

Contents lists available at ScienceDirect

Resuscitation Plus

journal homepage: www.elsevier.com/locate/resuscitation-plus

Cardiopulmonary resuscitation in obese patients: A scoping review

Julie Considine ^{a,b,*}, Keith Couper ^{c,d}, Robert Greif ^{e,f}, Gene Yong-Kwang Ong ^{g,h}, Michael A. Smyth ^c, Kee Chong Ng ^{g,h}, Tracy Kidd ^{i,j}, Theresa Mariero Olasveengen ^k, Janet Bray ^{l,m}, on behalf of the International Liaison Committee on Resuscitation (ILCOR) Basic Life Support (BLS), Advanced Life Support (ALS), Paediatric Life Support (PLS), and Education, Implementation, Teams (EIT) Task Forces¹

- a Deakin University, School of Nursing and Midwifery and Centre for Quality and Patient Safety in the Institute for Health Transformation, Geelong, VIC, Australia
- ^b Eastern Health, Centre for Quality and Patient Safety Research Eastern Health Partnership, Box Hill, VIC, Australia
- ^c Warwick Clinical Trials Unit, University of Warwick, Coventry, United Kingdom
- ^d Critical Care Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
- e Department of Surgical Science, University of Torino, Torino, Italy
- ^f University of Bern, Bern, Switzerland
- g Duke-NUS Medical School, Singapore
- h KK Women's and Children's Hospital, Singapore
- ⁱ Bendigo Health, Bendigo, VIC, Australia
- ^j LaTrobe University, Bendigo, VIC, Australia
- k Department of Anesthesia and Intensive Care, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Norway
- ¹ School of Public Health and Preventive Medicine, Monash University, VIC, Australia
- ^m School of Nursing, Curtin University, WA, Australia

ARTICLE INFO

Keywords: Cardiopulmonary Resuscitation Heart arrest CPR Obesity Body Mass Index

ABSTRACT

Background: Given the increasing global prevalence of obesity, the International Liaison Committee on Resuscitation (ILCOR) commissioned this scoping review to explore current evidence underpinning treatment and outcomes of obese patients (adult and children) in cardiac arrest.

Methods: This scoping review, conducted using Arksey and O'Malley's framework and reported according to PRISMA-ScR guidelines, included studies of CPR in obese patients. 'Obese' was defined according to each individual study. Medline, EMBASE and Cochrane were searched from inception to 1 October 2024. Narrative synthesis was guided by Synthesis Without Meta-Analysis (SWiM) reporting guidelines.

Results: 36 studies were included: 2 paediatric and 34 adult studies. Fourteen studies reported on out-of-hospital cardiac arrest (OHCA), 12 on in-hospital cardiac arrest (IHCA), eight on both OHCA and IHCA: cardiac arrest location was not reported in two studies. The most common outcomes were survival (n=29), neurological outcome (n=17) and ROSC (n=7). In adults there were variable results in neurological outcome, survival to hospital discharge, longer term survival (months to years), and ROSC. In children, there were two studies suggesting that obese children had worse neurological outcomes, lower survival and lower ROSC than normal weight children. Few studies reported resuscitation quality indicators or techniques, and no studies reported adjustments to CPR techniques.

Conclusion: The variability in results does not suggest an urgent need to deviate from standard CPR protocols, however there was some evidence that CPR duration may be longer in obese adults, which may have staffing and resource implications.

^{*} Corresponding author at: School of Nursing and Midwifery and Centre for Quality and Patient Safety Research, Deakin University, 1 Gheringhap Street, Geelong, VIC, 3220, Australia.

E-mail address: julie.considine@deakin.edu.au (J. Considine).

¹ The members of the 'International Liaison Committee on Resuscitation (ILCOR) Basic Life Support (BLS), Advanced Life Support (ALS), Paediatric Life Support (PLS), and Education, Implementation and Teams (EIT) Task Forces' are listed in Acknowledgments at the end of the article.

Introduction

The global prevalence of obesity is increasing: one-billion people across the world now classified as obese. Obesity is an important cause of premature death through its association with cardiovascular disease, diabetes mellitus, and cancer, which are known to increase the incidence of cardiac arrest and poor cardiac arrest outcomes. For obese patients in cardiac arrest, anatomical differences may make it challenging to deliver key cardiac arrest interventions such as high-quality chest compressions, ventilations, vascular access and medications. Obesity may also influence the efficacy of defibrillation due to increased transthoracic impedance, and challenges in implementing alternative defibrillation strategies that require rolling of the patient. In some cases, there may be delays in transfer to hospital due to the need for additional personnel or special equipment to facilitate movement to the ambulance.

Given the increasing prevalence of global obesity and specific challenges in treating this patient cohort, the international resuscitation community highlighted the need to summarise the evidence to inform decisions regarding cardiac arrest treatment strategies in obese patients. On this basis, the International Liaison Committee on Resuscitation (ILCOR) Basic Life Support; Paediatric Life Support; Advanced Life Support; and Education, Implementation and Teams Task Forces commissioned this scoping review to explore current evidence underpinning treatment and outcomes of obese patients (adult and children) in cardiac arrest. A scoping rather than systematic review was conducted as the breadth of research regarding CPR in obese patients is unknown. Systematically mapping the published, peer reviewed literature enabled accurate description of what is known, identification of knowledge gaps, and highlighted future research priorities, including potential topics for future systematic reviews.⁷ The aim of this scoping review was to explore the published research evidence related to cardiopulmonary resuscitation in obese patients (adults and children).

Methods

The scoping review was registered *a priori* with ILCOR (see supplementary material). Conflict of interest was managed in accordance with ILCOR guidelines. Where a reviewer was an author of a particular paper, the decision to include that study and data extraction were undertaken by other members of the review group. This scoping review was guided by Arksey and O'Malley's methodological framework⁷ and reported according to the Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for scoping reviews (PRISMA-ScR).⁸ Synthesis was guided by Synthesis Without Meta-Analysis (SWiM) reporting guidelines⁹ and a narrative synthesis method. As this was a scoping review, ethics approval was not required.

Eligibility criteria

The inclusion criteria were studies: i) of adults or children in cardiac arrest in any setting, ii) who were obese, iii) with or without a comparator of normal weight patients or modified CPR, and iv) that reported one or more patient outcomes (neurological outcome, survival, return of spontaneous circulation (ROSC)): CPR quality measures (chest compression rate, chest compression depth, ventilation rate, tidal volume, time to interventions); CPR techniques (chest compressions, defibrillation, ventilation and airway management, vascular access); healthrelated quality of life; or provider outcomes (such as safety, manual handling, fatigue). Randomised controlled trials (RCTs) and nonrandomised studies (non-randomised controlled trials, interrupted time series, controlled before-and-after studies, cohort studies) were eligible for inclusion. Case reports, animal and manikin studies were excluded, as were opinion pieces, conference abstracts, trial protocols and grey literature. All years and languages were included if there was an English abstract. At the time of this review, there was no universal definition of obesity so for the purposes of this scoping review, 'obese' was defined according to each individual study.

Information sources and search strategy

MEDLINE, Excerpta Medica Database (EMBASE) and Cochrane databases were searched from inception to 1 October 2024. The search strategy was developed in consultation with a medical information specialist (Deakin University, Victoria, Australia) using the concepts of: i) obesity and ii) cardiac arrest and cardiopulmonary resuscitation (Appendix 1) and peer reviewed by members of ILCORs Basic Life Support; Paediatric Life Support; Advanced Life Support; and Education, Implementation and Teams Task Forces. Forward (searching for articles that cite included studies) and backward (search of reference lists of included studies) citation searching was also conducted.

Selection process

Citations were uploaded into EndNote 20.0^{TM} and duplicates removed. Title and abstract screening and full text screening were conducted by four pairs of researchers (title/abstract: JC and TK, JB and GO, RB and MS, NKC and KC / full text: JC and RG/KC, GO and NKC, RG and MS, TK and KC) using the Rayyan¹⁰ software program and disagreements were resolved by discussion and consensus.

Data charting and data items

Data were extracted by a single author (JC) and all data were checked for accuracy by co-authors. The following characteristics of each study were extracted: author(s); year of publication; country of origin; aim and study design; population, BMI groups; outcomes measured and main findings. Quality assessment of individual studies was not performed.

Synthesis methods

Given the variation in study design, populations, and outcomes, the synthesis approach was guided by the Synthesis Without Meta-Analysis (SWiM) reporting guidelines⁹ and narrative synthesis methods.¹¹ Interpretation of the synthesis was by discussion within the research team and resuscitation science experts from the ILCOR Task Forces.¹².

Results

Study selection

In total, 13,509 citations were retrieved, 96 full text publications were screened for eligibility, of which 36 were included (Fig. 1).

Study characteristics

The characteristics of included studies are summarised in Table 1 (further details are presented in Supplementary Tables 1 to 7). There were 7 prospective studies, $^{13-19}$ 19 retrospective cohort $^{20-38}$ and 9 retrospective registry studies $^{39-47}$ and one secondary analysis of data from a randomised controlled trial. 48 Definitions of obesity varied between studies. BMI classifications were used in the majority of studies. The World Health Organization (WHO) Body Mass Index (BMI) criteria (weight in kilograms (kg) divided by square of height in metres (m²)) was most commonly used in adults (underweight BMI < 18.5 kg/m²; normal weight BMI 18.5–24.9 kg/m²; overweight: BMI 25.0–29.9 kg/m²; and obese: BMI \geq 30 kg/m²) and children (underweight BMI < 5th percentile; obese BMI > 95th percentile). 49 Two studies 28,37 used the WHO BMI criteria for Asian populations. 50 Four studies treated BMI as a continuous variable. 19,26,35,38 In one study, obese patients were identified using the Agency for Healthcare Research and Quality-define co-

J. Considine et al. Resuscitation Plus 20 (2024) 100820

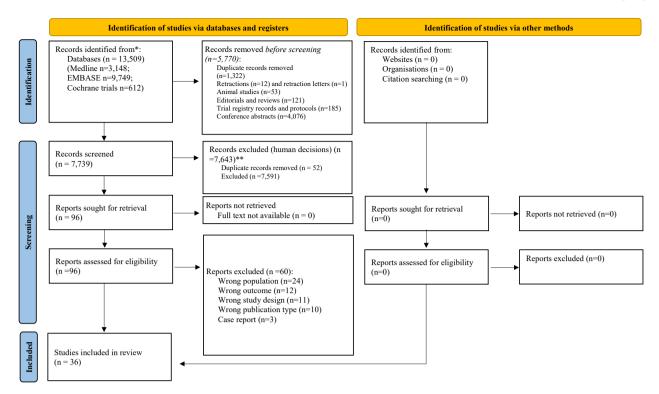


Fig. 1. Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) flow diagram.

morbidity measure (CM_Obese)³⁹ and in two studies, obesity was reported as a diagnosis with no BMI-values reported.^{33,40}.

The included studies, spanning over four decades (1978⁵¹ to 2024³⁸), were mostly from the United States (n = 14). $^{20,21,26,29,31-33,36,39,41,43-45,48}$ All but two studies were of adults patients (including one study of pregnant women¹⁵): there were two studies of children (OHCA⁴⁸ and IHCA⁴⁵). Fourteen studies reported on OHCA, ^{13,14,16–18,21,23,24,29,30,36,40,42,48} 13 studies reported on IHCA, 15,26,27,32,33,35,37,39,41,43-46 eight studies reported on both OHCA and IHCA, 15,19,22,25,28,31,34,38 and in two studies, the cardiac arrest location was not reported. ^{20,47} Four studies were related to extracorporeal CPR. 27,29,31,42 The most common outcomes reported were survival (n = 29), $^{13,15-18,20-29,31-36,38-43,45,52}$ neurological outcome $= 17)^{13,14,18,19,21,24,27-31,34,35,42,45,48,52}$ and ROSC (n 7). 33,36,40,41,43,45,46 Survival was reported at hospital admission (n = 1), 21 hospital discharge (n = 19), 15,18,20,22-25,27,31-33,35,36,38,40-42,44,45 ICU discharge (n = 2), 16,22 24-hours (n = 1), 43 6-months (n = 2), 28,34 1-year (n=2), 17,48 4-years $(n=1)^{29}$ and 5-years (n=1). Neurological outcome was reported at hospital admission (n = 1), 40 ICU admission (n = 1), 16 hospital discharge (n = 13), $^{18,19,21,24,27-29,31,35,36,42,43,45}$ 1-month (n = 5), $\frac{13,14,17,26,30}{3}$ 3-months (n = 1), $\frac{26}{6}$ 6-months (n = 1), $\frac{34}{3}$ and 12months (n = 1). 48 A summary of these outcomes is presented in Table 2 with further details in Supplementary Tables 1 to 3. Other outcomes reported were shock success,³⁶ extracorporeal membrane oxygenation (ECMO) complications, 42 acute resuscitation treatments, 41 CPR duration, 41 injuries sustained during CPR, 47 time to defibillation, 41 and number of shocks⁴¹ (Supplementary Tables 4).

Neurological outcome

Seventeen studies reported neurological outcome (Supplementary Table 1): 15 in adults and two in children. Both paediatric studies (OHCA⁴⁸ and IHCA⁴⁵) reported that obese children had worse neurological outcomes at hospital discharge⁴⁵ and at 12-months,⁴⁸ than normal weight children. One adult study³⁴ of neurological outcome at 6 months (both OHCA and IHCA) showed no difference between obese and normal weight patients. Three adult studies reported neurological

outcome at 1-month: compared to normal weight patients, obese patients were less likely to have favourable neurological outcome in two studies (OHCA^{13,14}), and more likely to have favourable neurological outcome in the other study (OHCA³⁰). Of the adult studies of neurological outcome at hospital discharge, compared with normal weight patients, five (OHCA, ^{18,21,24} IHCA, ²⁷ both OHCA and IHCA²⁸) reported no difference in obese patients, and six (OHCA, ^{29,42} IHCA, ^{35,37} both OHCA and IHCA^{19,31}) reported obese patients had lower likelihood of favourable neurological outcomes.

Survival

Twenty-nine studies reported survival (Supplementary Table 2). Five adult studies reported short term survival (survival to ICU admission/discharge or hospital admission). Compared to normal weight patients, one study (OHCA¹⁶) reported obese patients had higher survival to ICU admission. There were conflicting results regarding survival to ICU discharge (OHCA, ¹⁶ and both OHCA and IHCA²²) and survival to hospital admission (OHCA^{36,40}). Compared to normal weight patients, one study reported no difference in survival to ICU discharge²² and one study reported obese patients had higher survival to ICU discharge; ¹⁶ one study reporting no difference in survival to hospital admission. ³⁶ and one study reported obese patients had lower survival to hospital admission. ⁴⁰ The single study (IHCA⁴³) of survival to 24 h reported no difference between obese and normal weight patients. ⁴³.

The single paediatric study (IHCA)⁴⁵ reporting survival to hospital discharge, found that obese children had worse outcomes than normal weight children. Survival to hospital discharge was reported in 22 adult studies. Nine (OHCA, ^{18,21,24,36} IHCA, ^{27,43} both OHCA and IHCA^{22,23,25}) reported no difference between obese and normal weight adults, nine (location unknown, ²⁰ OHCA, ^{29,40,42} IHCA, ^{32,35,41} both OHCA and IHCA^{31,38}) reported lower survival to hospital discharge in obese patients, and three (IHCA, ^{26,39} both OHCA and IHCA¹⁵) reported higher survival to hospital discharge in obese patients. One study (IHCA³³) reported that obese patients had significantly higher survival to hospital discharge overall but subanalysis showed that survival to hospital

Table 1 Summary of included studies (n = 36).

Author, Year, Country	Aim Study Design	Population	BMI groups	Outcomes reported	
PAEDIATRIC Meert et al. 2016 United States of America	Investigate relationships between cardiac arrest characteristics, and survival and neurobehavioral outcome among children recruited to the Therapeutic Hypothermia after Pediatric Cardiac Arrest Out-of-Hospital (THAPCA-OH) trial. Secondary analysis of data from	Children $>$ 2 days and $<$ 18 years) with OHCA (n $=$ 295) and received TTM	BMI-for-age percentiles for children ≥ 2 years of age, and weight-for-length percentiles for children < 2 years of age	Neurological outcome: 12- months	
Srinivasan et al. 2010 United States of America	randomised controlled trial Evaluate association between obesity and outcomes among children after IHCA Retrospective registry study	Patients ($<$ 18 years) with IHCA from January 2000 to July 2004 (n = 1,268)	Obese (n = 213, 17 %) <2 years: ≥95th weight-for-length percentile ≥2 years: ≥95th BMI-for-age	Favourable neurologic outcome: hospital discharge Survival: hospital discharge ROSC > 20 min	
ADULT Aoki et al. 2023 Japan	Assess association between BMI and neurological outcomes in OHCA Prospective, multicenter, observational	$\label{eq:Adult patients} Adult \ patients \ OHCA \ aged \ 16-64 \ years \\ hospitalised \ after \ resuscitation \ (n=637)$	Normal weight: BMI 18.5–24.9 (n = 312; 48.9 %) Obese: BMI \geq 30 (n = 80; 12.5 %)	Neurological outcome: 30 days Survival: 30-days	
Aoki et al. 2018 Japan	study Assess association between BMI and neurological outcomes in OHCA Prospective, multicenter, observational	Adult patients (>18 years) with OHCA hospitalised after resuscitation (n $= 1,326$)	Normal weight: BMI 18.5–24.9 (n = 829; 62.5 %) Obese: BMI \geq 30 (n = 106; 8.0 %)	Neurological outcome: 1-month	
Beckett et al. 2017 United Kingdom	study Describe incidence, risks, management and outcomes of cardiac arrest in pregnancy in the UK population	66 women who received BLS in pregnancy (OHCA and IHCA) (n $=66)$	$\begin{aligned} &BMI < 30 \; (n = 38; 60 \; \%) \\ &BMI \geq 30 \; (n = 25, 40 \; \%) \end{aligned}$	Survival: hospital discharge	
Breathett et al. 2016 Unites States of America	Prospective, descriptive study Hypothesized that BMI ≥ 30 is associated with higher risk of mortality than BMI < 30 after therapeutic hypothermia for cardiac arrest	$\label{eq:Adults} A dults \ who \ underwent \ the rapeut ic hypothermia following \ resuscitation \ (n=164)$ $\ CA \ location \ not \ reported$	$BMI < 30 \; (n = 96; 59 \; \%) \\ BMI \geq 30 \; (n = 68, 41 \; \%)$	Survival: hospital discharge	
Bunch et al. 2008 United States of America	Retrospective cohort study Investigated outcomes of OHCA based on body weight Retrospective cohort study	Adults (not defined) with atraumatic OHCA transferred to a single receiving hospital (n $= 213$)	Low to normal with: BMI $<$ 25 (n $=$ 68; 32.9 %) Obese: BMI \geq 30 (n $=$ 67 31.5 %)	Neurological outcome: hospital discharge Survival: 5 years	
Chavda et al. 2022 Australia	Estimate conditional and causal effects of obesity on mortality in cardiac arrest patients Retrospective cohort study	Adult ICU patients (>16 years) admitted with cardiac arrest (OHCA and IHCA) (n = $13,970$)	Non-obese: BMI 18.5–29.9 (n = 9,212, 65.9 %) Obese: BMI \geq 30 (n = 4,756, 34.1 %)	Survival: hospital discharge	
Chavda et al. 2020 Australia	Explore association between obesity and outcome in patients following cardiac arrest	Adult ICU patients (age not defined) admitted with cardiac arrest (IHCA and OHCA) with BMI data ($n=112$)	Non-obese: BMI $<$ 30 (n = 76, 67.8 %) Obese: BMI \ge 30 (n = 36, 32.2 %)	Survival: hospital discharge	
Chen et al. 2021 China	Retrospective cohort study Determine impact of BMI on clinical outcomes in OHCA survivors treated with TTM Retrospective cohort study	Adult OHCA survivors who received TTM ($n=261$)	Normal weight: BMI = 18.5–24.9 (n = 79, 30.2 %) Obese: BMI \geq 30 (n = 88, 34.8 %)	Neurological outcome: hospital discharge Survival to hospital discharge	
Czapla et al. 2023 Poland	Determine sex differences in prognostic impact of BMI on in hospital mortality in sudden cardiac arrest survivors. Retrospective cohort study	Adults (>18 years) admitted to ICU 2017 and 2022 who had survived an IHCA or OHCA ($n=129$)	Females Normal weight: BMI = 18.5 – 24.9 (n = 4 , 10.0 %) Obese: BMI ≥ 30 (n = 9 , 22.5 %) Males Normal weight: BMI = 18.5 – 24.9 (n = 3 , 3.4 %)	Survival to hospital discharge	
Danciu et al. 2004 United States of America	Identify the most important prognostic factors for survival from IHCA Retrospective cohort study	Adults (>18 years) who underwent IHCA CPR (n = 219)	Obese: BMI \geq 30 (n = 21, 23.6 %) BMI treated as a continuous variable	Survival: 3-months Survival: 1-month Survival: hospital discharge	
Galatianou et al. 2017 Greece	Investigate association between BMI and outcome after OHCA in patients not treated with TTM Prospective observational study	Adults (>18 years) with OHCA transferred to ED (n $=$ 84)	Normal BMI (BMI $<$ 25) (n $=$ 16, 19.1 %) Elevated BMI (BMI \geq 25) (n $=$ 68, 80.9 %)	Survival: ICU discharge Survival: ICU admission	
Geri et al. 2016 France	Assess influence of BMI on day-30 and 1- year mortality of OHCA patients admitted to ICU Prospective cohort study	Adults admitted to ICU following OHCA and treated with TTM (n = 818) $ \label{eq:total_state} $	Normal weight: BMI = 18.5–24.9 (n = 377, 46.1 %) Obese: BMI \geq 30 (n = 150, 18.3 %)	Survival: 1-year Survival: 30-days	

(continued on next page)

J. Considine et al. Resuscitation Plus 20 (2024) 100820

Table 1 (continued)

Author, Year, Country	Aim Study Design	Population	BMI groups	Outcomes reported
Gil et al. 2017 Examine association between BMI and clinical outcome in patients with ECPR Retrospective cohort study		Adults with IHCA who had ECPR (n $= 200$)	Normal weight: BMI = 18.5–24.9 (n = 118, 59 %) Obese: BMI \geq 30 (n = 15, 7.5 %)	Neurological outcome: hospital discharge Survival: hospital discharge
Gupta et al. 2016 United States of America	Examine association of obesity with survival to hospital in IHCA Retrospective registry study	Adults (aged $>$ 18 years) undergoing CPR for IHCA (n = 836,289)	Non-obese: n = 769,073 (92 %) Obese: n = 67,216 (8.0 %) Defined using AHRQ-defined co- morbidity measure: CM Obese.	Survival: hospital discharge
Hjalmarsson et al. 2023 Sweden	Investigate if obesity, with or without diabetes, affects the survival of patients with OHCA Retrospective registry study	Adults (aged \geq 18 years) with OHCA (n $=$ 55,483)	Obesity was reported as a diagnosis and no actual BMI-values were reported. Patients were classified into five groups: Obesity only and Obesity and any diabetes are assumed to be obese Type 2 diabetes, Type 1 diabetes and all other are assumed to be non-obese	Survival: hospital discharge Survival: hospital admission ROSC
Jain et al 2010 United States of America	Examine association between BMI and survival for patients with IHCA Retrospective registry study	Adults (aged $>$ 18 years) with IHCA (n $=$ 21,237)	Normal weight: BMI = 18.5–24.9 (n = 6,935, 32.7 %) Obese: BMI 30–34.9 (n = 3,412, 16.1 %) Very obese: BMI \geq 35 (n = 3,534, 16.6 %)	Survival: hospital discharge ROSC Acute resuscitation treatments CPR duration Time to defibrillation Number of shocks
Jung et al. 2016 Korea	Explore association between obesity and clinical outcomes Retrospective cohort study	Adult (aged > 18 years) cardiac arrest survivors (OHCA and IHCA) treated with TTM (n = 468: OHCA n = 378, IHCA n = 90)	Normal weight: BMI = 18.5–22.9 (n = 196, 41.8 %) Obese: BMI \geq 27.5 (n = 38, 8.2 %)	Neurological outcome: hospital discharge Survival: 6-months
Kojima et al. 2023 Japan	Investigate association between BMI and clinical outcomes in patients receiving ECPR following OHCA Retrospective registry study	Adults (age not reported) with OHCA of presumed cardiac aetiology who received ECPR ($n=1,044$)	Normal weight: BMI = 18.5–24.9 (n = 559, 53.6 %) Obese: BMI \geq 30 (n = 109, 10.5 %)	Neurological outcome: hospital discharge Survival: hospital discharge ROSC ECMO complications
Kosmopoulos et al. 2023 United States of America	Investigate effect of BMI on the survival to hospital discharge of refractory OHCA patients treated with ECPR Retrospective cohort study	Adults (aged 56.9 \pm 12.0 years) with OHCA and BMI data (n $=$ 283)	Non-obese: BMI \leq 30 (n = 150, 53.1 %) Obese: BMI $>$ 30 (n = 133, 46.9 %)	Neurological outcome: hospital discharge Survival: 4-years Survival: hospital discharge
Lee H et al. 2021 Korea	Investigate association between BMI and favourable neurologic outcomes and survival to discharge of patients resuscitated from OHCA Prospective registry study	Adults (aged $>$ 18 years) with OHCA (n $=$ 605) transported to ED	Normal weight: BMI = 18.5- <25 (n = 333, 55.0 %) Obese: BMI \geq 30 (n = 34, 5.7 %)	Neurological outcome: hospital discharge Survival: hospital discharge
Lee S et al. 2021 Korea	Investigate prognostic impact of high lean body mass on postcardiac arrest patients Retrospective cohort study	Adults (not defined) treated with TTM and admitted to ICU following OHCA (n $=$ 155)	Normal weight: BMI = 18.5 – 22.9 (n = $65, 42.0$ %) Obese: BMI ≥ 25 (n = $43, 27.7$ %)	Neurological outcome: 1-month
Lewandowski et al 2024 Poland	Explored predictors of mortality among patients admitted to ICU following cardiac arrest Retrospective cohort study	Adults (aged > 18 years) with non- traumatic cardiac arrest (OHCA and IHCA) (n = 161: Asystole/PEA n = 90; VF/pVT n = 71)	BMI treated as continuous variable	Survival: hospital discharge
Ogunnaike et al. 2016 United States of America	Examine association between BMI, defibrillation success, and survival outcomes of VT/VF arrest Retrospective registry study	Adults (not defined) with VF/VT IHCA (n = 7,110)	Normal weight: BMI = 18.5–24.9 (n = 2,061, 29.0 %) Obese: BMI 30–34.9 (n = 1,296, 18.2 %) Extremely obese: BMI \geq 35 (n = 1,310, 18.4 %)	Survival: 24 h Survival: hospital discharge ROSC \geq 20 min First shock termination of VF/VT
Patlolla et al. 2021 United States of America	Understand differences in AMI complicated IHCA across BMI categories	Adults (>18 years) with primary diagnosis of AMI with IHCA ($n=314,\!609$)	Normal weight: BMI = $20 - <24.9$ (n = $268,764,81.1$ %) Overweight / obese: BMI ≥ 25 (n = $44,053,18.4$ %)	Survival: hospital discharge
Shurr et al. 2021 United States of America	Describe the survival, non-neurologic, and neurologic outcomes in patients with cardiac arrest (OHCA or IHCA) with CPR and VA-ECMO support Retrospective cohort study	Patients with cardiac arrest with CPR and VA-ECMO support (n = 89) following OHCA or IHCACannulated either after ROSC (n = 39) or during ongoing cardiac arrest (n = 50)	Non-obese: BMI $<$ 30 (n = 53, 59.6 %) Obese: BMI \ge 30 (n = 36, 40.4 %)	Neurological outcome: hospital discharge Survival: hospital discharge
Shahreyer et al. 2017	Assess impact of morbid obesity on outcomes in patients with IHCA	Adults (\geq 18 years) with IHCA (non-VF arrest, n = 26,412; VF arrest = 5,192)	Non-VF arrest Morbidly obese: BMI \geq 40 (n = 13,633, 51.6 %)	Survival: hospital discharge

(continued on next page)

Table 1 (continued)

Author, Year, Country	Aim Study Design	Population	BMI groups	Outcomes reported	
United States of America	Retrospective national database study with matched samples		Non-obese: BMI $<$ 30 (n = 12,779, 48.4 %) VF arrest Morbidly obese: BMI \ge 40 (n = 2,676, 51.5 %) Non-obese: BMI $<$ 30 (2,516, 48.5 %)		
Swindell et al 2021 United States of America	Formulate an ABCD score based on four high-yield predictors to predict post-CPR survival probability Retrospective cohort study	IHCA in patients aged $>$ 50 years from 2012 to 2015 (n = 463,530)	Normal weight (not defined) (n = 381715, 82.3 %) Obese patients: ICD-9/10 diagnosis codes containing word 'obesity' and/or codes specifying BMI ≥ 30 (n = 70395, 15.2 %) including 33,995 morbidly obese patients (not defined)	Survival: hospital discharge ROSC	
Testori et al. 2021 Austria	Examine effect of obesity on outcome after cardiac arrest Retrospective cohort study	Adults with non-traumatic cardiac arrest (OHCA or IHCA) and ROSC admitted to the ED between January 1992 and December 2007 ($n=1,915$)	Normal weight: BMI 18.5–24.9 (n = 768, n = 40 %) Obese: BMI \geq 30 (n = 329, 17 %)	Neurological outcome: 6 months Survival: 6 months	
Wang et al 2020 Taiwan	Investigate association between central obesity and outcomes following IHCA Retrospective cohort study	Adults with IHCA during 2006–2015 (n = 648)	Normal weight: BMI 18.5–23 (n = 268, n = 41.4 %) $Obese: BMI \geq 27.5 \ (n = 91, 14.0 \ \%)$	Neurological outcome: hospital discharge Survival: hospital discharge	
Wang et al 2018 Taiwan	Investigated whether body size correlates with outcomes of IHCA Retrospective cohort study	Adults with IHCA 2006 to 2015 and sustained ROSC $>$ 20 min (n $=$ 766)	BMI treated as continuous variable	Neurological outcome: hospital discharge Survival: hospital discharge	
Wang et al. 2023 China	Secondary analysis of National Emergency Cardiac Arrest Treatment (NECAT) database data Retrospective registry study	Adults (\geq 18 years) with non-traumatic IHCA CA (in ED), time from collapse to CPR > 10 min, and no DNR order (n = 535: cardiac origin n = 179 and non-cardiac origin n = 356)	BMI < 25 (n = 355, 66.4 %: cardiac origin n = 129, non-cardiac origin n = 226) BMI \geq 25 (n = 180, 33.6 %: cardiac origin n = 50, non-cardiac origin n = 130)	ROSC	
Wannasri et al. 2021 Thailand	Examine prevalence of internal organ injuries sustained from CPR Retrospective registry study	Adults (\geq 18 years) that died following cardiac arrest and received an autopsy, without trauma to chest and abdomen from 2012 to 2016 (n = 154)	Normal weight: BMI 18.5–22.9 (n = 38, 24.7 %) Obese: BMI 25.0–29.9 (n = 45, 29.2 %) Morbidly obese BMI \geq 30 (n = 35, 22.7 %)	Injuries sustained during CPR	
White et al. 2004 United Stated of America	Examine influence of body weight on defibrillation, resuscitation, and survival in patients with OHCA requiring defibrillation Retrospective cohort study	Patients (66 ± 14 years) with OHCA, received defibrillation with non-escalating, impedance-compensating, 150-J biphasic waveform defibrillator ($n=62$)	Underweight or normal weight: BMI $<$ 25 (31 %) Obese: BMI \geq 30 (24 %) Extremely obese BMI \geq 40 (4 %)	Survival: hospital admission Survival: hospital discharge ROSC Shock success	
Wolff et al. 2009 Sweden	Examined effect of rapid mild therapeutic hypothermia (time to target temperature and time to coldest temperature) on cardiac arrest outcome Prospective cohort study.	Adults with OHCA or IHCA with ROSC $>$ 5 min within 60 min of cardiac arrest, time to CPR $<$ 20 min and comatose post $-$ arrest state (n $=$ 49)	BMI treated as continuous variable	Neurological outcome: hospital discharge	

AHRQ = Agency for Healthcare Research and Quality; AMI = acute myocardial infarction; BMI = Body mass index kg/m2, CA = cardiac arrest; DNR = do not resuscitate; ECMO = extracorporeal membrane oxygenation; ECPR = extracorporeal cardiopulmonary resuscitation; ICU = intensive care unit, IHCA = in-hospital cardiac arrest; OHCA = out-of-hospital cardiac arrest; pVT = pulseless ventricular tachycardia; ROSC = return of spontaneous circulation; TTM = targeted temperature management; VF = ventricular fibrillation.

discharge was lower in specific subgroups (age 60–69, Charlson comorbidity index 2–3 or greater than 8, and CPR on hospital days 0–3 or day 6).

Of adult studies reporting survival from one to five years, two (OHCA^{17,29}) reported no difference in 4-year²⁹ or 1-year¹⁷ survival between obese and normal weight patients, and one (OHCA²¹) reported obese patients were less likely than normal weight patients to be alive at 5 years. Of adult studies reporting survival from 1 to 6 months, two (both OHCA and IHCA^{28,34}) reported no difference in survival at 6-months between obese and normal weight patients, two (OHCA^{13,17}) reported obese patients had lower 30-day survival than normal weight patients, and one study (IHCA²⁶) that treated BMI as a continuous variable reported that increasing BMI improved survival at 1 and 3 months.

paediatric study that reported on ROSC showed that obese children had significantly lower ROSC than normal weight children (IHCA). In adults, two studies (one OHCA³⁶ and one IHCA⁴³) reported no difference between obese and normal weight patients. Two studies (one OHCA⁴⁰ and one IHCA⁴¹) reported obese patients had significantly lower ROSC than normal weight patients, and one study (IHCA³³) reported significantly higher ROSC in obese patients. One study (IHCA⁴⁶) reported mixed results. In patients with cardiac arrest of cardiac origin, univariate analysis showed lower ROSC in obese patients but multivariable analysis showed no difference in ROSC between obese and normal weight patients. In patients with cardiac arrest of non-cardiac origin, there was no significant difference in ROSC between obese and normal weight patients. In patients with cardiac arrest of non-cardiac origin, there was no significant difference in ROSC between obese and normal weight patients.

ROSC

CPR quality or techniques

Seven studies reported ROSC (Supplementary Table 3). The only

Other outcomes reported from adult studies were ECMO

Table 2
Summary of results (number of studies).

	Total number of studies	Worse outcomes in obese patients (number of studies)		No difference (number of studies)		Better outcomes in obese patients (number of studies)				
		OHCA	IHCA	Both OHCA /IHCA	OHCA	IHCA	Both OHCA /IHCA	OHCA	IHCA	Both OHCA /IHCA
Adult studies (n=34)*										
Favourable neurological outcome (various time points)	15	4	2	2	3	1	2	1	0	0
Survival to hospital discharge	22	3	3	2	4	2	3	3	2	0
Longer term survival (months to years)	7	2	0	0	2	0	2	0	1	0
ROSC	6	1	1	0	1	1	0	1	1	0
Paediatric studies (n=2)										
Favourable neurological outcome (various time points)	2	1	1	0	0	0	0	0	0	0
Survival to hospital discharge	1	0	1	0	0	0	0	0	0	0
ROSC	1	0	1	0	0	0	0	0	0	0

One study reporting worse survival to discharge in obese patients had unknown location.

complications (OHCA), ⁴² shock success (OHCA, ³⁶ IHCA ⁴³) time to defibrillation (IHCA), ^{41,43} CPR duration (IHCA), ⁴¹ and patient injuries (location unclear). ⁴⁷ There was no difference in between obese and normal weight patients in ECMO complications, ⁴² shock success, ³⁶ percentage of shocks delivered in less than 2 min, ^{41,43} or VF/VT termination ⁴³ (Supplementary Table 4). One study of 21,237 IHCA at 328 hospitals, ⁴¹ reported longer CPR duration in obese patients with VF/VT when ROSC was not achieved. When ROSC was achieved there was no difference in CPR duration between obese and normal weight patients. ⁴¹ For PEA or asystolic arrests, CPR duration was longer in obese patients, irrespective of ROSC. ⁴¹ One study ⁴⁷ reported no significant relationship between BMI category and injuries sustained during CPR, however the cardiac arrest location(s) was unclear.

Discussion

This scoping review exploring the research evidence related to related to CPR in obese patients identified 34 adult studies and 2 paediatric studies. The included studies spanned both OHCA (n=20) and IHCA (n=20).

Patient outcomes had conflicting results and differences in measurement. In adults, there were variable results in neurological outcome, survival to hospital discharge, longer term survival (months to years), and ROSC. In children, two studies 45,48 suggested that obese children had worse neurological outcomes, lower survival, and lower ROSC than normal weight children. The focus of this scoping review was the impact of obesity on cardiac arrest outcomes, however there are many factors that influence survival from cardiac arrest. In obese children, it is possible that the optimal chest compression depth in obese patients may be potentially different in obese versus non-obese patients. The common use of length based tapes for resuscitation, or weight estimation formulae for medication doses in children may also impact on cardiac arrest outcomes in obese children. 54–56.

Several of the included adult studies reported that obesity made no difference to patient outcomes, or that obese patients had better outcomes than normal weight patients: these studies spanned both OHCA and IHCA. Whilst not the focus of this scoping review, low BMI has been associated with worst outcomes following cardiac arrest than normal weight, overweight or obese patients: ^{57–59} the outcomes of underweight cohorts in some of the included studies that dichotomised groups as obese and non-obese groups may have influenced the outcome profile of obese patients in this review. In this review, when patients were grouped as underweight, normal weight, overweight and obese (+/- very obese), only normal weight and obese (+/- very obese) were compared. The variability in reported outcomes for adults suggest that obesity does not necessarily result in worse outcomes, therefore high quality CPR and early defibrillation should be standard of care, acknowledging potential manual handling and mechanical challenges of CPR in obese patients.

Many of the included studies adjusted their analyses to mitigate the influence of other variables, however there was variability in the confounders addressed. Also, the observational nature of most included studies makes it difficult to make a direct link between obesity and cardiac arrest outcomes.

Few studies reported resuscitation quality indicators or techniques, and no studies reported adjustments to CPR techniques. No studies reported on the effect of obesity on time to, or quality of, chest compressions or ventilations in either adults or children, highlighting a major knowledge gap. There were studies reporting successful resuscitation of obese patients (adults and children) with application of standard protocols, implying that high quality CPR is possible, however whether there is a need for alterations to chest compression technique in obese patients is unknown. Computed tomography (CT) studies in patients not in cardiac arrest have shown a chest compression depth of 5-6 cm in adults, is unlikely to provide a sufficient ejection fraction during CPR in obese patients with BMI \geq 30 kg/m^{2.60} In paediatrics, the majority of paediatric patients' one-third external anterior-posterior chest diameters were not concordant with age specific chest compression depth targets, especially for most infants and nearly all overweight/obese adolescents.⁵³ In adults who had chest CT prior to IHCA, ROSC was higher when thoracic cage dimension and posterior subcutaneous adipose tissue depth were smaller. ⁶¹ Manikin studies have shown that chest compression performance was significantly better on normal-sized manikins than obese and morbidly obese manikins. 62-64 The limited results reported regarding adult defibrillation suggest that obesity did not affect shock success in either OHCA or IHCA or time to defibrillation in IHCA. No defibrillation data was reported in children. In adults, was one study reporting longer CPR duration in obese patients but the reasons for this are not well understood and there may have been other drivers for longer CPR duration (for example, the average age of patients was mid 60 s).41.

No studies reporting on provider outcomes such as safety or manual handling were identified, highlighting another important area for future research. Previous ILCOR scoping reviews have not identified any studies reporting rescuer physical harm. Frevious ILCOR reviews do report rescuer fatigue adversely affects the quality of chest compressions after 2 min in the context of manikin studies of compression only CPR, and the challenges in maintaining chest compression quality in obese manikins has been highlighted above. Studies detailing specific provider challenges when preparing for, or performing, CPR on obese patients are currently lacking.

Knowledge gaps

This scoping review has highlighted several knowledge gaps. There are few studies of CPR in obese infants, children and adolescents. A standardised definition of obese, or population specific definition of

J. Considine et al. Resuscitation Plus 20 (2024) 100820

obese, for the purpose of resuscitation research is lacking. More robust adjustment for the many influences on CPR outcomes is needed if conclusions about the impact of obesity on CPR outcomes are to be used to shape clinical practice. Further research is needed on the effect of obesity on CPR quality (such as chest compressions, airway management ventilation, defibiliation), and time to, and delivery of, resuscitation interventions (such as vascular access and medications, use of mechanical CPR devices or ECMO). Further research is also needed to determine whether degree of obesity influences CPR performance or outcomes following CPR including health-related quality of life. Finally, studies of CPR in obese patients with a focus on provider outcomes (physical exertion, manual handling, fatigue) are urgently needed given the global prevalence of obesity.

Limitations

In the absence of a universal definition of obesity, 'obese' was defined according to each individual study. The majority of included studies used the WHO Body Mass Index (BMI) criteria ⁴⁹ and only two of eleven studies conducted in Asia used the WHO BMI criteria for Asian populations. ⁵⁰ This scoping review was limited to patients in cardiac arrest thus did not capture data from other settings, for example, anaesthesia or critical care studies of airway interventions, ventilation or use of ECMO in obese patients (adults or children). There was little detail regarding how BMI data were sourced, particularly for studies of OHCA. In all included studies of OHCA that used BMI, patients were transported to ED and, or admitted to hospital: it is likely that in these, BMI was calculated in the hospital setting but this detail is unclear. As is usual for a scoping review, no formal quality assessment was conducted, therefore drawing conclusions for clinical practice from these findings is not feasible.

Conclusions

This scoping review provides a comprehensive overview of the literature to date regarding CPR in obese patients (adults and children) and highlights significant knowledge gaps regarding CPR in obese patients. The variability in results does not suggest an urgent need to deviate from standard CPR protocols, however there was some evidence that CPR duration may be longer in obese adults, which may have staffing and resource implications.

CRediT authorship contribution statement

Julie Considine: Formal analysis, Investigation, Methodology, Project administration, Validation, Writing - original draft, Writing review & editing. Keith Couper: Conceptualization, Formal analysis, Investigation, Methodology, Writing – original draft, Writing – review & editing. Robert Greif: Conceptualization, Formal analysis, Investigation, Methodology, Writing - review & editing. Gene Yong-Kwang Ong: Conceptualization, Formal analysis, Investigation, Methodology, Writing - review & editing. Michael A. Smyth: Conceptualization, Formal analysis, Investigation, Methodology, Writing - review & editing. Kee Chong Ng: Conceptualization, Formal analysis, Investigation, Methodology, Writing - review & editing. Tracy Kidd: Conceptualization, Formal analysis, Investigation, Methodology, Writing - review & editing. Theresa Mariero Olasveengen: Conceptualization, Formal analysis, Investigation, Methodology, Writing - review & editing. Janet Bray: Conceptualization, Formal analysis, Investigation, Methodology, Writing - review & editing.

Funding

This scoping review was funded by the American Heart Association, on behalf of The International Liaison Committee on Resuscitation (ILCOR). None of the following authors received payment from this funding source to complete this scoping review.

Declaration of competing interest

The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: 'All ILCOR task force members complete annual conflict of interest disclosures, and conflict of interest was managed per ILCOR guidelines. All authors external to ILCOR completed a conflicts of interest disclosure.' Authors JB and KC are Editors for Resuscitation Plus. Authors JB and KC are members of the Editorial Board of Resuscitation and authors RG and TMO are members of the editorial board of Resuscitation Plus. RG is Editor-in-Chief of Trends in Anaesthesia and Critical Care. None of the authors were involved in the peer review process or editorial decision-making of this paper.

Acknowledgements

The authors would like to thank the following International Liaison Committee on Resuscitation Task Force members, associate members and emeritus members who provided input to the review protocol, interpretation of the results and on the manuscript as experts in resuscitation:

Basic Life Support: Anthony T. Lagina; Baljit Singh; Bridget Dicker; Carolina M. Hansen; Christopher M. Smith; Fredrik Folke; Guillaume Debaty; Katie N. Dainty; Maya Dewan; Nicholas J Johnson; Rebecca E. Cash; Takanari Ikeyama; Tatsuya Norii; Violetta Raffay; Ziad Nehme; Aloka Samantaray; George Lukas; Vihara Dassanayake; Chika Nishiyama; Christian Vaillancourt; Federico Semeraro; Giuseppe Ristagno; Siobhan Masterson; Sung Phil Chung and Tetsuo Hatanaka.

Advanced Life Support: Ian R. Drennan; Markus B. Skrifvars; Katherine M Berg; Ari Moskowitz; Asger Granfeldt; Brian Grunau; Carolyn M Zelop; Karen G. Hirsch; Mathias J. Holmberg; Nikolaos I. Nikolaou; Rakesh Garg; Shannon M. Fernando; Shinichiro Ohshimo; Sonai D'Arrigo; Claudio Sandroni; Tommas Scquizzato; Yew Woon Chia; Carrie Kah-Lai Leong; Conor P. Crowley; Neville Vlok; Bernd W. Böttiger, Brian O'Neil, Charles D. Deakin, Jasmeet Soar, Michael JA Parr, Michelle Welsford, Peter J. Kudenchuk, Robert W. Neumar, Tonia Nicholson, Jerry P. Nolan.

Paediatric Life Support: Barnaby R Scholefield; Alexis A. Topjian; Andrea Christoff; Antonio Rodriguez-Nunez; Arun Bansal; Florian Hoffmann; Hiroshi Kurosawa; Jana Djakow; Jason Acworth; Jimena del Castillo; Joseph W Rossano; Lokesh Kumar Tiwari; Michelle Myburgh; Raffo Escalante-Kanashiro; Stephan Katzenschlager; Tia T. Raymond; Ester Ambunda; James Gray; Jesus Lopez-Herce; Anne-Marie Guerguerian; Janice A. Tijssen; Gabrielle A. Nuthall; Stephen M. Schexnayder; Thomaz Bittencourt Couto; Laurie J. Morrison; Dianne L. Atkins; Allan R De Caen Vinay M. Nadkarni.

Education, Implementation and Teams: Adam Cheng; Aaron Donoghue; Alexander Olaussen; Barbara Farquharson; Chih-Wei Yang; Cristian Abelairas-Gomez; Heike Geduld; Kasper G. Lauridsen; Andrew S.Lockey; Kathryn Eastwood; Kevin Nation; Sabine Nabecker; Sebastian Schnaubelt; Tasuku Matsuyama; Taylor L. Sawyer; Ying-Chih Ko; Yiquin Jeffrey Lin; Katherine S. Allan; Andrea Cortegiani; Jan Breckwoldt; Ming-Ju Hsieh.

The authors also wish to thank Peter Morley, ILCOR Scientific Advisory Committee for his review of this work; Lousie Spain, Australian Resuscitation Council for assistance with screening; and Louisa Sher, Information Specialist, Deakin University for assistance in development and review of the search strategy.

Appendix A. Supplementary material

Supplementary data to this article can be found online at $\frac{https:}{doi.}$ org/10.1016/j.resplu.2024.100820.

References

- Phelps NH, Singleton RK, Zhou B, et al. Worldwide trends in underweight and obesity from 1990 to 2022: A pooled analysis of 3663 population-representative studies with 222 million children, adolescents, and adults. *Lancet*. 2024;403: 1027–1050
- Akil L, Ahmad HA. Relationships between obesity and cardiovascular diseases in Four Southern States and Colorado. J Health Care Poor Underserved. 2011;22:61–72.
- Høybye M, Stankovic N, Holmberg M, Christensen HC, Granfeldt A, Andersen LW. In-hospital vs. out-of-hospital cardiac arrest: Patient characteristics and survival. Resuscitation. 2021;158:157–165.
- Di Giacinto I, Guarnera M, Esposito C, et al. Emergencies in obese patients: A narrative. J Anesth Analg Crit Care. 2021;1.
- Cheskes S, Verbeek PR, Drennan IR, et al. Defibrillation strategies for refractory ventricular fibrillation. N Eng J Med. 2022;387:1947–1956.
- Réminiac F, Jouan Y, Cazals X, Bodin J-F, Dequin P-F, Guillon A. Risks associated with obese patient handling in emergency prehospital care. *Prehospital Emerg Care*. 2014;18:555–557.
- Arksey H, O'Malley L. Scoping studies: Towards a methodological framework. Int J Soc Res Methodol. 2005:8:19–32.
- Tricco AC, Lillie E, Zarin W, et al. PRISMA extension for scoping reviews (PRISMA-ScR): Checklist and explanation. *Ann Intern Med.* 2018;169:467–473.
- Campbell M, McKenzie JE, Sowden A, et al. Synthesis without meta-analysis (SWiM) in systematic reviews: Reporting guideline. BMJ. 2020;368, 16890.
- Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A. Rayyan—A web and mobile app for systematic reviews. Syst Rev. 2016;5:210.
- Popay J, Roberts H, Sowden A, et al. Guidance on the conduct of narrative synthesis in systematic reviews. Lancaster University, UK: A product from the ESRC (European Social Research Council) methods programme Version 1.;2006.
- International Liaison Committee on Resuscitation (ILCOR). Task Forces. 2022; https://www.ilcor.org/about/task-forces. Accessed 2 May, 2022.
- Aoki M, Aso S, Suzuki M, et al. Association between obesity and neurological outcomes among out-of-hospital cardiac arrest patients: The SOS-KANTO 2017 study. Resusc plus. 2023;17, 100513.
- Aoki M, Hagiwara S, Oshima K, et al. Obesity was associated with worse neurological outcome among Japanese patients with out-of-hospital cardiac arrest. *Intensive Care Med.* 2018:44:665–666.
- Beckett VA, Knight M, Sharpe P. The CAPS Study: Incidence, management and outcomes of cardiac arrest in pregnancy in the UK: A prospective, descriptive study. Int J Obstet Gynaecol. 2017;124:1374–1381.
- Galatianou I, Karlis G, Apostolopoulos A, et al. Body mass index and outcome of outof-hospital cardiac arrest patients not treated by targeted temperature management. Am J Emerg Med. 2017;35:1247–1251.
- Geri G, Savary G, Legriel S, et al. Influence of body mass index on the prognosis of patients successfully resuscitated from out-of-hospital cardiac arrest treated by therapeutic hypothermia. Resuscitation. 2016;109:49–55.
- Lee H, Oh J, Kang H, et al. Association between the body mass index and outcomes of patients resuscitated from out-of-hospital cardiac arrest: A prospective multicentre registry study. Scand J Trauma Resusc Emerg Med. 2021;29:24.
- Wolff B, Machill K, Schumacher D, Schulzki I, Werner D. Early achievement of mild therapeutic hypothermia and the neurologic outcome after cardiac arrest. *Int J Cardiol*. 2009;133:223–228.
- Breathett K, Mehta N, Yildiz V, Abel E, Husa R. The impact of body mass index on patient survival after therapeutic hypothermia after resuscitation. Am J Emerg Med. 2016;34:722–725.
- Bunch TJ, White RD, Lopez-Jimenez F, Thomas RJ. Association of body weight with total mortality and with ICD shocks among survivors of ventricular fibrillation in out-of-hospital cardiac arrest. Resuscitation. 2008;77:351–355.
- Chavda MP, Bihari S, Woodman RJ, Secombe P, Pilcher D. The impact of obesity on outcomes of patients admitted to intensive care after cardiac arrest. *J Crit Care*. 2022:69.
- Chavda MP, Pakavakis A, Ernest D. Does obesity influence the outcome of the patients following cardiac arrest? *Indian J Crit Care Med.* 2020;24:1077–1080.
- Chen CT, Lin MC, Lee YJ, et al. Association between body mass index and clinical outcomes in out-of-hospital cardiac arrest survivors treated with targeted temperature management. J Chin Med Assoc. 2021;84:504–509.
- Czapla M, Kwa{\acute{s}}ny A, Słoma-Krze{\acute{s}}lak M, et al. The impact of body mass index on in-hospital mortality in post-cardiac-arrest patients-does sex matter? Nutrients. 2023;15.
- Danciu SC, Klein L, Hosseini MM, Ibrahim L, Coyle BW, Kehoe RF. A predictive model for survival after in-hospital cardiopulmonary arrest. Resuscitation. 2004;62: 25–42.
- Gil E, Na SJ, Ryu JA, et al. Association of body mass index with clinical outcomes for in-hospital cardiac arrest adult patients following extracorporeal cardiopulmonary resuscitation. PLoS One. 2017;12.
- Jung YH, Lee BK, Lee DH, Lee SM, Cho YS, Jeung KW. The association of body mass index with outcomes and targeted temperature management practice in cardiac arrest survivors. Am J Emerg Med. 2017;35:268–273.
- 29. Kosmopoulos M, Kalra R, Alexy T, et al. The impact of BMI on arrest characteristics and survival of patients with out-of-hospital cardiac arrest treated with extracorporeal cardiopulmonary resuscitation. *Resuscitation*. 2023;188.
- Lee SE, Kim HH, Chae MK, Park EJ, Choi S. Predictive value of estimated lean body mass for neurological outcomes after out-of-hospital cardiac arrest. *J Clin Med.* 2021; 10:1–10.
- Schurr JW, Noubani M, Santore LA, et al. Survival and outcomes after cardiac arrest with VA-ECMO rescue therapy. Shock. 2021;56:939–947.

- Shahreyar M, Dang G, Waqas Bashir M, et al. Outcomes of in-hospital cardiopulmonary resuscitation in morbidly obese patients. JACC Clin Electrophysiol. 2017;3:174–183.
- Swindell WR, Gibson CG. A simple ABCD score to stratify patients with respect to the probability of survival following in-hospital cardiopulmonary resuscitation. *J Community Hosp Intern Med Perspect*. 2021;11:334–342.
- Testori C, Sterz F, Losert H, et al. Cardiac arrest survivors with moderate elevated body mass index may have a better neurological outcome: A cohort study. *Resuscitation*. 2011;82:869–873.
- Wang CH, Huang CH, Chang WT, et al. Associations between body size and outcomes of adult in-hospital cardiac arrest: A retrospective cohort study. Resuscitation. 2018;130:67–72.
- White RD, Blackwell TH, Russell JK, Jorgenson DB. Body weight does not affect defibrillation, resuscitation, or survival in patients with out-of-hospital cardiac arrest treated with a nonescalating biphasic waveform defibrillator. Crit Care Med. 2004;32:S387-S392.
- Wang C-H, Chang W-T, Huang C-H, et al. Associations between central obesity and outcomes of adult in-hospital cardiac arrest: A retrospective cohort study. Sci Rep. 2020:10:4604.
- Lewandowski Ł, Czapla M, Uchmanowicz I, et al. Machine learning and clinical predictors of mortality in cardiac arrest patients: A comprehensive analysis. Med Sci Monit. 2024;30:e944408.
- Gupta T, Kolte D, Mohananey D, et al. Relation of obesity to survival after inhospital cardiac arrest. Am J Cardiol. 2016;118:662–667.
- Hjalmarsson A, Rawshani A, Råmunddal T, et al. No obesity paradox in out-of-hospital cardiac arrest: Data from the Swedish registry of cardiopulmonary resuscitation. Resusc Plus. 2023;15, 100446.
- Jain R, Nallamothu BK, Chan PS. Body mass index and survival after in-hospital cardiac arrest. Circ: Cardiovasc Qual. 2010;3:490–497.
- Kojima M, Mochida Y, Shoko T, et al. Association between body mass index and clinical outcomes in patients with out-of-hospital cardiac arrest undergoing extracorporeal cardiopulmonary resuscitation: A multicenter observational study. *Resusc Plus*. 2023;16, 100497.
- Ogunnaike BO, Whitten CW, Minhajuddin A, et al. Body mass index and outcomes of in-hospital ventricular tachycardia and ventricular fibrillation arrest. Resuscitation. 2016;105:156–160.
- Patlolla SH, Ya'qoub L, Prasitlumkum N, et al. Trends and differences in management and outcomes of cardiac arrest in underweight and obese acute myocardial infarction hospitalizations. Am J Cardiovasc Dis 2021;11:576-586.
- Srinivasan V, Nadkarni VM, Helfaer MA, Carey SM, Berg RA. Childhood obesity and survival after in-hospital pediatric cardiopulmonary resuscitation. *Ped.* 2010;125: e481–e488.
- 46. Wang YG, Obed C, Wang YL, et al. Factors associated with the clinical outcomes of adult cardiac and non-cardiac origin cardiac arrest in emergency departments: A nationwide retrospective cohort study from China. World J Emerg Med. 2023;14: 144–146.
- Wannasri T, Peonim V, Worasuwannarak W. Cardiopulmonary resuscitated complications encountered in forensic autopsy cases: A 5-year retrospective analysis in ramathibodi hospital. *Indian J Forensic Med Toxicol*. 2021;15:4621–4630.
- Meert KL, Telford R, Holubkov R, et al. Pediatric out-of-hospital cardiac arrest characteristics and their association with survival and neurobehavioral outcome. Ped Crit Care Med. 2016;17:e543–e550.
- World Health Organization (WHO). Obesity: preventing and managing the global epidemic. Report of a WHO consultation. World Health Organ Tech Rep Ser 2000; 894:i-xii, 1-253.
- World Health Organization (WHO) expert consultation. Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet 2004;363:157-163.
- DeSilva RA, Lown B. Energy requirement for defibrillation of a markedly overweight patient. Circulation. 1978;57:827–830.
- 52. Pei-Chuan Huang E, Fu CM, Chang WT, et al. Associations of thoracic cage size and configuration with outcomes of adult in-hospital cardiac arrest: A retrospective cohort study. *J Formos Med Assoc.* 2021;120:371–379.
- Ong G-Y-K, Ang AJF, Chen ZJ, et al. Should paediatric chest compression depth targets consider body habitus? – A chest computed tomography imaging study. Resusc Plus. 2022;9, 100202.
- Afzali Rubin M, Svensson TLG, Herling SF, Jabre P, Møller AM. Family presence during resuscitation. Cochrane Database Syst Rev. 2023.
- Wells M, Goldstein L. The utility of pediatric age-based weight estimation formulas for emergency drug dose calculations in obese children. J Am Coll Emerg Physicians Open. 2020;1:947–954.
- Wells M, Goldstein LN. How and why paediatric weight estimation systems fail A body composition study. Cureus. 2020.
- Kakavas S, Georgiopoulos G, Oikonomou D, et al. The impact of body mass index on post resuscitation survival after cardiac arrest: A meta-analysis. Clin Nutr ESPEN. 2018;24:47–53.
- 58. Lee H, Shin H, Oh J, et al. Association between body mass index and outcomes in patients with return of spontaneous circulation after out-of-hospital cardiac arrest: A systematic review and meta-analysis. Int J Environ Res Public Health. 2021;18:8389.
- Ma Y, Huang L, Zhang L, Yu H, Liu B. Association between body mass index and clinical outcomes of patients after cardiac arrest and resuscitation: A meta-analysis. Am J Emerg Med. 2018;36:1270–1279.
- Lee H, Oh J, Lee J, et al. Retrospective study using computed tomography to compare sufficient chest compression depth for cardiopulmonary resuscitation in obese patients. J Am Heart Assoc. 2019;8:e013948.

- Liu JZ, Ye S, Cheng T, et al. The effects of thoracic cage dimension and chest subcutaneous adipose tissue on outcomes of adults with in-hospital cardiac arrest: A retrospective study. Resuscitation. 2019;141:151–157.
- Tellson A, Qin H, Erwin K, Houston S. Efficacy of acute care health care providers in cardiopulmonary resuscitation compressions in normal and obese adult simulation manikins. Proc (Bayl Univ Med Cent). 2017;30:415–418.
- 63. Longo JA, Lyman KJ, Hanson TA, Christensen B, Del Rossi G. An evaluation of the quality of CPR chest compressions performed on football-equipped and obese simulation manikins. *Prehosp Emerg Care*. 2024;28:92–97.
- 64. Secombe PJ, Sutherland R, Johnson R. Morbid obesity impairs adequacy of thoracic compressions in a simulation-based model. *Anaesth Intensive Care*. 2018;46:171–177.
- 65. International Liaison Committee on Resuscitation (ILCOR). Harm to rescuers from CPR (BLS): Scoping Review. 2021; https://costr.ilcor.org/document/harm-to-rescuers-from-cpr-scoping-review. Accessed 4 September, 2024.
- 66. International Liaison Committee on Resuscitation (ILCOR). Rescuer Fatigue in CC Only CPR (BLS #349): Scoping Review. 2021; https://costr.ilcor.org/document/rescuer-fatigue-in-cc-only-cpr-bls-349-scoping-review. Accessed 4 September, 2024.