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The success of genome-wide association studies (GWASs) has enabled us to improve risk assessment and provide novel 
genetic variants for diagnosis, prevention, and treatment. However, most variants discovered by GWASs have been reported 
to have very small effect sizes on complex human diseases, which has been a big hurdle in building risk prediction models. 
Recently, many statistical approaches based on penalized regression have been developed to solve the “large p and small n” 
problem. In this report, we evaluated the performance of several statistical methods for predicting a binary trait: stepwise 
logistic regression (SLR), least absolute shrinkage and selection operator (LASSO), and Elastic-Net (EN). We first built a 
prediction model by combining variable selection and prediction methods for type 2 diabetes using Affymetrix Genome-Wide 
Human SNP Array 5.0 from the Korean Association Resource project. We assessed the risk prediction performance using area 
under the receiver operating characteristic curve (AUC) for the internal and external validation datasets. In the internal 
validation, SLR-LASSO and SLR-EN tended to yield more accurate predictions than other combinations. During the external 
validation, the SLR-SLR and SLR-EN combinations achieved the highest AUC of 0.726. We propose these combinations as a 
potentially powerful risk prediction model for type 2 diabetes.
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Introduction

Genome-wide association studies (GWASs) have success-
fully identified susceptibility variants associated with 
human diseases. However, most susceptibility variants have 
small effect sizes and explain only a small proportion of 
heritability [1]. The presence of a large number of variants 
genotyped for a small number of subjects (commonly known 
as “large p small n”) has been one major challenge in 
building disease risk prediction models. Furthermore, the 
issue of multicollinearity arises when there is high linkage 
disequilibrium (LD) among single-nucleotide polymorphisms 
(SNPs). Multiple regression is very unstable and sensitive 
due to multicollinearity, in which the coefficient estimates 
have very large variances [2]. Recently, various statistical 
approaches have been proposed to cope with these issues.

Traditional approaches for disease risk prediction have 
been based on gene scores (GSs) [3-6]. The marginal effects 

of previously known disease-associated loci are estimated, 
and then, their sum can be used to construct a risk prediction 
model. While GS-based approaches can be useful when a 
genetic variant is responsible for diseases [7], they show low 
prediction performance when multiple genetic variants exist 
for a complex disease [8, 9]. For example, the prediction 
performance for coronary heart and disease type 2 diabetes 
(T2D) is only 0.59 and 0.58, respectively, for area under the 
receiver operating characteristic curve (AUC) values [8, 9].

For complex diseases, a more accurate and reliable 
prediction model is required. Multiple logistic regression 
(MLR) is a classification method that utilizes combined 
information across multiple genetic variants. Several studies 
have shown that the MLR-based approach is useful in 
building a disease risk prediction model [10-13]. However, if 
there is large LD between SNPs, the parameter estimates of 
MLR become unstable, and as a result, the risk prediction 
model has weak predictive power.

As an alternative to MLR, data mining approaches have 
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Table 1. Demographic variables for KARE, Health2, and HEXA cohorts

Group Total individuals T2D group Normal group

KARE cohort
  No. of subjects 8,842 1,042 2,943
  Sex (male/female) 4,183/4,659 539/503 1,355/1,588
  Age 52.2 ± 8.9 56.4 ± 8.6 51.1 ± 8.6
  BMI 24.6 ± 3.1 25.5 ± 3.3 24.1 ± 2.9
  Area (Anseong/Ansan) 4205/4,637 531/511 1,669/1,274
Health2 cohort
  No. of subjects 1,816 794 770
  Sex (male/female) 859/957 370/424 367/403
  Age 60.7 ± 6.6 58.5 ± 7.2 63.6 ± 4.2
  BMI 24.7 ± 3.3 25.3 ± 3.2 23.9 ± 3.2
HEXA cohort
  No. of subjects 3,696 318 2,841
  Sex (male/female) 1,647/2,049 203/115 1,120/1,721
  Age 53.2 ± 8.3 58.6 ± 8.0 52.2 ± 8.1
  BMI 24.0 ± 2.9 24.8 ± 2.9 23.7 ± 2.8

KARE, Korean Association Resource; HEXA, Health Examinee; T2D, type 2 diabetes; BMI, body mass index.

been used widely to improve risk prediction performance. In 
particular, support vector machine (SVM) [14, 15] and 
random forest [16, 17] have been shown to outperform other 
classification algorithms [18]. Although these data mining 
approaches may provide very useful tools in classification, 
the effects of genetic variants on a disease in prediction 
models are not easy to interpret. Furthermore, these approa-
ches do not give class conditional probabilities of individual 
predictions [19]. Thus, we focus mainly on penalized 
regression approaches in this paper, which provides an 
individual prediction result in terms of probability. 

As mentioned before, the problem of “large p small n” 
interrupts the estimation of the joint effect of multiple 
genetic variants. In order to overcome this, various penalized 
regression approaches have been proposed, such as ridge 
[20-22], least absolute shrinkage and selection operator 
(LASSO) [23], and Elastic-Net (EN) [24]. These penalized 
approaches have an advantage in terms of both variable 
selection and prediction power over non-penalized approa-
ches for high-dimensional data. For instance, the prediction 
performance for Crohn disease and inflammatory bowel 
disease using a number of genetic variants with penalized 
approaches has been shown to improve [25, 26].

In this study, we investigated the effect of variable selec-
tion on the performance of prediction methods. Especially, 
we considered the following methods for variable selection 
and prediction: stepwise logistic regression (SLR), LASSO, 
and EN. We compared the effect of variable selection on the 
performance of prediction by applying them to T2D GWAS 
chip data. We constructed the prediction models by 
combining variable selection and prediction methods using 

the Korean Association Resource (KARE) GWAS dataset 
(3,180 individuals) and then evaluated the performance of 
the risk prediction model through both internal validation 
(805 individuals in the KARE testing dataset) and external 
validation (4,723 individuals in an external replication 
dataset). The external replication dataset combined two 
cohorts: the Health2 study (1,816 individuals) and Health 
Examinee (HEXA) study (3,696 individuals). In both the 
internal and external validation datasets, we measured the 
discriminative accuracy of the prediction models using AUC.

Methods
KARE dataset

The KARE project was initiated in 2007 to undertake a 
large-scale GWAS with 10,038 participants from two 
community-based cohorts (i.e., the rural Anseong and urban 
Ansan cohorts). Among the participants, 10,004 samples 
were genotyped using Affymetrix Genome-Wide Human 
SNP Array 5.0 Affymetrix, Santa Clara, CA, USA). From 
sample and SNP quality controls, a total of 8,842 individuals 
were selected from the Anseong (2,374 men and 2,263 
women) and Ansan (1,809 men and 2,396 women) cohorts 
[27]. Missing genotypes were imputed using the Beale 
software program [28]. 

In this study, a total of 3,985 samples were selected from 
among the 8,842 individuals using T2D diagnostic criteria 
[29, 30]. A total of 1,042 subjects were included in the T2D 
group according to the following criteria: (1) fasting plasma 
glucose (FPG) larger than or equal to 126 mg/dL, 2-hour 
postprandial blood glucose (Glu120) larger than or equal to 
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Table 2. List of the SNP sets

SNP set Description
GWAS catalog KARE No. of 

total variants

Population p1 p2 p

ALL Only reported SNPs
  in GWAS catalog

All populations 65 - 65

ASIAN Only reported SNPs
  in GWAS catalog

Asian population 25 - 25

KARE Only top SNPs
  in KARE cohort

- - 100 100

ALL ＋ KARE GWAS catalog ＋ KARE All populations 65 35 100
ASIAN ＋ KARE GWAS catalog ＋ KARE Asian population 25 75 100

SNP, single nucleotide polymorphism; GWAS, genome-wide association study; KARE, Korean Association Resource; ALL, SNPs only 
reported in the GWAS catalog; ASIAN, SNPs only reported in the GWAS catalog with an Asian population; ALL ＋ KARE, combined 
SNPs in the GWAS catalog and KARE cohort; ASIAN ＋ KARE, combined SNPs in the GWAS catalog with an Asian population 
and the KARE cohort.

200 mg/dL, (2) treatment of T2D, and (3) age of disease 
onset ≥ 40 years. The inclusion criteria for nondiabetic 
normal subjects (n = 2,943) were as follows: (1) FPG less 
than or equal to 100 mg/dL or Glu120 less than or equal to 
140 mg/dL and (2) no history of diabetes. The demographic 
variables of the subjects are summarized in Table 1.

Health2 and HEXA datasets

We combined two Korean GWASs, the Health2 study (n = 
1,816) and the HEXA study (n = 3,696). The Health2 study 
consists of community-based cohorts from 5 rural areas (i.e., 
Wonju, Pyeongchang, Gangneung, Geumsan, and Naju), and 
the HEXA study is a cohort from 14 urban areas. These 
samples were genotyped using the Affymetrix Genome- 
Wide Human SNP array 6.0. The Health2 and the HEXA 
cohorts have been described in previous studies [27, 31, 32]. 
Missing genotypes were were imputed using Beagle software.

Our investigation was based on the analysis of an external 
replication dataset of 4,723 samples (1,112 T2D subjects, 
3,611 normal subjects) for T2D [33]. The criteria for grou-
ping T2D subjects (nHealth2 = 794, nHEXA = 318) and 
nondiabetic normal subjects (nHealth2 = 770, nHEXA = 2,841) 
were FPG level (FPG ≥ 126 for T2D subjects and FPG ≤ 100 
for nondiabetic normal subjects) and history of T2D 
treatment. The demographic variables of the subjects in the 
Health2 and HEXA cohorts are summarized in Table 1.

Statistical analysis

For the joint identification of disease susceptibility variants 
among a large number of SNPs, we extracted SNPs having a 
strong correlation with T2D via logistic regression for 
single-variant analysis and collected the list of reported SNPs 
from a GWAS catalog [34]. Then, we implemented a 3-stage 
procedure as follows: the first stage was variable selection 

using SLR, LASSO, and EN. The second stage was the 
construction of risk prediction models. The third stage was 
evaluation of the risk prediction models through both 
internal validation and external validation.

SNP sets

Because the components of SNPs seem to be related to the 
performance of risk prediction, we used two data sources 
(i.e., the GWAS catalog and KARE cohort). First, we collec-
ted the SNPs, p1, from a GWAS catalog in all populations and 
an Asian population only. Second, the SNPs were selected by 
single-variant association test using logistic regression, with 
adjustments for age, sex, area (namely, rural area of Anseong 
and urban area of Ansan), and body mass index (BMI). We 
chose the top-ranked p2 SNPs by the order of p-values from 
the KARE cohort. In Table 2, we have categorized five SNP 
sets.

(1) ALL (SNPs only reported in the GWAS catalog)
(2) ASIAN (SNPs only reported in the GWAS catalog with 

an Asian population)
(3) KARE (only top-ranked p2 SNPs in the KARE cohort)
(4) ALL ＋ KARE (combined SNPs in the GWAS catalog 

and KARE cohort)
(5) ASIAN + KARE (combined SNPs in the GWAS catalog 

with an Asian population and the KARE cohort)

Stage 1: Variable selection
In the KARE dataset, we separated 3,985 individuals 

(1,042 T2D subjects, 2,943 normal subjects) into a training 
set of 3,180 individuals (830 T2D subjects, 2,350 normal 
subjects) and a test set of 805 individuals (212 T2D subjects, 
593 normal subjects) (see Fig. 1). The variable selection was 
performed using 5-fold cross-validation (CV) on the training 
set. We describe the details below.
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Fig. 1. Outline of the risk prediction model construction and 
validation. T2D, type 2 diabetes; CV, cross-validation; ALL, single- 
nucleotide polymorphisms (SNPs) only reported in the genome- 
wide association study (GWAS) catalog; KARE, Korean Association
Resource; ASIAN, SNPs only reported in the GWAS catalog with 
an Asian population; ALL ＋ KARE, combined SNPs in the GWAS
catalog and KARE cohort; ASIAN ＋ KARE, combined SNPs in the
GWAS catalog with an Asian population and the KARE cohort; SLR, 
stepwise logistic regression; LASSO, least absolute shrinkage and 
selection operator; EN, Elastic-Net.

The phenotype yi of subject i = 1, ..., n was set as a 
dependent variable (T2D = 1, normal = 0), and the genotype 
xij of the j-th SNP (j = 1, ..., p) for subject i was set as an 
independent variable with an additive genetic model (AA = 
0, Aa = 1, aa=2, where A and a indicate the major and minor 
alleles, respectively). 

For variable selection, the following SLR was conducted.

  

  
   

 


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            ,

where β0 and βj are the intercept and effect sizes of SNPs, 
respectively. γ1, γ2, γ3, and γ4 represent the age, sex, area 
(namely, rural and urban areas), and BMI of the i-th 
individuals, respectively. For the given covariates, the 
selection of SNPs was determined by a stepwise procedure 
based on Akaike's information criterion [35]. The stepwise 
procedure was conducted using the R-package MASS [36].

The penalized method solves the following:
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where Xi = (xi1, ..., xij, ..., xip)T and COVi = (AGEi, SEXi, AREAi, 
BMIi)T for the i-th subject, β = (β1, ..., βj, ..., βp)T, and γ = 
(γ1, γ2, γ3, γ4)T. Lasso and EN penalties are defined as 
Pλ(β) = λΣ|β| and Pλ(β) = λ[(1 − α)Σ|β| ＋ αΣβ2], 
respectively. λ and α are a tuning parameter and a weight of 
a value between 0 to 1, respectively. All penalized methods 
were conducted using the R-package glmnet [37].

Then, we defined five sets as follows:
(1) One set: set of SNPs that have a non-zero coefficient at 

least one time among the 5-fold CV
(2) Two set: set of SNPs that have a non-zero coefficient at 

least two times among the 5-fold CV
(3) Three set: set of SNPs that have a non-zero coefficient 

at least three times among the 5-fold CV
(4) Four set: set of SNPs that have a non-zero coefficient 

at least four times among the 5-fold CV
(5) Five set: set of SNPs having non-zero coefficients in 

the 5-fold CV,
where one set ⊃ two set ⊃ three set ⊃ four set ⊃ five set.

Stage 2: Construction of risk prediction models 
For construction of the risk prediction model, we 

considered 9 combinations of variable selection and pre-
diction methods (i.e., SLR-SLR, SLR-LASSO, SLR-EN, LASSO- 
SLR, LASSO-LASSO, LASSO-EN, EN-SLR, EN- LASSO, and 
EN-EN). For each combination, we constructed prediction 
models using the entire KARE training dataset (n = 3,180).

Stage 3: Evaluation of risk prediction models
For evaluating the risk prediction performance, we needed 

to assess both internally and externally to determine the 
performance of the prediction models. To validate the risk 
prediction methods, we used internal and external validation 
datasets from the KARE testing dataset (n = 805) and an 
external replication dataset (n = 4,723), respectively. In both 
the internal and external validation datasets, we used the 
AUC of the receiver operator characteristic (ROC) curve, 
which is widely used for risk prediction performance [38, 
39]. The ROC curve is a graphical plot of sensitivity (true 
positive rate) against 1 – specificity (false-positive rate) 
across all possible threshold values. A summary measure of 
ROC curves, such as AUC, is indicated as the discriminative 
accuracy. An AUC score close to 0.5 reflects random chance, 
while AUC values closer to 1 indicate perfect accuracy.

Results
Preparing SNP sets

The association of T2D was analyzed using logistic 
regression with adjustments for age, sex, area, and BMI as 
covariates. As shown in Supplementary Fig. 1A, the 
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Fig. 2. Venn diagrams summarizing 
the number of variables shared 
among 5-fold CV by variables selec-
tion methods. CV, cross-validation; 
ALL, single-nucleotide polymorphisms
(SNPs) only reported in the genome- 
wide association study (GWAS) catalog;
ASIAN, SNPs only reported in the 
GWAS catalog with an Asian popu-
lation; KARE, Korean Association Re-
source; ALL ＋ KARE, combined SNPs
in the GWAS catalog and KARE 
cohort; ASIAN ＋ KARE, combined 
SNPs in the GWAS catalog with an 
Asian population and the KARE cohort;
SLR, stepwise logistic regression; 
LASSO, least absolute shrinkage and 
selection operator; EN, Elastic-Net.

quantile-quantile plot shows that the observed p -values at 
the tail are significantly larger than the null distribution. Six 
SNPs in CDKAL1 had associations that reached a genome- 
wide significance level of p-value less than 1.45 × 10−7 
(Supplementary Table 1, Supplementary Fig. 1B). Supple-
mentary Table 1 shows the results with a p-value threshold 
of less than 5.00 × 10−5. rs7754840 (p = 4.66 × 10−8) of 
CDKAL1 and rs10811661 (p = 7.17 × 10−6) of CDKN2A/2B 
have been observed to affect T2D in previous GWASs 
[40-45]. In the GWAS catalog, we found 65 SNPs and 25 
SNPs associated with T2D in all populations and the Asian 

population, respectively (Supplementary Table 2). As pre-
viously mentioned, we categorized five SNP sets from two 
data sources in Table 2.

Selection of predictor variables

In each SNP set, the variable selection methods were 
applied to 5-fold CV on the training set. Fig. 2 shows 
information about the number of overlapping SNPs by 5-fold 
CV for each variable selection method. Table 3 provides a 
summary of the results of the variable selection. The variable 
selection methods gave very similar results in the ALL and 
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Table 3. Number of overlapping SNPs selected by 5-fold CV for each variable selection method

SNP set Variable selection
method One set Two set Three set Four set Five set

ALL SLR 3 3 1 - -
LASSO 6 4 3 2 1
EN 6 6 5 3 2

ASIAN SLR 3 3 1 - -
LASSO 6 4 3 2 1
EN 6 6 6 2 1

KARE SLR 80 59 55 47 37
LASSO 82 75 63 56 48
EN 100 100 77 68 54

ALL ＋ KARE SLR 72 55 44 39 29
LASSO 84 74 61 52 37
EN 100 85 73 59 44

ASIAN ＋ KARE SLR 78 59 50 42 31
LASSO 83 76 70 62 50
EN 83 76 70 62 50

SNP, single nucleotide polymorphism; CV, cross-validation; ALL, SNPs only reported in the genome-wide association study (GWAS) 
catalog; SLR, stepwise logistic regression; LASSO, least absolute shrinkage and selection operator; EN, Elastic-Net; ASIAN, SNPs only 
reported in the GWAS catalog with an Asian population; KARE, Korean Association Resource; ALL ＋ KARE, combined SNPs in 
the GWAS catalog and KARE cohort; ASIAN ＋ KARE, combined SNPs in the GWAS catalog with an Asian population and the 
KARE cohort.

Fig. 3. Internal validation shows the 
AUC values for each combination of 
variable selection and prediction 
methods. Each bar represents one of 
five SNP data sets. AUC, area under 
the receiver operating characteristic 
curve; SNP, single-nucleotide polymor-
phism; ALL, SNPs only reported in the
genome-wide association study (GWAS)
catalog; ASIAN, SNPs only reported 
in the GWAS catalog with an Asian 
population; KARE, Korean Association
Resource; ALL ＋ KARE, combined 
SNPs in the GWAS catalog and KARE
cohort; ASIAN ＋ KARE, combined 
SNPs in the GWAS catalog with an 
Asian population and the KARE co-
hort; SLR, stepwise logistic regressi-
on; LASSO, least absolute shrinkage 
and selection operator; EN, Elastic-Net.
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Fig. 4. External validation shows the 
AUC values for each combination of 
variable selection and prediction 
methods. Each bar represents one of 
five SNP data sets. AUC, area under 
the receiver operating characteristic 
curve; SNP, single-nucleotide polymor-
phism; ALL, SNPs only reported in the
genome-wide association study (GWAS)
catalog; ASIAN, SNPs only reported 
in the GWAS catalog with an Asian 
population; KARE, Korean Association
Resource; ALL ＋ KARE, combined 
SNPs in the GWAS catalog and KARE
cohort; ASIAN ＋ KARE, combined 
SNPs in the GWAS catalog with an 
Asian population and the KARE co-
hort; SLR, stepwise logistic regression;
LASSO, least absolute shrinkage and 
selection operator; EN, Elastic-Net.

ASIAN datasets, whereas the results showed differences 
among the methods in the KARE and ALL ＋ KARE datasets. 
Furthermore, SLR generally tended to select a smaller 
number of SNPs than LASSO and EN.

Construction of prediction models and validation in 
testing datasets

We fitted the prediction models using SLR, LASSO, and 
EN using the entire training individuals in the KARE cohort. 
Then, we applied the prediction models to the KARE testing 
dataset and an external replication dataset. The prediction 
models were built based on Affymetrix 5.0, but the external 
replication dataset was generated by Affymetrix 6.0. In the 
case of the KARE dataset, nearly 90% of the SNPs belonged 
to the external replication dataset. Thus, we did not include 
untyped SNPs in the evaluation of prediction models using 
the replication dataset. Among the five SNP sets, Fig. 3 
shows that the prediction models from the KARE SNP set 
had higher AUC values for the KARE testing dataset than 
other SNP sets. In contrast, as shown in Fig. 4, the prediction 

models from ALL ＋ KARE had the best performance overall 
for the external replication dataset. In Table 4, the best 
combinations of the variable selection and prediction models 
had the highest AUC values. SLR-LASSO and SLR-EN with 
three set from KARE had an AUC of 0.816 in the KARE 
testing dataset. In an external replication dataset, SLR-SLR 
and SLR-EN with one set from ALL ＋ KARE (AUC, 0.726) 
were the best, with 51 SNPs for T2D, while SLR-LASSO and 
SLR-EN with three set from KARE (AUC, 0.590) showed the 
best performance, with 53 SNPs. SLR-SLR with one set from 
ALL ＋ KARE was superior to the model with only demo-
graphic variables (15.7% increase in AUC). Among the 51 
SNPs of SLR-SLR with one set from ALL ＋ KARE, 38 SNPs 
were mapped to the genes (Table 5). Some genes (AGR3, 
C2CD4B, C6orf57, CAMK1D, DNER, IGF2BP2, KCNJ11, 
KCNQ1, NXN, PLS1, and RGS7) were previously reported to 
be associated with T2D [44-53].
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Table 4. Summary of prediction performance in KARE testing dataset and an external replication dataset

SNP set
Variable
selection
method

Set
(No. of SNPs)

Prediction
method

No. of
SNPs

AUC

KARE testing
dataset

External replication
dataset

Only demographic 
variables

- - - - 0.715 0.561

ALL EN Two set (6) EN 6 0.724 0.604
ASIAN SLR Two set (3) LASSO 3 0.722 0.601
KARE SLR Three set (55) LASSO 53 0.816 0.590
KARE SLR Three set (55) EN 53 0.816 0.590
KARE SLR Five set (37) LASSO 37 0.801 0.620
KARE SLR Five set (37) EN 37 0.801 0.620
ALL ＋ KARE EN One set (100) SLR 51 0.774 0.726
ALL ＋ KARE SLR One set (72) SLR 51 0.772 0.726
ASIA ＋ KARE EN One set (83) LASSO 71 0.809 0.599
ASIA ＋ KARE EN One set (83) EN 71 0.809 0.599
ASIA ＋ KARE SLR Three set (50) SLR 49 0.800 0.694

KARE, Korean Association Resource; SNP, single nucleotide polymorphism; AUC, area under the receiver operating characteristic 
curve; ALL, SNPs only reported in the genome-wide association study (GWAS) catalog; EN, Elastic-Net; ASIAN, SNPs only reported 
in the GWAS catalog with an Asian population; SLR, stepwise logistic regression; ALL ＋ KARE, combined SNPs in the GWAS catalog 
and KARE cohort; ASIA ＋ KARE, combined SNPs in the GWAS catalog with an Asian population and the KARE cohort. 

Table 5. Development of SLR-SLR prediction model with one set from ALL ＋ KARE for predicting T2D

Variable β Region Gene Variable β Region Gene

rs2236208 14.23 Intron - rs3773506 0.25 UTR-3 PLS1
rs2236207 −13.88 UTR-5 CSTF1 rs515071 −0.24 Intron -
rs2700396 13.78 Intron MYLK rs10115450 −0.23 Intron GRIN3A
rs13094803 −13.56 Intron MYLK rs2106294 −0.23 Intron -
rs9939609 2.14 Intron FTO rs6813195 −0.21 down -
rs9460546 2.10 Intron CDKAL1 rs1525739 −0.21 Down AGR3
rs8050136 −2.07 Intron FTO rs360481 −0.20 Intron -
rs10946398 −2.02 Intron CDKAL1 rs8181588 −0.20 intron KCNQ1
rs11065756 −1.16 Intron CCDC63 rs623323 0.20 down NXN
rs10849915 0.88 Intron CCDC63 rs5015480 0.19 Down -
rs2074356 −0.75 Intron C12orf51 rs10906115 −0.19 Up CAMK1D
rs11066280 0.58 Down RPL6 rs3132524 −0.19 Intron POU5F1
rs6439472 0.43 Up - rs5215 0.18 Missense KCNJ11
rs11086668 0.37 Intron ZNF831 rs1048886 0.17 Missense C6orf57
rs6665139 −0.34 Down - rs679992 −0.17 Intron RGS7
rs10258075 0.34 Intron INSIG1 rs17797882 −0.16 Down MAF
rs3796439 −0.33 Intron BMPR1B rs6930576 0.16 Intron SASH1
rs2444728 0.32 Down - rs7403531 0.15 Intron RASGRP1
rs16841450 0.31 Intron GALNT5 rs1436955 −0.14 Down C2CD4B
rs6128654 0.31 Intron PHACTR3 rs1495377 0.12 Intron TSPAN8
rs9465871 −0.30 Intron CDKAL1 rs1861612 0.11 Intron DNER
rs1801282 −0.30 Intron - rs831571 −0.11 Up -
rs2383208 −0.28 Down - rs17045328 0.11 Intron CR2
rs773506 −0.26 Down AUH SEX 0.42 - -
rs6882351 −0.26 Up - AREA −1.05 - -
rs470089 0.25 Intron SULT4A1 AGE 0.11 - -
rs7163430 −0.25 Up SPRED1 BMI 0.20 - -
rs4402960 0.25 Intron IGF2BP2

SLR, stepwise logistic regression; ALL ＋ KARE, combined SNPs in the genome-wide association study catalog and Korean Association 
Resource cohort; T2D, type 2 diabetes.
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Discussion

In this study, we compared the performance of risk 
prediction models combining variable selection and prediction 
methods. Also, the effect of five SNP sets (i.e., ALL, ASIAN, 
KARE, ALL ＋ KARE, and ASIAN ＋ KARE) on risk 
prediction performance was investigated. Overall, we con-
firmed that prediction models incorporating both demo-
graphic variables and genetic variables were more accurate 
than prediction models using only demographic variables. 
According to our results, the best combinations were 
SLR-LASSO and SLR-EN with three set from the KARE SNP 
set in the KARE testing dataset, whereas the SLR-SLR and 
SLR-EN combination with one set from the ALL ＋ KARE 
SNP set outperformed all other combinations in an external 
replication dataset.

The analysis of risk prediction studies can be extended in 
several ways. First, the performance of a risk prediction 
model can be improved by incorporating rare variants. 
Advances in sequencing technology make it possible to 
investigate the role of common and rare variants in risk 
prediction of complex diseases. Wei and Lu [54] proposed a 
collapsing ROC approach that incorporates genetic 
information from both common and rare variants. A 
prediction algorithm based on SVM with common and rare 
variants was proposed in order to improve predictive 
performance [55]. Second, integrating biological knowledge 
into a risk prediction model will provide more accurate 
predictions and biologically meaningful interpretation. 
Eleftherohorinou et al. [56] have shown success of a 
pathway-based prediction test of GWAS data. Recently, a 
pathway-based approach was proposed to incorporate 
principal components of pathway effects and pathway- 
covariate interactions into logistic regression [57]. Further-
more, a risk prediction model can be used to investigate 
multiple types of omics data, such as The Cancer Genome 
Atlas datasets. The recent developments of single-molecule 
sequencing technologies (i.e., third-generation sequencing) 
has facilitated integrated analysis of multi-omics data. There 
is no doubt that multi-omics data will lead to improvement 
of risk prediction models.

Supplementary materials

Supplementary data including two tables and one figure 
can be found with this article online http://www.genominfo. 
org/src/sm/gni-14-138-s001.pdf.
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