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OBJECTIVE—The incretin hormone GIP (glucose-dependent
insulinotropic polypeptide) promotes pancreatic b-cell function
by potentiating insulin secretion and b-cell proliferation. Recently,
a combined analysis of several genome-wide association studies
(Meta-analysis of Glucose and Insulin-Related Traits Consortium
[MAGIC]) showed association to postprandial insulin at the GIP
receptor (GIPR) locus. Here we explored mechanisms that could
explain the protective effects of GIP on islet function.

RESEARCH DESIGN AND METHODS—Associations of GIPR
rs10423928 with metabolic and anthropometric phenotypes in
both nondiabetic (N = 53,730) and type 2 diabetic individuals
(N = 2,731) were explored by combining data from 11 studies.

Insulin secretion was measured both in vivo in nondiabetic sub-
jects and in vitro in islets from cadaver donors. Insulin secretion
was also measured in response to exogenous GIP. The in vitro
measurements included protein and gene expression as well as
measurements of b-cell viability and proliferation.

RESULTS—The A allele of GIPR rs10423928 was associated
with impaired glucose- and GIP-stimulated insulin secretion and
a decrease in BMI, lean body mass, and waist circumference. The
decrease in BMI almost completely neutralized the effect of im-
paired insulin secretion on risk of type 2 diabetes. Expression of
GIPR mRNA was decreased in human islets from carriers of the
A allele or patients with type 2 diabetes. GIP stimulated osteopon-
tin (OPN) mRNA and protein expression. OPN expression was
lower in carriers of the A allele. Both GIP and OPN prevented
cytokine-induced reduction in cell viability (apoptosis). In addi-
tion, OPN stimulated cell proliferation in insulin-secreting cells.

CONCLUSIONS—These findings support b-cell proliferative
and antiapoptotic roles for GIP in addition to its action as an
incretin hormone. Identification of a link between GIP and OPN
may shed new light on the role of GIP in preservation of func-
tional b-cell mass in humans. Diabetes 60:2424–2433, 2011

M
ore than 35 genetic loci have been shown to
influence risk of type 2 diabetes or plasma
glucose or insulin levels in genome-wide as-
sociation studies (GWAS) (1–3). For most of

these loci we lack insight into the mechanisms by which
they increase risk of type 2 diabetes. Recently, a combined
analysis of several GWAS (Meta-analysis of Glucose and
Insulin-Related Traits Consortium [MAGIC]) showed associ-
ation to postprandial insulin at the GIP (glucose-dependent
insulinotropic polypeptide) receptor (GIPR) locus (SNP
rs10423928) on chromosome 19q13.3 (4). Carriers of the
risk genotype showed impaired insulin secretion, but this
was surprisingly not translated into a similar increased risk
of type 2 diabetes as seen for other variants with similar
effects on insulin secretion in the DIAbetes Genetics Rep-
lication and Meta-analysis (DIAGRAM +) study (2,4). The
human GIPR gene contains 14 exons with a protein coding
region of 12.5 kb (5). GIP is released after food ingestion
from intestinal K cells to stimulate insulin and, to a lesser
extent, glucagon secretion from pancreatic b- and a-cells,
respectively. GIP has also been ascribed long-term positive
effects on b-cell function by stimulating cell proliferation
and inhibiting apoptosis (6). A similar insulinotropic effect
is achieved by glucagon-like peptide 1 (GLP-1), which is
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secreted from intestinal L cells, but in contrast to GIP, GLP-1
inhibits glucagon secretion. Both GLP-1 and GIP are rapidly
degraded by the enzyme dipeptidyl peptidase IV, inhibition
of which is a novel approach enhancing incretin levels for
treatment of type 2 diabetes (7).

Circulating concentrations of the cytokine osteopontin
(OPN) are elevated in patients with type 2 diabetes, and
OPN has been suggested to promote the development of
atherosclerosis and diabetes complications (8–10). In islets,
however, OPN has been shown to inhibit cytokine-induced
apoptosis via reduction of NO and iNOS levels (11) and to
stimulate b-cell proliferation (12).

Since GIP and OPN have similar effects in many tissues,
including proapoptotic effects on b-cell survival in islets
(11–16) and regulation of adipocyte metabolism in fat tissue
(17,18), we advanced the hypothesis that the effect of GIP
on apoptosis and b-cell proliferation involves OPN. The aim
of the current study was to explore metabolic effects by
which a variant in the GIPR gene contributes to altered islet
function in humans and why this impairment in b-cell
function was not translated into a similarly increased
risk of type 2 diabetes as seen for other variants with
similar effects on insulin secretion. We further examined
mechanisms that could explain the effects of GIP in differ-
ent tissues and whether GIP could stimulate osteopontin in
human islets and whether this was influenced by the GIPR
gene variant.

RESEARCH DESIGN AND METHODS

All human and animal protocols were approved by the local ethics committees
and performed in accordance with local institutional and national regulations.
Study participants. We explored associations of GIPR rs10423928 with
metabolic phenotypes in both nondiabetic (N = 53,730) and type 2 diabetic
individuals (N = 2,731) from 11 studies: Botnia Prospective Study (BPS)
(19,20), Prevalence, Prediction, and Prevention of Diabetes (PPP)-Botnia (21),
Steno Incretin Clamps (22), Malmö Preventive Project (MPP) (20,23), Malmö
Diet and Cancer Study (24), the METabolic Syndrome In Men (METSIM) (25),
Genetics, Physiopathology and Evolution of Type 2 Diabetes (GENFIEV:
www.genfiev.it), Verona Newly Diagnosed Type 2 Diabetes Study (26,27), Low
Birth Weight Cohort (22,28,29), Steno Twins (30,31), and European network
on Functional Genomics of Type 2 Diabetes (EUGENE) (32,33).
In vivo experiments, measurements, and calculations. Weight, height,
waist and hip circumference, lean bodymass, and blood pressureweremeasured
in each cohort. Fat mass and lean body mass were measured with the bioelectric
impedance method. Blood samples were drawn at baseline at 0, 30 (40 in MPP),
and 120 min of the 75-g oral glucose tolerance test (OGTT) for measurements of
blood glucose and serum insulin concentrations; in addition, plasma GIP con-
centrations were measured in the PPP-Botnia study.

Forty-seven young healthy men from the Steno Low Birth Weight Cohort
underwent hyperglycemic clamps (7 mmol/L; 2 h) with infusion of GLP-1 or GIP
on separate days (22). Glucose infusion was initiated at t = 230 min and ter-
minated at t = 120 min. At t =22 min, a bolus of either GIP or GLP-1 was infused
to increase the plasma concentration to approximately 120 and 1000 pmol/L,
respectively. At t = 0 min, a continuous infusion of GIP or GLP-1 (60 or 240 pmol/
kg $ h, respectively) was initiated and terminated at t = 120 min. P-glucose and
p-insulin were determined as previously described (22,34). Intact, biologically
active GIP was measured using an assay specific for the intact NH2 terminus of
GIP (35). Plasma samples were assayed for GLP-1 immunoreactivity using a ra-
dioimmunoassay specific for amidated COOH terminus of the GLP-1 molecule;
this assay measures the sum of the intact peptide plus the primary metabolite,
GLP-1 (9–36) amide, which is formed by the actions of the enzyme DPP-4. The
results of this assay therefore provide an estimate of the secretion of GLP-1 (36).
The first-phase insulin response to GIP or GLP-1 infusions was defined as
AUCinsulin 0–20 min, and the second-phase response as AUCinsulin 20–120 min,
where AUC is area under the curve.

Insulin secretion during OGTT was assessed as corrected incremental in-
sulin response to glucose (CIR = [100 3 insulin 30 min]/[glucose 30 min] 3
[glucose 30 min 2 3.89]) (37) or as disposition index, i.e., insulin secretion
adjusted for insulin sensitivity (CIR 3 ISI) (38). Insulin sensitivity index (ISI)
was calculated from the OGTT as 10,000/=([fasting glucose 3 fasting insulin]
[mean OGTTglucose 3 mean OGTTinsulin]) (39).

Genotyping. Genotyping of rs10423928 was performed using matrix-assisted
laser desorption ionization time of flight mass spectrometry on the Sequenom
MassARRAY platform (San Diego, CA) for PPP-Botnia andMETSIM studies and
using an allelic discrimination method with a TaqMan assay on the ABI 7900
platform (Applied Biosystems, Foster City, CA) for MPP, BPS, Steno (incretin
clamps and twins), human islets, Verona, and GINFIEV.We obtained an average
genotyping success rate of .95.5%, and the average concordance rate in all
studies was .99.9%. Hardy-Weinberg equilibrium was fulfilled in all studied
populations (P . 0.50).
Human islets from cadaver donors. Islets from 50 human cadaver donors
(mean 6 SEM: nondiabetic N = 43, sex M/F 24/19, age 55.9 6 1.8 years,
BMI 25.2 6 0.5 kg/m2, HbA1c % 5.5 6 0.09; diabetic N = 7, sex M/F 3/4,
age 55.96 4.5 years, BMI 27.36 1.3 kg/m2, HbA1c % 7.36 0.3) were provided by
the Nordic Network for Clinical Islets Transplantation by the courtesy of Olle
Korsgren (Uppsala University, Uppsala, Sweden). The experimental protocol
for isolation of islets was approved by the ethics committee of Uppsala Uni-
versity and performed in accordance with local institutional and Swedish na-
tional regulations. Further characterization of islets was performed at Lund
University Diabetes Center (LUDC) Human Tissue Laboratory. Glucose- and
GIP- (Bachem, Bubendorf, Switzerland) stimulated insulin secretion were
measured using radioinmmunoassays (Euro-Diagnostica, Malmö, Sweden).
Measurements ofGIPR and OPNmRNA expression. Real-time quantitative
RT-PCR (TaqMan Gene Expression Assays, Applied Biosystems) was used to
measure mRNA levels in human and mouse islets. RNA was isolated using
AllPrep DNA/RNA Mini Kit or RNeasy Plus Mini Kit for human islets (both from
Qiagen, Valencia, CA). Concentration and purity weremeasured using NanoDrop
ND-1000 spectrophotometer (NanoDrop Technologies, Wilmington, DE). No
sign of degradation was observed using agarose gel electrophoresis and
Experion DNA 1 K gel chips (Bio-Rad, Hercules, CA). 0.2–0.5-mg RNA was
used for cDNA synthesis with RevertAid First Strand cDNA Synthesis Kit
(Fermentas Life Sciences, St. Leon-Rot, Germany). TaqMan gene expression
assays were purchased from Applied Biosystems. For human tissue, the fol-
lowing assay identification numbers were used: GIPR, Hs00164732_m1; OPN
(SPP1) Hs00959010_m1; and PDX1, (pancreatic and duodenal homeobox
1) Hs00236830_m1. The corresponding assay identification number used for
mouse OPN was Mm00436767_m1. Q-PCR reactions were run in triplicate
(total volume of PCR reactions was 10 ml) using 5–10 ng cDNA, depending
on the tissue on the ABI 7900 HT (Applied Biosystems). Human GIPR, OPN,
and PDX1 mRNA levels were normalized to three housekeeping genes, HPRT1
(HGPRT, article no. 4326321E), PPIA (cyclophilin A, article no. 4326316E),
and polymerase (RNA) II (DNA-directed) polypeptide A, 220 kDa (POLR2A)
(Hs00172187_m1), and mouse OPN mRNA to two housekeeping genes, PPIb
(cyclophilin B) (Mm00478295_m1) and GAPDH (article no. 4352339E) using
Genorm v. 3.5 software. GIPR mRNA levels in human islets were corrected
for PDX1 gene expression to adjust for potential differences in b-cell mass.
Detection of GIPR and OPN protein by immunohistochemistry. Human
pancreatic islet specimens (n = 5) taken during pancreatic surgery and pan-
creatic islets from SD rats (n = 10) and C57Bl/6J mice (n = 10, Taconic,
Copenhagen, Denmark) were used.
Immunofluorescence. Pancreatic tissue was stained as previously described
(40). Primary antibodies were diluted in PBS containing 0.25% bovine serum
albumin and 0.25% Triton X-100 and applied overnight at 4°C. Rabbit poly-
clonal anti-GIPr (1:1,600) (41), guinea pig polyclonal antiproinsulin (1:5,120;
code 9003, Euro-Diagnostica, Malmö, Sweden), guinea pig polyclonal anti-
glucagon (1:5,120; code 8708, Euro-Diagnostica), goat polyclonal anti-
somatostatin (1:800; code SC7819, Santa Cruz Biotechnology, Inc., Santa
Cruz, CA), and either mouse monoclonal for human and rat OPN or rabbit
polyclonal for mouse OPN (1:500; Developmental Studies Hybridoma Bank
[Iowa City, IA] and IBL [Hamburg, Germany], respectively) were used. Sec-
ondary antibodies specific for rabbit, guinea pig, or goat IgG and coupled to
either fluorescein isothiocyanate (FITC) or Texas red (Jackson, West Grove,
PA) were applied for 1 h at room temperature. Immunofluorescence was ex-
amined in an epifluorescence microscope (BX60; Olympus, Lund, Sweden).
Images were taken with a digital camera (DS-2Mv; Nikon, Lund, Sweden).
In vitro stimulation experiments and OPN protein measurements

Islets and pancreatic b-cells. Islets were isolated from female NMRI mice
(Bolmholtgaard, Ry, Denmark) by collagenase digestion as described else-
where (42). The procedure for sacrificing the animals was approved by the
ethical committee in Lund. Islets were used directly or after culture for 24 or
48 h in plastic petri dishes containing RPMI 1640 medium with 10% (vol/vol)
fetal calf serum, 100 mg/mL streptomycin, and 100 IU/mL penicillin and sup-
plemented with 5 or 16.7 mmol/L glucose (Sigma, Malmö, Sweden) in the
presence or absence of GIP or GLP-1 (0.1, 1, or 100 nmol/L; Bachem). Ap-
proximately 100–200 islets were used for each condition and experiments
were repeated 6–16 times. After stimulation, islets were used for measure-
ments of OPN mRNA by real-time quantitative RT-PCR and/or protein ex-
pression by immunofluorescence confocal microscopy and Western blotting.
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For protein measurements, cells were isolated from islets and double stained
for insulin and OPN as previously described (36). Images were obtained at
633 magnification on a Zeiss LSM 5 laser scanning confocal microscope (Carl
Zeiss, Inc., Jena, Germany). For quantification, mean fluorescence intensity of
OPN in insulin-positive b-cells (range 0–255 grayscale values) after back-
ground subtraction was calculated by using the Zeiss LSM 5 Pascal Analysis
software. For Western blotting, primary anti-OPN antibody was used (1:500
dilution; IBL) with a horseradish peroxidase–conjugated secondary antibody
(Cell Signaling, Danvers, MA). Bands were detected with chemiluminescence
(Supersignal West Dura; Pierce Biotechnology, Rockford, IL), and Western
blotting of b-actin (1:3,000 dilution; GenScript Corporation, Piscataway, NJ)
was used as loading control.
Assessment of b-cell viability. Pancreatic b-cell viability was performed
using a CellTiter 96 AQueous One Solution Cell Proliferation Assay Reagent
(Promega, Stockholm, Sweden) according to the manufacturer’s instructions.
The actual performance is based on the spectrophotometric detection of a
colored formazan product converted from an (3-(4,5-dimethylthiazol-2-yl)-5-
(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) (MTS) compound
by NADPH or NADH via metabolically active cells. After a culture period of 24 h
at 5.5 mmol/L glucose in the presence and absence of a cytokine cocktail
containing interleukin (IL)-1b (50 ng/mL), interferon (INF)-g (75 ng/mL), and
tumor necrosis factor (TNF)-a (75 ng/mL) with or without GIP (100 nM), the
dispersed b-cells were washed three times with fresh culture medium. There-
after, the cells were incubated for 2 h in CellTiter 96 Aqueous One Solution
Reagent before measuring absorbance at 490 nm with a 96-well plate reader.
Proliferation assay. INS-1 832/13 cells were cultured in RPMI 1640 medium
supplemented with 10% fetal calf serum, 2-mercaptoethanol (50 mmol/L), peni-
cillin (100 IU/mL), and streptomycin (100 mg/mL) at 37°C in a humidified atmo-
sphere containing 5% CO2 and 95% air. 50,000 or 100,000 cells/well were seeded
in 96-well plates in standard cell culture medium or in medium containing only
2% fetal calf serum for 48 h in the presence of PBS (control) or osteopontin (as
indicated; R&D Systems, Abingdon, U.K.). To measure DNA synthesis, the cells
were pulsed with 1 mCi [methyl-3H]thymidine (Amersham Biosciences, Uppsala,
Sweden) during the last 20 h of the experiment. Macromolecular material was
then harvested onto glass fiber filters using a Printed Filtermat A (1450–421;
Wallac Oy, Turku, Finland). The filters were air dried, and the bound radioac-
tivity was measured in a b-counter (Wallac 1450; MicroBeta, Ramsey, MN).
Statistical analyses. Linear regression analyses were used to test genotype–
phenotype correlations adjusted for age, sex, and BMI (apart from BMI and
weight) and for within-family dependence (BPS) or for birth weight and
sampling period (Steno Low Birth Weight Cohort). Nonnormally distributed
variables were logarithmically (natural) transformed before analysis. The odds
ratios for risk of developing type 2 diabetes were calculated using logistic
regression analyses adjusted for age, sex, and BMI. Analyses were performed
using SPSS version 17.0, PLINK, or STATA version 10. For in vitro studies,
results were expressed as mean 6 SEM, where applicable. Statistical analyses
were performed using GraphPad (Prism 4.0) or Origin (Originlab), and sig-
nificance was determined using one-way ANOVA followed by Bonferroni or
Tukey–Kramer tests, or unpaired two-tailed Student t test.

RESULTS

The GIPR variant is associated with glucose- and GIP-
stimulated insulin secretion. Figure 1A shows that the
A allele of GIPR rs10423928 (4) is associated with impaired
glucose-stimulated insulin secretion adjusted for BMI dur-
ing an OGTT in a meta-analysis of 13,725 nondiabetic in-
dividuals (Pmeta = 5.1 3 1026) (Fig. 1A). In addition, the
A allele was associated with impaired b-cell function in
patients with type 2 diabetes (Supplementary Table 1,
studies VII and VIII). Carriers of the TA/AA genotypes in-
creased their insulin secretion during a mean 7.8-year
follow-up period less than carriers of the wild-type TT ge-
notype (P , 0.01; Fig. 1B). In contrast to the impairment in
insulin response to oral glucose, there was no impairment in
the insulin response to intravenous glucose, supporting the
presence of an incretin defect (Supplementary Table 1,
study II). To demonstrate that the impaired incretin effect
was due to impaired GIP action, we also assessed the in-
sulin response to an exogenous GIP infusion in nondiabetic
subjects. Despite similar GIP concentrations, the TA/AA
genotype carriers showed reduced GIP-stimulated (P ,
0.05), but not GLP-1–stimulated, insulin secretion compared
with TT genotype carriers (Fig. 1C and D). The glucagon

response to GIP or OGTT was not influenced by the GIPR
variant (Supplementary Table 1, studies I and IX).

Also, in islets from 17 human cadaver donors with the TA/
AA genotypes, a trend toward decreased glucose- and GIP-
stimulated insulin secretion was observed when compared
with islets from 20 TT genotype carriers (Fig. 1E). Together,
these data demonstrate that the GIPR variant is associated
with both GIP- and glucose-stimulated insulin secretion.
GIPR expression in human, mouse, and rat islets. GIPR
protein as detected by immunofluorescence microscopy
of pancreatic sections was evident in b-cells from human,
mouse, and rat islets, but less so in a- and d-cells (Fig. 2A).
GIPR mRNA was lower in islets from diabetic (N = 7) than
from nondiabetic donors (N = 43) (P = 0.017; Fig. 2B). It
was also lower in islets from nondiabetic donors with the
TA/AA genotypes (N = 20) compared with donors with the
TT genotype (N = 22) (P = 0.0127; Fig. 2C).

Opposite to the expected increase in GIP concentra-
tions when the receptor is down-regulated, TA/AA geno-
type carriers with a presumed reduced function of the
receptor had lower GIP concentrations, both at fasting
(P = 3.1 3 1026) and after the glucose load (P = 8.3 3
1027) than TT genotype carriers (Fig. 2D and E). Of note,
the association of the TA/AA genotypes with reduced in-
sulin secretion remained unchanged after adjustment for GIP
levels, supporting the view that the effect of a presumed
reduced GIPR function was independent of decreased cir-
culating GIP levels (Supplementary Table 1, study I).
The GIPR variant results in decreased BMI, which
neutralizes the effect of the SNP on risk of type 2
diabetes. Although the effect of the A allele on insulin
secretion was of similar magnitude as observed by SNPs
in other genes, resulting in impaired islet function and in-
creased risk of type 2 diabetes (2), the A allele was not
associated with a similarly increased risk of type 2 di-
abetes as seen for the other variants (odds ratio 1.03; 95%
CI 0.95–1.12; P = 0.51) in our two large prospective cohorts
with .20,000 individuals, 2,200 of whom developed di-
abetes (Supplementary Table 1, studies II and IV).

One potential explanation for the lack of effect of the A
allele on risk of type 2 diabetes could be the concomitant
effect of the SNP on body composition. In a meta-analysis
of 38,845 subjects, the A allele was associated with a de-
crease in BMI of ;0.18 kg/m2 (b, 95% CI 20.18 [20.24 to
20.11]; Pmeta= 6.3 3 108; Fig. 3A) as well as a decrease in
waist circumference of 0.39 cm (20.39 [20.60 to 20.17];
Pmeta= 6.5 3 106; Fig. 3B). In addition, the A allele was
associated with a decrease in lean body mass (P = 0.002;
Fig. 3C). BMI is an established strong predictor of future
type 2 diabetes (20), which, in the prospective MPP study,
increased risk of type 2 diabetes by an odds ratio (OR) of
1.84 (P = 2.1 3 102153) (20). When in the MPP study we
take into account the decrease in BMI associated with the
A allele, the effect of decreased BMI neutralizes the effect
of impaired insulin secretion on type 2 diabetes risk
(Fig. 3D).
GIP influences osteopontin expression in islets in
a dose- and glucose-dependent fashion. Next, in search
for the mechanisms that could explain effects of GIP in
different tissues, we explored whether GIP effects on islet
function involved OPN. In line with earlier findings in
rodents (11), we observed clear OPN expression in human
b-cells (Fig. 4A and G). To explore a possible link be-
tween GIP and OPN, we measured changes in OPN ex-
pression upon stimulation of mouse islets with various
concentrations of GIP. Under basal glucose concentrations
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FIG. 1. Effects of GIPR rs10423928 on insulin secretion in vitro and in vivo. A: Meta-analysis of the effect of GIPR rs10423928 on CIR estimated
from the glucose-stimulated insulin secretion measured at 30 min during OGTT in the PPP-Botnia (N = 4,358), BPS (N = 2,255), MPP (N = 1,547),
and METSIM (N = 5,563) studies. Effect b is for the risk A allele. B: Change in insulin secretion (CIR, corrected early insulin response to glucose at
30 min adjusted for BMI) over mean 7.8-year follow-up time in nondiabetic individuals (BPS, N = 2,255) in carriers of nonrisk TT (blue) and risk
TA/AA (pink) genotypes of GIPR rs10423928 (*P < 0.05). C: Insulin response to GIP infusions was lower in TA/AA than in TT genotype carriers
(N = 47; *P < 0.05). D: Insulin response to GLP-1 infusion was not affected by genotype (N = 47). E: Insulin release from nondiabetic donors.
Insulin secretion was measured from islets from cadaver donors with nonrisk (TT) or risk (TA/AA) genotype. Islets were preincubated with
1 mmol/L glucose prior to incubation for 1 h in either 1 or 16.7 mmol/L glucose with or without the addition of 100 nmol/L GIP as indicated. The
number of donors (N) in each group ranged between 11 and 23. *P < 0.05. ***P < 0.001 vs. 1 mmol/L glucose.
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(5 mmol/L), 1 nmol/L GIP significantly increased OPN at
both mRNA and protein level, the last one assessed both
by quantitative confocal immunofluorescence microscopy
and Western blot (Fig. 4B–E). The dose-response of GIP on
OPN expression was bell shaped as both lower (0.1 nmol/L)
and higher (100 nmol/L) concentrations did not increase
OPN expression to the same extent as 1 nmol/L GIP (Fig.
4B and C). High glucose (16.7 mmol/L) per se effectively
increased OPN expression and blunted the stimulatory
effect of GIP. The effect of GIP on OPN expression was
specific for GIP, as GLP-1 had no impact on OPN expres-
sion regardless of the glucose concentrations (Fig. 4F).
Furthermore, OPN expression was lower in human islets
from carriers of the TA/AA compared with TT genotypes
(P , 0.05) (Fig. 4G).

Effect of GIP and OPN on cell viability and prolif-
eration. In islets, GIP has been demonstrated not only to
stimulate secretion through amplification of exocytosis
(43), but also to promote proliferation and inhibit apoptosis
of b-cells (13–15). OPN has also been shown to stimulate
cell proliferation and inhibit apoptosis in islets by influ-
encing NO production (11,12). Here we show that cytokine
stimulation of human islets induced a significant reduction
in the number of viable cells, as assessed by an MTS assay,
and that this was partially prevented by coincubation of
islets with both GIP and OPN, supporting a protective role
of OPN and GIP in human islets (Fig. 5A).

As mouse and human islets show limited cell division ex
vivo, we chose to assess the effect of OPN on b-cell pro-
liferation in clonal rat INS-1 832/13 cells. OPN (200 ng/mL)

FIG. 2. Expression of GIPR in islets. A: Human, mouse, and rat islet sections double immunostained for GIPR (green) and insulin (red), glucagon
(red), and somatostatin (red) showing GIPR expression in b-, a-, and d-cells (yellow in the merged images). Scale bars, 50 mm. Arrowheads in-
dicate GIPR-immunoreactive a- and d-cells. B: GIPR mRNA levels were lower in human pancreatic islets from diabetic (n = 7) as compared with
nondiabetic donors (n = 43) (P = 0.017). C: GIPR mRNA levels were lower in nondiabetic carriers of the TA/AA (n = 20) than in TT genotypes (n =
22) (P = 0.0127). D: Fasting GIP levels were lower in carriers of the TA/AA than in TT genotypes in nondiabetic subjects from the PPP-Botnia study
(N = 3,011; P = 3.1 3 10

26
). E: GIP levels at 2 h during the OGTT were lower in carriers of the TA/AA than in TT genotypes in nondiabetic subjects

from the PPP-Botnia study (N = 2,958; P = 8.3 3 10
27

). Carriers of TA/AA genotypes are shown in pink and TT genotypes in blue. Bars represent
mean 6 SEM. *P < 0.05 and ***P < 0.001. (A high-quality digital representation of this figure is available in the online issue.)
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significantly (P , 0.001) increased [3H]thymidine incor-
poration in INS-1 832/13 cells (Fig. 5B), demonstrating
a proliferative effect of OPN on pancreatic b-cells. As
GIPR rs10423928 TA/AA genotype carriers had reduced
OPN expression in human pancreatic islets compared with
TT carriers (Fig. 4F), it is possible that the protective effect
of OPN on cell proliferation and apoptosis (as shown in rat
islets [12]) is impaired in carriers of the A allele.

DISCUSSION

The current study provides novel insights into the role of
GIP in the pathophysiology of islet function and type 2
diabetes by exploring metabolic effects of a variant
(rs10423928) in the GIPR gene in vivo and in vitro, and
provides mechanisms that could explain the protective
effects of GIP on islet function. We present evidence that
GIP influences expression of the inflammatory cytokine
OPN in islets, which in turn, has protective effects on
b-cell proliferation and potentially apoptosis. Although the
GIPR variant was associated with impaired glucose- and
GIP-stimulated insulin secretion, this was not translated
into a similarly increased risk of type 2 diabetes as seen for
other variants with similar effects on insulin secretion
(DIAGRAM +), most likely as the variant also resulted in
lower BMI including smaller waist and lower lean body
mass. This does not exclude a very small effect on risk of

type 2 diabetes as the variant in a meta-analyses of 19,091
type 2 diabetes cases versus 38,508 nondiabetic individuals
showed modest association with risk of type 2 diabetes
(OR 1.07; 95% CI 1.03–1.12; P = 1.8 3 1024) (4).

The A allele of the rs10423928 in the GIPR gene was
associated with decreased GIPR expression in human
pancreatic islets, suggesting a possible mechanism for the
observed reduced function of the receptor. A novel finding
of the current study was that GIP signaling influences OPN
expression in islets at both the mRNA and protein level.
Consistently, OPN expression was lower in carriers of the
A allele in the GIPR gene. Reduced GIPR signaling and
OPN expression could result in reduced b-cell mass due to
decreased b-cell proliferation and increased apoptosis,
given that both GIP and OPN have previously been as-
cribed b-cell–protective effects (11–15). Our data sug-
gest that the previously reported protective effects of GIP
on b-cells could be, at least in part, mediated through
regulation of OPN expression. A potential mechanism
could involve activation of CREB (cAMP response element-
binding) transcription factor, which has been implicated
as a mediator of GIP effects in islets (16) and adipose
tissue (20) and as a key transcriptional regulator of OPN
in the vasculature (44,45). A previous study by Arafat
et al. (12) reported that OPN protects b-cells from IL-1b–
induced cytotoxicity. Here we provide direct proof of
a dose-dependent effect of OPN on b-cell proliferation.

FIG. 3. GIPR and type 2 diabetes risk reduction attributable to BMI. A: Meta-analysis of the effect of GIPR rs10423928 on BMI in the PPP-Botnia
(N = 4,531), BPS (N = 2,250), MDC (N = 24,883), METSIM (N = 5,591), GENFIEV (N = 814), Verona (N = 491), and Steno Twins (N = 285) studies.
B: Meta-analysis of the effect of GIPR rs10423928 on waist in the PPP-Botnia (N = 4,508), BPS (N = 1,807), MDC (N = 24,883), METSIM (N =
5,586), GENFIEV (N = 798), and Steno Twins (N = 239) studies. C: Meta-analysis of the effect of GIPR rs10423928 on lean body mass (LBM) in the
PPP-Botnia (N = 2,859), BPS (N = 2,309), and MDC (N = 24,883) studies. D: We have also calculated type 2 diabetes risk reduction attributable
to BMI and impaired insulin secretion. We have previously shown that every SD unit change in BMI increases risk for type 2 diabetes by 1.84-fold
(b= 0.61) and every SD unit decrease in insulin secretion (CIR) increases risk for type 2 diabetes by 1.26-fold (b= 20.23) in the MPP study (20).
The A allele of GIPR rs10423928 is associated with a decrease in BMI by 20.045 SD units (20.148 SE units). Thus, the predicted BMI-attributable
risk of type 2 diabetes conferred by the SNP rs10423928 would neutralize the risk associated with insulin secretion: 0.61 * (20.045) * 0.231 =
20.001 or exp(20.001) = odds ratio of 1.001. (A high-quality color representation of this figure is available in the online issue.)
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Furthermore, we showed that the protective effects of
GIP previously demonstrated in murine and porcine islets
are also seen in human islets, as shown by GIP’s ability to
preserve cell viability in response to inflammatory cyto-
kines. Interestingly, it was recently demonstrated that
transgenic pigs with impaired GIP function have 60% re-
duced b-cell proliferation, resulting in a 58% reduction of
b-cell mass (14). Taken together, these data demonstrate

that GIP, in addition to its incretin effect, has profound
b-cell–protective effects, which could be partially medi-
ated by OPN.

Another novel observation was that the A allele of the
GIPR gene was associated with a lean body phenotype in-
cluding reduced fat and lean body mass. It could be argued
that the decrease in body mass is a consequence of the
decrease in insulin levels. This is not likely for two reasons.

FIG. 4. Regulation of OPN expression by glucose and GIP in pancreatic islets. A: Immunofluorescence images demonstrating OPN expression
(green) in b-cells (red) of human isolated islets. Scale bar = 50 mm. B: Changes in OPNmRNA expression in mouse islets upon incubation in normal
glucose (5 mmol/L) or high glucose (16.7 mmol/L) with or without GIP (0.1, 1, or 100 nmol/L) for 24–48 h. **P< 0.01 and ***P< 0.001 vs. 5 mmol/L
glucose without GIP. Real-time RT-PCR was performed in triplicate. Experiments were performed 6–16 times, with 100–200 islets in each con-
dition. C: Summarized data from confocal immunofluorescence experiments showing changes in OPN protein expression in b-cells isolated after
incubation of mouse islets as described in B. Results show increased OPN expression upon GIP (1 nmol/L) and high glucose stimulation. **P< 0.01
and *P < 0.05 vs. 5 mmol/L glucose without GIP. Experiments were performed three times, once after 48-h incubation and twice after 24 h. Each
time, stimulation was performed in duplicate with ;100 islets per chamber; 28–44 images were analyzed for each condition. D: Representative
confocal immunofluorescence images of mouse b-cells double stained for insulin (green) and OPN (red; right panels depict merged images). Cells
were dispersed from islets that had been cultured under various stimulation conditions as explained in B and summarized in C. Scale bar = 20 mm.
E: Western blot showing increased expression of OPN protein in mouse islets after 48-h stimulation with GIP (1 nmol/L) in normal (5 mmol/L) or
high glucose (16.7 mmol/L). GIP had no stimulatory effect under high glucose condition. Two bands were distinguished, one at 65 and the other at
50 kDa. Expression of b-actin was used as loading control. F: OPN mRNA measurement in experiments performed in the same conditions as in B,
but with or without GLP-1 instead of GIP, n = 4. **P < 0.01. G: OPN mRNA levels in human islets were lower in nondiabetic carriers of TA/AA (n =
20) than TT genotypes (n = 21). *P < 0.05. (A high-quality digital representation of this figure is available in the online issue.)
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First, associations with BMI adjusted for the decrease in
insulin or GIP levels did not abolish the difference between
A and T allele carriers with respect to BMI. Secondly, tissue-
specific disruption of the GIPR in adipose tissue results in
reduced adiposity without any effects on islet function (46).
These findings are also supported by a recent meta-analysis
by the GIANT consortium demonstrating an association
between BMI and a nearby SNP, which is in linkage dis-
equilibrium (r2 = 0.83) with rs10423928 (47). Importantly,
the lowering effect of the A allele on BMI seems sufficient to
neutralize the effect of the associated impairment in insulin
secretion on the risk of type 2 diabetes.

A possible explanation for the observed reduced function
of the receptor arises from the fact that the SNP rs10423928
located in intron 12 is in strong linkage disequilibrium (r2 =
0.93) with a nonsynonomous polymorphism, rs1800437, lo-
cated in exon 10 of GIPR. The minor, at-risk C allele of
rs1800437 encodes a glutamine instead of a glutamic acid
residue at position 354 in the sixth transmembrane helix
(TM6; Supplementary Fig. 2). This region is critical for ligand-
mediated activation in the G protein–coupled receptors
(GPCR) class B family, to which GIPR belongs (48), thereby
likely resulting in decreased activation of the receptor. Re-
cently, it was demonstrated that the coding rs1800437 variant
E354Q was associated with decreased basal signaling, pos-
sibly as a consequence of reduced cell surface expression
(49). The GIPR showed both ligand-dependent and ligand-
independent signaling. These recent data therefore sup-
port the view that translational changes could contribute to
ligand-independent signaling. Although a functional study of
the E354Q variant in Chinese hamster fibroblasts did not
show differences in GIPR activity measured as cAMP for-
mation at higher GIP levels, there seemed to be differences
in the lower physiological range of GIP concentrations (50).

Since most polymorphisms resulting in phenotype ex-
pression have developed as a consequence from their ex-
posure to the environment, one can speculate that the
variant in the GIPR gene has been associated with certain
advantages during evolution. A decrease in insulin secretion
coupled with a reduction in body size would be compati-
ble with saving of energy. In support of this, Gipr2/2 mice
show decreased energy expenditure (46). The T allele is the
ancestral allele in chimpanzee, rhesus monkey, dog, and
mouse, whereas the A allele is the derived allele in humans,
the frequency of which has increased with migration out of
Africa (from 0.12 in Africans, 0.18 in Europeans, and 0.20 in
Asians; HapMap build 36). Gene variants that show positive
selection during evolution often show an increase in the
derived allele in Europeans compared with Africans (51). In
support of this, the GIP gene has been shown to be under
strong adaptive selection during its evolution (52).

In conclusion, our study reinforces the central role of
the gut in the pathophysiology of metabolic disorders like
type 2 diabetes and obesity and positions GIP as a key
anabolic hormone with effects partially mediated through
the cytokine OPN. Therapeutic manipulations of GIP and/
or OPN might be potential approaches to treat disorders
like metabolic syndrome and type 2 diabetes.
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