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The genes encoding C2, C4, and Factor B of  human complement map between 
the B locus of class I products and the D locus of  class II products in the MHC 
on chromosome 6 (1). These proteins, together with C3, are the precursors of  
the C3 convertases of the classical and the alternative pathway of complement 
(2, 3). Formation of C3 convertase is the critical event in both pathways: it 
eventuates in opsonization of  particles, release of  inflammatory peptides, C5 
convertase formation, and cell iysis. The two enzymes, which have the structural 
formulas C4b,2a and C3b,Bb ~ are serine proteases (2). The catalytic sites reside 
in the atypically large C2a (80 kd) and Bb (63 kd) subunits, whose N-terminal 
amino acid sequences show no homology with those of other serine proteases 
(4-6). These C3 convertases are also unusual in terms of  their kinetic and 
thermodynamic instability. The catalytic subunits, once dissociated from their 
cofactors, cannot rebind to form an active enzyme. 

We have recently shown that subunit Bb displays a two-domain structure that 
is unusual among serine proteases (7). We now wish to report that C2a also 
displays a two-domain structure, that the zymogens C2 and Factor B possess 
three domains, and that the morphologies of  the enzyme complexes, their 
analogous subunits and precursors are very similar. 

Materials and Methods  
Generation of Fluid Phase C4b,2a or C3b, Bb. C2, C3, C3b, C4, C4b, Factor B, Cls...z, 

Factor D were isolated as described (2, 8, 9). 80 #g C4, 40 and #g C2, and 1.2 #g Cls 
(molar ratios 100:100:3) or 80 #g C3b, 40 #g Factor B, and 0.5 #g Factor D (molar ratios 
100:100:5) were incubated in the presence of 0.5 mM MgCl2 and 0.15 mM CaCl2 at 37 °C 
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in a total volume of 277 #1 VBS. At timed intervals, three aliquots were withdrawn: 1) 5 
el was diluted into ice cold volatile buffer (0.1 M ammonium acetate, 0.05 M ammonium 
bicarbonate, 0.1 mM EDTA, pH 7.2) and immediately mounted for electron microscopy. 
2) 10 el was transferred to 90 el of ice cold VBE containing C3 for determination of C3 
convertase activity (10). 3) 15 tA was subjected to SDS polyacrylamide gel (8%) electro- 
phoresis (11). 

Electron Microscopy. Samples of 5 ug/mi in the above volatile buffer were adsorbed to 
thin carbon films and negatively stained with 1% uranyl formate (Eastman, Rochester, 
NY) using the pleated sheet technique (12). Images similar in character but inferior in 
quality were obtained when nonvolatile buffers used. Pleated regions of the grid surface 
were photographed at a primary magnification of 64,000 in a Hitachi 12 A transmission 
electron microscope operating at 75 kV with a 200-/~m C~ aperture and a 50-t~m objective 
aperture. Magnification calibration of the instrument was performed by standard methods 
(13). 

Results 
The respective reaction mixtures for enzyme formation were prepared at 0°C, 

transferred to 37°C, and aliquots were then removed at timed intervals for 
immediate assay of  C3 convertase activity, processing for electron microscopy, 
and SDS polyacrylamide gel electrophoresis. Both C3 convertases were formed 
very rapidly and although some uncleaved C2 and Factor B remained after 0.5 

FIGURE I. Electron micrographs of the human alternative pathway C3 convertase, C3b,Bb 
and precursors. C3b displays a highly irregular substructure (arrows). Factor B appears globular 
with the suggestion (arrow) of a tl~ee domain substructure. Bb possesses two discrete globular 
domains, only one of which makes contact with C3b within the enzyme complex. All images 
magnified x 480,000. 
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min, further incubation did not result in increased C3 convertase activity due to 
the rapid decay-dissociation of both enzymes. Field view electron micrographs 
(not shown) also showed that C3b,Bb complexes and C4b,2a complexes were 
pronounced at the early time points and that they gradually diminished until no 
complexes were seen after 10 rain. 

Comparison of the electron micrographs depicted in Figs. 1 and 2 shows C3b 
(~176 kd) and C4b (,~185 kd) have a similar globular appearance, consistent 
with hydrodynamic evidence (2, 14) and to have an irregular, apparently multi- 
ple-domain substructure. This is especially pronounced in C3b images (arrows, 
Fig. 1). Both molecules would be contained within a parallelepiped measuring 
approximately 125 +~ × 75 A x 65 A. The most conspicuous projection in both 
cases (arrows) is that of a larger head region connected to a smaller tail-like 
structure. Micrographs of the precursors C3 and C4 appeared indistinguishable 
from those of C3b and C4b. 

The catalytic site-bearing subunits Bb (Fig. 1) and C2a (Fig. 2) appear very 
similar, both consisting of  two globular domains connected by a thin linker 
segment -~10 A long corresponding to ~ 5  kd in molecular weight. Although 
both domains of Bb appear nearly identical, one domain of C2a often appears 
larger. Measurement of  center-to-center distances gave 50 __+ 2 A (+ SD) for Bb 

FIGURE 2. Electron micrographs of human classical pathway C3 convertase, C4b,2a and 
precursors. C4b appears very similar to C3b (Fig. 1); both proteins share a distinctive structure 
noted by arrows. C2 is globular with the suggestion of domain substructure (arrow). C2a 
possesses two discrete globular domains of unequal size. Only one domain attaches to C4b in 
the bimolecular complex C4b,2a. All images magnified x 480,000. 
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and 55 + 2 A (+- SD) for C2a. The diameter of  each Bb domain is therefore 
estimated to be 42 A and using a ~¢ of 0.72 (15), the estimated molecular weight 
of  one domain is -~28 kd. Assuming the smaller domain of C2a to be of the 
same size as the domains of Bb, the larger domain of C2a has a diameter of  47 
A, which corresponds to "--39 kd. The catalytic subunit of  both enzymes is 
oriented approximately orthogonal to the long axis of  the cofactor, and bound 
through only one of the two domains. 

The  zymogens Factor B (Fig. 1) and C2 (Fig. 2) both appear globular with 
diameters of 80 + 8 ,~ (+ SD) and 85 _+ 8 A (+ SD), respectively. However, 
pronounced substructure is evident. Bipartite images of Factor B and C2 are 
consistent with their cleavage pattern by proteases (4, 6, 14, 15): two regions, 
one approximately twice as large as the other. Often, three-lobed structures are 
seen, each lobe measuring ~ 4 0  A in diameter. Consistent with these images is 
the similarity in molecular weight of the activation fragments Ba and C2b (2, 3) 
and of the estimated molecular weights of the domains of Bb and C2a. 

Discussion 
The apparent presence of multiple domains in C3b and C4b is consistent with 

the fact that both cofactors possess multiple protein binding sites. These sites 
include the Bb or C2a binding site, the metastable binding site or reactive 
thioester (16-18) through which these molecules covalently attach to cell sur- 
faces, sites for regulatory proteins which either abrogate or enhance the activity 
of the C3 convertases (2), and sites specific for cell surface receptors (19). 

It is probable that C3 and C4 arose by gene duplication because: (a) the 
anaphylatoxins C3a and C4a, which are derived from the o~-chain of these 
proteins, show considerable amino acid sequence homology (20); (b) the regions 
surrounding the reactive thioester also indicate homology (2 I); (c) both proteins 
are synthesized as single chain polypeptides and subsequently processed to 
multiple chain structures (3); and (d) they are functional analogues. The mor- 
phological similarity between C3b and C4b deduced by electron microscopy 
further suggests a common evolutionary origin, even though C4b is 15 kd 
greater in molecular mass than C3b, possesses a three-chain rather than a two- 
chain structure and the genes of human C3 and C4 map to different chromosomes 
(22, 23). 

We have shown that subunits Bb and C2a both consist of two discrete globular 
domains, although previous attempts to cleave these proteins with proteases 
failed to reveal the two-domain substructures (4, 6, 15). The finding that C2a 
and C2a and Bb bind to their cofactors through only one domain indicates that 
this domain is the binding domain and suggests but does not prove that the other 
may be the catalytic domain. In the case of C2a, the smaller of  the two domains 
( -28  kd), which is comparable in size to the Bb domains, may be postulated to 
contain the enzymatic site. Such intramolecular arrangement would localize the 
catalytic site to a domain similar in size and shape to other serine proteases (24). 
If the freely projecting domain of  the catalytic subunits in both C3 convertases 
contains the catalytic site, then this domain would represent the COOH-terminal 
half of  C2a and Bb, because the reactive serine residue of serine proteases resides 
in that portion of the molecule (5). That both enzymes are serine proteases has 
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been deduced from their diisopropyl-fluorophosphate (DFP) inhibitability (2) 
and from sequence analyses of  Bb (4, 5). Although it is clear that in both 
proteases the catalytic site resides in a discrete 28-kd domain and that cofactor 
attachment occurs through one domain only, it is not known whether both sites 
reside in the same domain. Crystal structure comparisons (24, 25) of  chymotryp- 
sinogen and a-chymotrypsin have elucidated in detail the critical role of  the 
conserved NH2-terminal residues in the canonical refolding events. Because 
these amino acid residues are not present in Bb (4, 5), the activation process 
must be different from that of  other serine proteases. 

The suggestion that C2 arose from Factor B by gene duplication is consistent 
with their functional and physicochemical similarities, their structural similarity 
deduced by electron microscopy, and the fact that both genes map in close 
proximity to each other (1). However, the multiple domain substructures of 
these proteins suggest a more intricate evolutionary process that remains to be 
defined. 

Summary 
We have reported a transmission electron microscopic study of  the two C3 

convertases of  human complement and their precursors. The corresponding 
proteins and complexes of  the classical and alternative pathway appear very 
similar. Cofactors C3b and C4b are nearly indistinguishable and display a 
characteristic but highly irregular substructure. C2 and Factor B are globular 
with diameters of  85 _+ 8 A and 80 + 8 A and both consist of  three discrete 
globular domains each ~40 A in diameter. Bb and C2a each contain two domains 
connected by. a short linker segment. Both domains of  Bb and one domain of  
C2a are 42 A in diameter (28 kd), while the second domain of  C2 is 47 A in 
diameter (39 kd). Attachment of  the enzymatic subunits to cofactors occurs 
through one domain only. 
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