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Introduction

Intrinsically disordered proteins (IDPs) lack a well-defined three-
dimensional structure under physiological conditions of pH and 
salinity and in the absence of a partner or ligand. Some IDPs 
however fold, partially or completely, into ordered conformations 
upon binding to specific interactors.1-23 The extreme structural 
plasticity that characterizes these proteins allows for independent 
tuning of affinity and specificity, recognition of multiple targets, 
fast association kinetics and effective regulation by post-trans-
lational modifications.19,24 Probably due to these features, IDPs 
play key regulatory roles inside the cell.10,13,14,25-28 According to 
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Intrinsically disordered proteins (IDPs) exert key biological 
functions but tend to escape identification and characterization 
due to their high structural dynamics and heterogeneity. 
The possibility to dissect conformational ensembles by 
electrospray-ionization mass spectrometry (eSI-MS) offers 
an attracting possibility to develop a signature for this class 
of proteins based on their peculiar ionization behavior. This 
review summarizes available data on charge-state distributions 
(CSDs) obtained for IDPs by non-denaturing eSI-MS, with 
reference to globular or chemically denatured proteins. The 
results illustrate the contributions that direct eSI-MS analysis 
can give to the identification of new putative IDPs and to their 
conformational investigation.
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disorder-prediction algorithms, ~30% of the eukaryotic proteins 
are mostly disordered and ~40% possess disordered regions lon-
ger than 50 residues.29-33

A big effort is being devoted to the investigation of IDP 
binding to their folded interactors. The structure of numerous 
complexes has been solved by X-ray crystallography, describing 
interaction surfaces and acquired ordered structure, although 
complexes where IDPs retain their flexibility have been 
reported, too.18,24,34-37 To understand the mechanism of molecu-
lar recognition, it is also important to characterize the struc-
tural properties of the pre-recognition state. The flat energy 
landscape of IDPs in solution implies that they exist as highly 
dynamic and heterogeneous conformational ensembles, which 
escape structural characterization by conventional biophysical 
methods.19,20,22,38,39 Nevertheless, progress has been made in 
conformational analysis of IDPs in their free state by different 
biophysical methods.40 The emerging picture is that IDPs in 
the absence of interactors populate metastable, partially folded 
states with preformed elements of secondary structure (intrinsi-
cally folded structural units, IFSU) and relatively compact ter-
tiary structure.15-17,37,41-46 These partially folded conformers are 
thought to be functionally relevant, providing seeds for inter-
action surfaces and/or protecting IDPs from degradation and 
from non-specific interactions.19,35,47-50

Mass spectrometry offers peculiar advantages in the analysis 
of complex mixtures, thanks to the possibility to detect not only 
distinct masses, but also different conformers endowed with 
variable degrees of compactness in the molecular ensemble.51-56 
Direct assessment of species distributions, without averaging 
over the molecular population, offers a valuable tool in IDP 
analysis, complementary to other biophysical methods. This 
paper focuses on the contributions that charge-state distribu-
tion (CSD) analysis by non-denaturing electrospray-ionization 
mass spectrometry (ESI-MS) can give to IDP identification and 
characterization.
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for sample infusion leads to smaller first-generation droplets and, 
consequently, more effective desolvation under soft conditions 
of temperature and voltage.84,85 Nano-ESI-MS is now routinely 
applied to conformational studies, also offering the advantages 
of low sample consumption, automation, and experimental  
scale-up.

Protein CSDs can deliver important structural information, 
thanks to the fact that protein compactness in the original solu-
tion has a strong influence on the extent of protein ionization 
under electrospray conditions. The higher the structural com-
pactness, the lower the average net charge that will be observed 
for any given protein.54 However, CSDs can also be affected by 
several other factors, such as instrumental parameters and solvent 
properties.86-89 Therefore, it is important to keep the experimental 
conditions accurately controlled and to make sure that none of 
the applied instrumental settings becomes the limiting factor for 
CSD features. It should also be taken into account that measure-
ments in negative-ion mode could be more exposed to the risk 
of electrospray-induced protein unfolding.90 By the application of 
the most adequate and controlled operative conditions, conforma-
tional effects dominate protein CSDs obtained by ESI-MS. Good 
agreement between ESI-MS and solution methods has been shown 
monitoring unfolding transitions of proteins induced by acids, 
organic solvents and heat.51,52,87,91-96 Nevertheless, it should also be 
reminded that the signal yields of folded and unfolded conforma-
tions of the same protein can differ substantially, particularly at 

Charge State Distributions

Mild desolvation/ionization conditions allow for maintenance of 
native-like protein conformations during the electrospray pro-
cess.57 Evidence for that has been obtained by experimental and 
computational studies. Experimental evidence is based on direct 
investigation of the structural properties of gas-phase protein ions 
by ion mobility,58-63 electron-capture dissociation,64,65 gas-phase 
hydrogen exchange66,67 and binding analysis.68-70 Computational 
studies suggest that attractive interactions inside the protein 
structure can compensate to a certain extent for repulsive forces 
introduced by protein ionization.71-83 This effect is mainly due 
to hydrogen bonds and zwitterionic states, although minor con-
tributions could also derive from dispersion forces and cation-π 
interactions. Altogether, intramolecular interactions of native 
protein structures provide a tremendous self-solvation poten-
tial that contribute to the stability of the gas-phase protein ions 
generated by electrospray. In particular, it has been shown that 
folded protein conformations tend to shrink upon desolvation, 
increasing the number of intramolecular hydrogen bonds and the 
exposure of hydrophobic residues on the protein surface.71,73

In order to prevent protein denaturation during electrospray, 
it is important to avoid the use of organic solvents and extreme 
pH values, and to apply mild temperature and voltage condi-
tions to the sample source. Particularly well suited to this end 
are nano-electrospray devices, where a micrometer-scale capillary 

Figure 1. examples of CSDs obtained by nano-eSI-MS under non-denaturing conditions. The spectra were recorded on a hybrid, quadrupole time-
of-flight mass spectrometer (QSTar elite, aB-Sciex). Samples were infused at room temperature, by metal-coated borosilicate capillaries with emitter 
tips of 1 μm internal diameter (Proxeon). The following instrumental settings were applied: declustering potential 60/80 V, ion spray voltage 1.1/1.2 kV, 
curtain-gas pressure 20 psi. (A) 12 μM β-lactoglobulin in 10 mM ammonium acetate, pH 7.0.100 (B) 12 μM α-synuclein in 10 mM ammonium acetate, pH 
7.4 (negative-ion mode).101 (C) 15 μM Sic1 in 50 mM ammonium acetate, pH 6.5.102 (D) 10 μM Sic1215–284 in 50 mM ammonium acetate, pH 6.5.103
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Figure 2 shows the charge-to-mass plot 
for several IDPs that have been analyzed 
by ESI-MS. These proteins were either 
already known as IDPs, or identified as 
such in our laboratory by independent evi-
dence, like circular dichroism (CD) and 
nuclear magnetic resonance (NMR). Their 
names, sources and masses are listed in 
Table 1.98,102,103,109-115 The data reported in 
Figure 2 summarize the ionization behav-
ior of these IDPs by nano-ESI-MS under 
non-denaturing conditions. For those 
cases yielding mass spectra with bimodal 
distributions, the values of average charge 
have been calculated on each distinct com-
ponent. The data are plot with reference to 
the curves of natively folded, globular pro-
teins under denaturing or non-denaturing 

conditions. Two observations are straightforward: (1) IDPs have 
at least 1 component that is a clear outlier relative to the refer-
ence curve of globular proteins measured under non-denaturing 
conditions and, rather, approaches the behavior of chemically 
denatured proteins, and (2) many IDPs have 1 component that 
is surprisingly close to the reference curve of folded, globular pro-
teins. The relative amounts of the different forms, shown by the 
color code in the figure, can vary significantly, depending on the 
protein and the environmental conditions. These results are con-
sistent with a remarkable conformational heterogeneity of IDPs in 
solution under non-denaturing conditions. The strong deviation 
from the typical ionization behavior of globular, folded proteins 
measured under the same conditions indicates that CSD analysis 
by ESI-MS offers a tool to identify putative IDPs. At the same 
time, these results illustrate that ESI-MS can capture compact 
states populated by IDPs, even if highly dynamic and poorly rep-
resented. We discuss below the available evidence that supports 
the interpretation of these spectral components in terms of IDP 
conformational states.

High-Charge Component

As shown in Figure 2, the high-charge component is typically 
predominant in ESI-MS spectra of IDPs with bimodal distribu-
tions. As generally seen for chemically denatured proteins, it is 
also quite broad, reflecting further heterogeneity due to structure 
dynamics. Most importantly, when this component is analyzed 
as a function of mass, it follows the same power law as the dena-
tured conformation of natively folded proteins. Furthermore, 
its intensity varies in response to solvent composition, typically 
accompanied by opposite changes in the low-charge component. 
These observations strongly suggest that the experimental CSDs 
reflect the dynamic conformational ensemble of IDPs in solution.

Altogether, this evidence supports identification of the high-
charge component as a highly disordered conformational state 
of IDPs, characterized by low structural compactness. The pres-
ence of such a component under non-denaturing conditions can 
be considered as a signature of IDPs and could be used for fast 

high flow rates and high protein concentrations, rising the need of 
specific control experiments for quantitative analysis.97

Major structural heterogeneity in the molecular ensemble of 
a pure protein results in multimodal CSDs, where distinct peak 
envelopes can be resolved and quantified by deconvolution algo-
rithms.96,98,99 The broadness of each peak envelope, in turn, is 
affected by structural dynamics, with narrow profiles associated to 
folded structures and broad profiles associated to disordered states. 
Examples of CSDs obtained for IDPs by non-denaturing ESI-MS 
are reported in Figure 1, in comparison to a natively folded globu-
lar protein.100-103 As it can be noticed, IDPs under non-denaturing 
conditions give rise to broad CSDs with high average charge, fre-
quently present as distinct components of multimodal profiles. The 
different behavior of an IDP and a globular standard under identi-
cal conditions can be further highlighted by control experiments 
where the spectrum of a mixture of the 2 proteins is acquired, fol-
lowed by identification of the distinct components by their specific 
masses.104 The peculiar response of IDPs to electrospray offers the 
possibility to develop a signature for this class of proteins by non-
denaturing ESI-MS, as discussed in more detail below.

Charge-to-Mass and Charge-to-Surface Relation

Besides conformational properties, also protein size has an 
influence on protein ionization by electrospray. Folded globu-
lar proteins follow a well-known, mass-to-charge relation, with 
the average experimental charge growing approximately as the 
~0.57 power of the protein mass expressed in Daltons.105-108 It has 
been shown that the behavior of folded and unfolded proteins 
can be distinguished by relating charge to protein mass, while 
it is unified by relating charge to solvent accessible surface area 
(SASA).109 In other words, SASA seems to dictate the extent of 
protein ionization, regardless of the conformational state. If we 
relate charge to protein mass, instead, disordered protein confor-
mations stand as clear outliers in the plot of folded globular pro-
teins. This is true for IDPs under non-denaturing conditions, as 
well as for chemically denatured proteins, indicating that solvent 
effects play a marginal role in this regard.109

Table 1. Proteins analyzed in this work

Protein namea Species MW Reference

Sic1215–284 Saccharomyces cerevisiae 9293.38 103

Prothymosin-α Homo sapiens 12073.85 110

Sic1187–284 Saccharomyces cerevisiae 12676 98

ataxin-3182–291 Homo sapiens 13089.7 111

α-synuclein Homo sapiens 14460.16 112

NTaIL Measles virus 14633 109, 113, 114

NTaIL Nipah virus 14949 Unpublished data

NTaIL Hendra virus 15241 Unpublished data

Sic11-186 Saccharomyces cerevisiae 21593.13 98

PNT Measles virus 24821 115

Sic1full-length Saccharomyces cerevisiae 33102.88 102
aSic1, substrate/subunit inhibitor of cyclin-dependent protein kinase; NTaIL, C-terminal domain of 
the viral nucleoprotein N; PNT, N-terminal domain of measles virus phosphoprotein P.
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response to the same treatment in the case of α-synuclein.101,103,112 
Furthermore, such a transition can be quite cooperative, as in 
the case of the pH-dependence of Sic1-KID compact form.103 
Thus, it seems that IDPs compact states can be “denatured” by 
particular agents, in a way that is not so dissimilar from unfold-
ing transitions of natively folded proteins. It is also important to 
point out that these transitions are characterized by changes in 
the relative amounts of the different components, as expected for 
an interconversion process, and not by progressive shift of a given 
peak envelope in the spectrum, as more typical for the effects of 
solvent composition or parameter setting on ESI-MS data.86

Furthermore, IDPs compact conformers corresponding to the 
low-charge components have been isolated and identified in gas 
phase by ion-mobility methods.58-62 This technique adds a second 
dimension to the ion sorting mechanism of MS measurements, 
based on drift time through a buffer gas. Since ion mobility 
depends on collisional cross section, compact conformers will be 
faster and will be separated from elongated conformers inside the 
drift cell. Thus, thanks to the survival of non-covalent interactions 
responsible of protein compaction, the distinct physical proper-
ties of the desolvated ions can be highlighted by a criterion that is 
orthogonal to the m/z measurement of conventional MS analyses.

Another important evidence is given by the specific ligand-
binding properties of these components. Such a behavior has 
been observed, for instance, in the case of copper binding by 
α-synuclin.101 Complexes with a 1:1 stoichiometry could be iden-
tified by ESI-MS upon metal binding. However, CSDs analysis 
revealed that the bound form is mainly detectable in the low-
charge component of the protein spectrum. This result further 
supports the hypothesis that such a component corresponds to 
a distinct conformer of the protein ensemble, displaying higher 
compactness and higher propensity for metal binding. The 
relative amount of the compact form also increases upon cop-
per addition, indicating that the protein undergoes a process of 
induced folding promoted by copper binding.

Finally, computational studies can provide further insight on 
compact conformers of IDPs in solution. Structural models have 
been developed by molecular-dynamics simulations for the com-
pact states of Sic1-KID.117 Although these methods are not ade-
quate to describe the actual equilibrium between compact and 
extended conformations, they effectively model the forces respon-
sible for protein compaction and can, therefore, generate putative 
structures for IDP compact states. The most probable structures 
generated by simulations on Sic1-KID display IFSUs and con-
siderable degree of compaction. The computational results find 
support in the available experimental data. For instance, intra-
molecular interactions in the computational models were found 
to be prevalently of electrostatic nature, with minor contributions 
of hydrophobic interactions.117 This result is in agreement with 
the observed strong effect of acids and negligible effect of organic 
solvents on the ESI-MS spectra of this protein.103,117 Furthermore, 
the SASA estimates based on the computational models (53–65 
nm2) are in good agreement with those derived by the ESI-MS 
data for the low-charge component of the CSD (59.78 nm2).103,109

These studies strongly suggest that the low-charge compo-
nents frequently detected in the ESI-MS spectra of IDPs under 

screening of putative new members of this conformational class. 
It is important to underscore that the anomalous ionization 
behavior of IDPs is evident also when the protein contains only 
a disordered tract, together with a normally folded domain, like 
in the case of Ataxin-3.104 Furthermore, it has been observed in 
either positive- or negative-ion mode.101,112

Low-Charge Component

In most of the considered IDPs, a sharply bimodal CSD sug-
gests that a small fraction of the molecular population exists in 
a highly collapsed state. It is surprising that such a component 
approximates the ionization behavior expected for folded, globu-
lar proteins of the same size. Nevertheless, it is known by several 
other independent methods that IDPs in solution often populate 
partially structured states and can collapse into compact globular 
structures.22,116 These states are potentially relevant for protein 
function. The challenge in trying to characterize these states 
is that they are highly dynamic and poorly represented in the 
molecular ensemble, easily escaping characterization (and even 
detection) by biophysical methods. It is, therefore, extremely 
attractive to directly visualize minor, structured components, out 
from the background of the predominant conformers, thanks to 
the ion-sorting properties of MS measurements. At the same time, 
it is important to collect evidence supporting the interpretation 
of these spectral components in terms of protein conformation.

One of the most important evidence is that these components 
can be progressively depleted by varying the solvent proper-
ties, and that this response is protein-specific. For instance, the 
low-charge component of Sic1 kinase inhibitory domain (KID) 
is selectively lost by acidification whereas it accumulates in 

Figure 2. Charge-to-mass plot for distinct components of some IDPs 
analyzed by non-denaturing eSI-MS. In the case of bimodal distribu-
tions, each component is represented by a circle, colored according to 
the relative abundance as specified in the inserted table. For unimodal 
distributions (unique case of full-length Sic1), the global average charge 
is considered and the symbol is colored in black. The gray small squares 
and triangles represent data for globular proteins, respectively under 
non-denaturing and denaturing conditions. The gray lines are interpo-
lations by power-law functions.
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