45 1.25 ± 0.3
Model-292 1.11 ± 0.2

Model-2221 1.06 ± 0.4
Model-72 1.05 ± 0.3

Model-1783 0.96 ± 0.4
Model-646 0.78 ± 0.3

Figure 6. Comparison of docking energy and predicted binding energy from the MMGBSA method.
Black horizontal line denotes docking energy of nicotine (classical ligand of the receptor). Model 84,
72 and 688 are the lowest ranked analogs and are added for comparison. [beta-erthry = Dihydro-
beta-erythroidine. The predicted binding energies are shown as Mean ± SD; n = 1000].
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Figure 7. Graph of number of hydrogen bonds formed between receptor and analogs during simula-
tions. (A) Number of hydrogen bonds between the four top-ranked compounds and the receptor.
(B) Number of hydrogen bonds between the four lowest-ranked compounds and the receptor.
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Figure 8. Dynamics of receptor ion channel during simulation. (A) Changes in the pore size of the
ion channel in the nAChR in complex with model-1783. The pore of the channel is shown in blue,
red, or green. Blue denotes an instance where the radius of the pore was large enough for water
molecules and cations to pass through. Red denotes where the pore radius was too small for ions
and water molecules to pass through the pore. Green denotes a pore radius size sufficient for a single
water molecule to pass. (B) Fluctuations of the minimum pore radius of the ion channel during the
simulation period.

3. Discussion

We aim to develop novel indolizidine compounds that target the α6β2* subtype in the
nucleus accumbens and other areas involved in addiction to be used as potential smoking
cessation or addiction treatment agents. We know that the areas of significant α6β2* nAChR
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density are the VTA and nucleus accumbens; both areas are involved in the neurochemical
and behavioral changes associated with the addiction process [7,13]. The use of pharma-
cological agents selective for the various subunits of the α6β2* nAChR has indicated that
the α6β2* subtype is involved in regulating dopamine release in the nucleus accumbens
following administration of subunit-selective drugs in the VTA [13,14]. The correlation
between the localization of the α6β2* nAChR subtype and the data suggest regulation of
dopamine release in brain regions associated with addiction has led researchers to find
subunit and subtype-selective compounds that are useful for addiction treatment [12].

We have chosen to examine indolizidine compounds’ potential for their selectivity at
the α6/β2* subtype as smoking cessation agents [15,16]. To identify high-affinity analogs
of indolizidines, we adopted an integrated computational approach that combined protein
modeling, virtual screening, and MD simulations to filter promising IND (-)-237D leads
from a library of 2226 indolizidines compounds. Traditional chemical screening campaigns
after scaffold identification require huge resource expenditure with no guarantee of suc-
cess [25]. The use of molecular docking that utilizes robust scoring functions represents
a resource-efficient strategy in the identification of lead candidates. Our study included
the α4β2 subtypes but not the other subtypes. We cannot assess the off-target effects at
this time. The lower affinities for α4β2 does suggest that the compounds will have lower
affinities for the other subtypes, but this hypothesis remains to be tested.

Additionally, the use of MD simulations as a post-docking step to validate and refine
docking results is invaluable in our lead identification pipeline. Coupling MD simulations
to docked protein-small molecule complexes has been shown to be very useful in several
systems because docking algorithms are imperfect. Aside from screening out binders
with bad docking poses manifested as unstable trajectories and high RSMDs with time,
MD simulations offer molecular insights such as how binding pocket residues adapt
to poses of docked compounds and reveal additional interactions that maintain affinity
during the simulation period [26]. An example of this has been seen in how coupling MD
with docking was useful in identifying and confirming binding modes of propidium at the
peripheral anionic site of the acetylcholinesterase enzyme. In the specific context of nicotinic
receptors, MD simulations of dihydro-beta-erythrodione bound to α4β2 receptor revealed
structural changes that eventually lead to the closure of the ion pore in the transmembrane
domain [27]. In our study, results from the MD simulations of the top docked candidates
give further support of those analogs as high-affinity binders as exhibited by low RMSD
and low predicted binding free energies towards α6β2 nAChR compared to the α4β2
subtype. It consequently guided their selection as such. It is worth mentioning that the
usefulness of this molecular docking and simulations will rest heavily on validation by
standard biophysical experiments. This is important as not all computational hits prove to
be effective in vitro. Nonetheless, because the set of analogs being screened from the start
are derivatives of a scaffold already experimented in vitro and in vivo to be an inhibitor
of α6β2* nAChR, our approach is well-suited for quicker lead identification. Additionally,
Pivavarchyk et al. have shown that through structure-activity relationship studies, the
indolizidine ring is necessary for inhibitory activity [16]. This implies that R1 and R2
substitutions of the top rank compounds are expected to improve the potency of the parent
IND (-)-237D scaffold as a result of high predicted binding energy.

The development of new agents with affinities and potencies better than nicotine
and other commercially available compounds is critical to further understanding nAChR
involvement in the addiction process. We have seen further characterization of the “TC”
compounds as high-affinity nAChR compounds [28,29]. Collectively, there is a lack of
α6/β2* subtype-selective agents that could be useful in treating addiction-related or neu-
rodegenerative disorders. This void could be filled by the development of selective α6/β2*
drugs using an indolizidine-based compound.
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4. Materials and Methods
4.1. Homology Modeling of α6β2 Nicotinic Acetylcholine Receptor

We made a homology model of the α6β2 nicotinic acetylcholine receptor because no
crystal structure of α6β2 was available. The protein sequences with the accession numbers
NP_004189.1 (α6) and NP_0007391 (β2) were retrieved from the NCBI Reference Sequences
database (RefSeq) [30]. The protein sequences were submitted to the SWISS-MODEL web
server to build an initial 3D homology model of α6β2 nAChR using the recently published
3.9 Å resolution crystal structure of α4β2 nAChR (PDB ID: 5KXI) as a template[31,32]. We
selected a reliable 3D homology model based on low qualitative model energy analysis
(QMEAN) values [33]. Sequence alignment using Clustal Omega version 1.2.4 between the
amino acid sequences of the homology model of α6β2 and the template α4β2 was carried
out to determine the sequence identity [34].

4.2. Structure Assessment, Validation, Refinement of the α6β2 nAChR Homology Model

We accessed the modeled 3D structure of α6β2 in SWISS-MODEL to check the protein
geometry. Next, we improved the main chain and side chain stereochemistry by using the
YASARA energy minimization server to refine the homology model [35]. We then used
MOLPROBITY and PROCHECK to check the stereochemical quality and reliability of the
initial and the refined models’ Ramachandran plot and statistics [20,36].

4.3. Docking of Indolizidne (-)-237D Derivatives
4.3.1. Modeling of Indolizidne (-)-237D Derivatives

We generated a library of 5,000 compounds using ADMET predictor 8.5 (ADMET
Predictor™ (Simulations Plus, Inc. Lancaster, CA, USA; http://www.simulations-plus.com
(accessed on 18 July 2018). The library was generated by using the Indolizidine core and
modifying the chains containing R1 and R2. We followed medicinal chemistry guidelines
in the selection of R1 and R2 groups [37].

Next, we used the cApp program to screen for Pan-Assay Interference Compounds
(PAINS) [38]. We removed all compounds identified as PAINS from the ADMET (absorp-
tion, distribution, metabolism, excretion, toxicity) library. We used another filter in ADMET
to detect any drug-like violations. This filter detected ring size > 8, number of rings > 8,
rotatable bonds > 10, H-bond donors > 5, H-bond acceptors > 10, Heavy halogen atoms
(Cl, Br, I) > 2, aldehydes, sulfonates, hydrazines, acyl hydrazines, hydrazones, dicarbonyls,
nitroso, aromatic nitro groups, quinones, alkyl bromides, alkyl chlorides, alkyl iodides,
acid halides, sulfonyl chlorides, Michael acceptors, hemiacetals, acetals, hemiketals, ketals,
aminals, epoxides, aziridines, thiols, thio carbamates, acid anhydrides, aryl fluorides > 5,
isonitriles, acyl ureas, thioureas, isocyanates, thioisocyanates, imines (except amidine or
guanine), four valent sulfur connections, 9-aminoacridine, acetate ester > 2, acetylene-
heteroatom, activated esters, activated phthalimides, acyl aromatics, acylated enol, acyl
hydroxamates, acyl oximes, acyl thiohydroxamates, alkyl sulfite, thiones, ketones, akynyl-
sulfones, allenes, amino esters, rhodanine-like structures, S-S bond containing compounds,
dithioesters, thioamides, and phosphinic acids [37,39]. We removed all such compounds
from the ADMET list.

We applied another filter called the Central Nervous System Multiparameter Opti-
mization (CNS MPO) to align the compounds with drug-like characteristics further. The
CNS MPO scores were calculated according to the literature methods [40]. All structures
with a CNS MPO < 4 were excluded from the remainder of the ADMET list of compounds.
After applying the above filters, we had 2226 analogs of Indolizidne (-)-237D with distinct
substitutions at the R1 and R2 (Figure 2).

4.3.2. Protein Preparation and Molecular Docking

The refined 3D model of the target protein, α6β2 nAChR was defined as a receptor
and prepared for docking by computing the Gasteiger charges and by adding polar hy-
drogen atoms using AutoDock Tools (ADT) [21]. We saved the prepared file in the pdbqt

http://www.simulations-plus.com
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format [41,42]. We centered the docking grid box (25 × 25 × 25 Å with grid spacing of
0.375 Å) on the classical neurotransmitter binding site for nAChR, which is between the
interface of the α6 and β2 chains (76.326, 18.867, and −27.385 in Cartesian space). This box
covered the active site residues that were homologous to residues 5 Å around the nicotine
in the α4β2 crystal structure. The structures for the above analogs were converted with
Open Babel from the Structure Data File (SDF) format to the pdbqt format for use in the
docking simulations [43].

Twenty different binding poses were generated for each compound and ranked ac-
cording to their binding energies during the docking simulations. The pose with the lowest
energy of binding was extracted and aligned with the receptor protein for further analysis
using PyMOL [44]. Nicotine and dihydro-beta-erythroidine served as control agonists
and antagonists, respectively, in the docking simulations and analysis. A similar docking
protocol was carried out using the same set of ligands against the crystal structure of α4β2
nAChR. We ran the docking simulations using AutoDock Vina [21] at the Oklahoma Center
for Supercomputing in Education and Research (OSCER) at the University of Oklahoma.

4.4. Molecular Dynamic Simulation

The coordinates of the top eight docked complexes formed from the molecular docking
were used in MD simulations with GROMACS version 2020.3 on the High-Performance
Computing Center at Oklahoma State University [24]. The simulated systems were com-
posed of the top eight analogs docked at the two binding sites of the α6β2 nAChR in a
membrane modeled as a lipid bilayer. We constructed the protein-compounds-membrane
system using the Protein/Membrane System generation option of the membrane builder in
CHARMM-GUI [45]. The bilayer was composed of 70% phospholipids and 30% cholesterol
molecules. Each layer consisted of 330 lipids and cholesterol molecules. We hydrated the
bilayers with water layers covering the ‘extracellular’ and ‘intracellular’ domains of the
receptor. An ion concentration of 0.15 M NaCl was used.

The CHARMM36 forcefield with the TIP3P water model were used in the simula-
tions [46,47]. We equilibrated the protein-compounds-membrane complex at constant
temperature (310 K) and pressure (1 bar). We held the pressure using a semi-isotropic
Parrinello-Rahman barostat with a time constant of 5 ps [48]. The Verlet cutoff scheme
was used [49]. Production simulations ran for 100 ns with a time step of 2 fs. The LINCS
algorithm was used to constrain bonds containing hydrogen atoms [50]. The electrostatic
and van der Waals interactions were calculated with particle-mesh Ewald method during
the simulation [51].

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms22157934/s1, Figure S1: Stability analysis of ligand-bound receptor during simulations.
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