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Abstract: Empowered by pixel super-resolution (PSR) and phase retrieval techniques, lensless on-
chip microscopy opens up new possibilities for high-throughput biomedical imaging. However, the
current PSR phase retrieval approaches are time consuming in terms of both the measurement and
reconstruction procedures. In this work, we present a novel computational framework for PSR phase
retrieval to address these concerns. Specifically, a sparsity-promoting regularizer is introduced to
enhance the well posedness of the nonconvex problem under limited measurements, and Nesterov’s
momentum is used to accelerate the iterations. The resulting algorithm, termed accelerated Wirtinger
flow (AWF), achieves at least an order of magnitude faster rate of convergence and allows a twofold
reduction in the measurement number while maintaining competitive reconstruction quality. Further-
more, we provide general guidance for step size selection based on theoretical analyses, facilitating
simple implementation without the need for complicated parameter tuning. The proposed AWF
algorithm is compatible with most of the existing lensless on-chip microscopes and could help achieve
label-free rapid whole slide imaging of dynamic biological activities at subpixel resolution.

Keywords: phase retrieval; pixel super-resolution; computational imaging; digital holography;
Wirtinger flow; lensless imaging; whole slide imaging

1. Introduction

The ever-increasing demand for information throughput toward biomedical and other
engineering applications has strongly promoted recent developments in imaging tech-
niques with a high space-bandwidth product [1–3]. Among these techniques, lensless
on-chip microscopy has become an emerging solution by leveraging recent advances in sen-
sor technology and computational power to overcome the inherent tradeoff between spatial
resolution and field of view of the conventional point to-point imaging modality [4–6].
It captures a field-of-view as large as the sensor area with a resolution of a few microns
in a single exposure, which makes it a competitive solution to rapid whole slide imag-
ing for histopathology [7]. Compared with the lens-based counterparts, lensless on-chip
microscopy also enables a compact and low-cost configuration [8,9]. Furthermore, its quan-
titative phase imaging capability allows for the label-free characterization of transparent
or volumetric samples [10], which are commonly encountered in biomedical applications,
such as pathology [11], inflammation [12], immunology [13], neuroscience [14], and cancer
cell biology [15].

Despite their distinct advantages, lensless on-chip microscopy poses new challenges
that need to be addressed. The phase information of the wavefield cannot be recorded due
to the intensity-only response of the imaging sensors, and the high-frequency details beyond
the Nyquist sampling limit are also lost during the measurement. Techniques to address
these problems, namely phase retrieval [16] and pixel super-resolution (PSR) [17], play a
pivotal role in high-fidelity and high-resolution holographic imaging. Phase retrieval aims
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to encode the phase of the wavefield by transferring it into intensity variations by physical
means [18–21] and then numerically recover the phase (and amplitude) distributions
via optimization algorithms [22–24]. Pixel super-resolution, on the other hand, aims to
surpass the Nyquist sampling limit by similar physical encoding and numerical recovery
procedures, pushing the resolution toward the diffraction limit [25–30].

In recent years, it has been recognized from a physical perspective that the missing
phase and the undersampled high-frequency information can be both encoded into the
intensity observations via diversity measurements [31–33], which can be implemented
by varying the defocus distances [34–36], illumination wavelengths [37–40], modulation
patterns [41–43], and probe positions [44–46], etc., making it possible for numerical recovery.
On the algorithmic side, PSR phase retrieval can be achieved by a simple modification
to the classical phase retrieval algorithms [47–49]. More recently, PSR phase retrieval has
been recast as a standard optimization problem, which allows the use of off-the-shelf
optimization tools, such as alternating projection and gradient descent algorithms [33].

Nevertheless, the range of applications of current PSR phase retrieval methods is
primarily limited by the considerable time consumption during both the measurement
and reconstruction stages. Due to the high dimension of the parameter space, it typically
requires a larger number of diversity measurements to ensure the well posedness of the
inverse problem and takes a longer time for iterative reconstruction compared with classical
phase retrieval methods, yet acquisition and reconstruction speed is of vital importance
in many imaging applications [50,51]. Additionally, the processing of the data is further
complicated by manual parameter tuning due to the heuristic nature of the algorithms.

In this work, we introduce accelerated Wirtinger flow (AWF) as a unified framework
for pixel super-resolution phase retrieval. Based on the proximal gradient method, AWF
allows incorporating off-the-shelf regularization techniques to help improve imaging
quality and reduce measurement number. Nesterov’s acceleration method is applied in
the iterative reconstruction process, achieving at least an order of magnitude faster rate
of convergence. Furthermore, the proposed algorithm features a prespecified step size,
facilitating simple implementation to various system configurations.

2. Problem Formulation
2.1. Forward Model

Figure 1a shows some typical optical setups for a lensless on-chip microscope. The
sample is illuminated by a coherent source. Diversity measurement is achieved by varying
the physical parameters. The intensity of the coded wavefield is then recorded by the
pixelated sensor. Therefore, the general forward model for lensless on-chip microscopes
can be expressed as a linear transformation and a down-sampled quadratic measurement:

y2
k = S|Akx|2, k = 1, 2, · · · , K, (1)

where x ∈ Cn represents the complex transmittance of the sample, Ak ∈ Cm×n denotes the
sampling matrix for the k-th of out K diversity measurements, and y2

k ∈ Rd denotes the cor-
responding intensity image. S ∈ Rd×m with m = σd represents the down-sampling (pixel
binning) operation of the sensor pixels, where σ is a positive integer referred to as the down-
sampling ratio. The down-sampling operator performs a weighted sum of the subpixel
intensities. Conceptual illustrations of the physical model and the mathematical model are
shown in Figures 1 and 2, respectively. Note that (·)2 and | · | are element-wise operators.

While the forward measurement matrix Ak given in Equation (1) seems rather abstract,
it in fact encapsulates a wide variety of physical processes. For example, when using
defocus diversity or wavelength diversity measurements, Ak may represent the free-space
propagation with multiple distances or wavelengths. In the case of ptychography or
modulation diversity, it may also incorporate coded illumination or mask modulation.

The introduction of the down-sampling matrix S makes the forward model of Equation (1)
different from that of classical phase retrieval problems. It arises from the fact that all the
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photons incident upon a same pixel are converted into a single intensity signal. Mathematically,
the intensity signal can be regarded as a weighted sum of the signals of the corresponding
subpixels. In many works, uniform weights are adopted. Nevertheless, in practice, the fill factor
of the sensor pixels is usually less than one, thus the weights for different subpixels may be
different. A more accurate sampling model can be obtained by experimentally calibrating the
intensity response of the sensor pixels, as was well done in [7]. Note that this down-sampling
process is quite similar to the single pixel imaging model, despite the fact that we are using
array sensors [52]. The model described by Equation (1) subsumes a special case the classical
phase retrieval problem when σ = 1 and S is an identity matrix.

Figure 1. Forward model of a lensless on-chip microscope. (a) Typical optical configurations that
can transfer the phase and subpixel information into the intensity variations at the sensor plane.
(b) Diffraction model of the imaging system. Diffraction is calculated via the angular spectrum
method, where the diffraction angle θ and the corresponding Fresnel kernel size are determined by
the sampling frequency. (c) Sampling model of the sensor pixels.

Figure 2. Intuitive illustration of the mathematical model.
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2.2. Regularized Inversion

Based on the forward model of Equation (1), PSR phase retrieval can be formulated as
a regularized inverse problem as follows:

x̂ = argmin
x

1
2K

K

∑
k=1

∥∥∥∥√S|Akx|2 − yk

∥∥∥∥2

2︸ ︷︷ ︸
F(x)

+ λ‖Dx‖1︸ ︷︷ ︸
R(x)

, (2)

where F(x) and R(x) are the data-fidelity function and the regularization function, respec-
tively. ‖ · ‖p denotes the `p vector norm. The data-fidelity function ensures the estimate x
is consistent with the forward model. Considering the inherent ill posedness of PSR phase
retrieval, an additional regularization term R(x) is introduced that encourages certain
solutions based on prior knowledge of the sample. We use the anisotropic complex total
variation (TV) in this work as an example, where D ∈ R2n×n denotes the finite difference
operator and λ > 0 is a regularization parameter. When λ = 0, Equation (2) reduces to the
non-regularized case.

It should be noted that there exists various mathematically equivalent choices for
the data-fidelity function. The same issue has been well studied in the case of classical
phase retrieval. The intensity-based formulation aims to minimize the intensity residuals,
which was adopted by many theoretical studies [24,53,54]. Another choice is the amplitude-
based formulation [55–58]. It has been observed by many prior works that minimizing the
lower-order amplitude-based fidelity function leads to faster convergence compared with
minimizing the intensity-based one [59]. In analogy to the classical phase retrieval, the
lower-order fidelity function in Equation (2) was adopted in [33] for PSR phase retrieval,
whose superior performance was also experimentally verified.

The regularization term R(x) encourages certain solutions based on prior knowledge
of the sample. In classical phase retrieval, chances of recovering the unknown sample rely
heavily on the well posedness of the problem. Broadly speaking, there are two ways to
ensure well posedness, that is, increasing the number of measurements, or incorporating
signal priors [60]. In the case of PSR phase retrieval, it is generally more time consuming
to acquire sufficient diversity data to suppress ambiguous solutions. As a result, to tackle
the ill-posedness, we introduce another regularization term R(x) for the reconstruction
problem. Apart from the total variation function adopted in this paper, the regulariza-
tion function can take many other forms, such as BM3D [42,61–63] and deep denoiser
priors [64,65].

3. Derivation of Algorithms
3.1. Accelerated Wirtinger Flow

The proximal gradient method is adopted for solving the non-smooth composite
optimization problem of Equation (2), which proceeds by minimizing the two terms in an
alternative manner [66]. Specifically, we apply a gradient update step with respect to the
fidelity term, whose Wirtinger gradient is given by [33]

∇xF(x) =
1

2K

K

∑
k=1

AH
k diag(Akx)ST

1− yk√
S|Akx|2

, (3)

where (·)T and (·)H denote the transpose and Hermitian operators, respectively. diag(·)
puts the element of a vector onto the diagonal of a matrix.

√
· and ·/· are element-wise

operators. Rigorously speaking, the fidelity function is not differentiable at points where
S|Akx|2 has zero entries for some k. However, its non-smoothness can be addressed by
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assigning a certain value to the gradients at these points. The regularization term is updated
via its proximity operator:

proxγR(v) = argmin
x

1
2γ
‖x − v‖2

2 + R(x), (4)

where γ > 0 denotes the step size. For the complex TV function, in particular, an efficient
algorithm for calculating the proximal update has been proposed in [67]. We found that
when the regularization parameter λ is relatively small (as is often the case), a single
iteration of the inner loop is sufficient for good performance.

The basic proximal gradient algorithm, however, can be very slow in terms of conver-
gence. Fortunately, relating the existing PSR phase retrieval algorithms with theoretically
tractable optimization frameworks allows us to explore advanced techniques that help im-
prove the algorithmic performance. In this work, we introduce the well-known Nesterov’s
acceleration method as an example. It was originally proposed for minimization of smooth
convex functions [68], and was later extended to the proximal gradient method [69]. In-
spired by Nesterov’s method, some recent works have applied similar acceleration schemes
to classical phase retrieval [70–73]. Following this line of research, we introduce a similar
acceleration scheme to PSR phase retrieval, leading to the following iterates:

v(t) = u(t−1) − γ∇uF(u(t−1)), (5)

x(t) =proxγR(v
(t)), (6)

u(t) = x(t) + βt(x(t) − x(t−1)), (7)

where t = 1, 2, . . . , T, γ > 0 is the step size, and u(0) = x(0). The algorithm is termed as
accelerated Wirtinger flow when βt = t/(t + 3) is used for the the extrapolation step of
Equation (7), as is suggested by Nesterov’s method.

3.2. Convergence Analysis

We next provide general guidance for the step size selection of the AWF algorithm.
Considering the nonconvexity of the PSR phase retrieval problem, we present a weaker
theoretical result establishing the convergence of the non-accelerated Wirtinger flow al-
gorithm, which is summarized by the following theorem. Nevertheless, we empirically
observe a stable convergence behavior of the AWF algorithm using the same step size. A
detailed proof of the theorem can be found in the Supplementary Materials document.

Convergence Theorem 1. The Wirtinger flow iterates of Equations (5)–(7) with βt ≡ 0 converge
to a stationary point using a fixed step size γ that satisfies

γ ≤ 2K

/
K

∑
k=1

ρ
(

AH
k diag(s)Ak

)
, (8)

where s = ST · 1, and ρ(·) denotes the spectral radius.

4. Experimental Results
4.1. System Configuration

To validate the proposed AWF method, we consider a particular holographic imaging
model based on phase modulation diversity, as shown in Figure 3. A phase-only spatial
light modulator (SLM) is placed at the conjugate plane of a 4f system with respect to the
sample, generating phase diversity by varying the modulation patterns. The diffraction
patterns of the modulated wavefield are recorded by a CMOS sensor, which is placed
close to the sample. Using SLM for diversity measurement enables higher data acquisition
speed compared with approaches that require mechanical displacements. Phase-only liquid
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crystal SLMs can typically achieve a frame rate of 60 Hz [74]. Thus, measurements can be
completed in less than a few seconds.

Figure 3. Lensless on-chip microscope based on phase modulation diversity, which we consider as
an example in this work. BS is a beam splitter. f1 and f2 denote the focal lengths of Lens 1 and Lens 2,
respectively. z denotes the sample-to-sensor distance.

Based on the optical setup, we now formulate the specific mathematical model and
derive the step size for the algorithm. The sampling matrix Ak can be divided into three
linear operations, namely a phase-only modulation by the SLM Mk ∈ Cn×n (k = 1, 2, . . . , K),
a free-space propagation H ∈ Cn×n which is implemented via circular convolution based on
the angular spectrum method, and an image cropping operation due to the finite size of the
sensor area C ∈ Rm×n. That is, we have Ak = CHMk. As for the down-sampling operator
S, we assume a spatially uniform weight for different subpixel responses. A more accurate
sampling model can be obtained by experimentally calibrating the intensity response of the
sensor pixels. Based on the above modeling, one can easily verify that ρ(AH

k diag(s)Ak) ≤ 1
for all k = 1, 2, . . . , K (see Supplementary Materials document), which, according to the
above theorem, implies a proper step size of γ = 2. It is worth noticing that this specific
choice of step size is nontrivial and generally applicable. For most optical settings, the
measurement is passive in the sense that the sampling operators Ak are non-expansive
(i.e., ρ(Ak) ≤ 1) after proper normalization. Multiplication by a factor of two is due to the
Wirtinger calculus [75].

To facilitate further applications and comparisons, a MATLAB implementation for
the algorithms is available in [76]. All numerical experiments were conducted on a laptop
computer equipped with an Intel Core i5 CPU at 1.60 GHz and 16 GB of memory. It takes
approximately 20 s per iteration for reconstruction of a pixel super-resolved image of size
n = 1024× 1024 using K = 64 diversity images.

4.2. Simulation Studies

Numerical studies were conducted to quantitatively study the performance improve-
ments in terms of both reconstruction quality and convergence speed. The Cameraman
image and the Peppers image were used to simulate the amplitude and phase distribution
of a complex sample, respectively. Only K = 8 intensity images with phase modulation
diversity were used for PSR phase retrieval with an under-sampling ratio of σ = 4× 4 = 16,
rendering the inverse problem severely ill-posed. Figure 4a shows the retrieved amplitude
and phase via the AWF algorithm with and without the TV regularization term. The intro-
duction of the regularizer helps significantly suppress the artifacts while preserving fine
details of the image. Furthermore, the TV-regularized reconstruction with K = 8 images
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also outperforms the non-regularized reconstruction with K = 32 images, as is quantified by
the root-mean-square errors (RMSEs). Figure 4b plots the convergence curves of the AWF
algorithm and the non-accelerated proximal gradient algorithm. We observe that in both
non-regularized and regularized cases, AWF exhibits at least an order of magnitude faster
rate of convergence compared with the basic algorithm, which empirically demonstrates
the effectiveness of Nesterov’s method for this nonconvex optimization problem.

Figure 4. Simulation results. (a) Evaluation of the quality improvements by TV regularization.
(b) Convergence curves of the AWF algorithm and the non-accelerated Wirtinger flow (WF) algorithm
using K = 8 diversity images.

4.3. Optical Experiments

Experimental data were collected from an inline holographic imaging system, where a
532 nm laser was used for coherent illumination, a phase-only reflective SLM (GAEA-2,
HOLOEYE, Berlin, Germany) was used to generate phase patterns, and a CMOS sensor
(QHY163M, pixel pitch 3.8 µm, QHYCCD, Beijing, China) was used to record the intensity
images. Readers may refer to [41] for a detailed description of the system configura-
tion. The phase response of the SLM was calibrated by a self-referenced interferometric
method [77–79]. The phase modulation patterns were randomly generated and then
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Gaussian-filtered in order to introduce enough diversity while minimizing the crosstalk
effect between adjacent SLM pixels.

We first evaluated the proposed method via imaging a quantitative phase microscopy
target (Benchmark Technologies, Lynnfield, MA, USA). The up-sampling ratio was set to
σ = 3× 3, leading to a higher imaging resolution than the classical non-PSR phase retrieval
method. Reconstruction via the non-regularized and the TV-regularized PSR phase retrieval
models was implemented using K = 8, 16, 32, and 64 intensity images, respectively. In
the optical experiments, the artifacts arise not only from the measurement noise, but also
from the modeling errors of the imaging system that are inevitable in practice. The TV
regularization can help reduce the artifacts while preserving high-frequency details, as
is visually demonstrated by the phase images and quantitatively verified by the cross-
sectional phase profiles in Figure 5a. The ground truth values of the phase structures were
calculated by ϕ = 2πh(RI− 1)/w, where h denotes the height of the structure, RI denotes
the refractive index of the medium, and w denotes the illumination wavelength. Figure 5b
indicates a similar improvement to the convergence rate using AWF compared with WF.
Considering the inevitable modeling errors of the imaging system, the algorithms tend to
converge earlier on experimental data.

Figure 5. Experimental results. (a) Phase reconstruction of a quantitative phase target. The cross-
sectional profiles are indicated by the triangular marks. The red doted lines indicate the ground truth
phase induced by the structures. The scale bar is 200 µm. (b) Convergence curves of the algorithms
using K = 8 diversity images.
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We further tested the resolving power of the proposed method on the imaging of
a biological sample under the same optical settings. Figure 6 shows the imaging results
of an iron-hematoxylin stained slide of the uterus of parascaris equorum. The piece-wise
smoothness property of the TV regularizer helps suppress the noise and artifacts signifi-
cantly, although the reconstruction quality may be further improved by more advanced
image priors. The shape of the chromosomes can be resolved by the PSR phase retrieval
method with high fidelity, from which one could easily recognize different phases of the
mitosis. In prephase (Figure 6b), the chromatin condenses into chromosomes. In metaphase
(Figure 6c), the chromosomes line up along the equatorial plane. In anaphase (Figure 6d),
two sets of daughter chromosomes are pulled toward opposite ends of the cell. Finally,
in telophase (Figure 6e), a new envelope forms around each set of separated daughter
chromosomes, and cell division occurs. These biological activities, however, are not clearly
revealed by the conventional non-PSR phase retrieval method because the distribution of
the chromosomes cannot be directly resolved by the relatively large sensor pixels.

Figure 6. Experimental validation on biological samples.(a) Amplitude reconstruction of a section
of the uterus of parascaris equorum. The inset shows an image of the stained tissue slide. (b–e) are
the enlarged images of (a), corresponding to the prophase, metaphase, anaphase, and telophase of
the mitosis, respectively. The upper and lower rows show the non-PSR and PSR reconstruction,
respectively. The scale bar is 200 µm.
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5. Conclusions

To conclude, we proposed AWF as a general pixel super-resolution phase retrieval
framework for lensless on-chip microscopy that helps reduce time consumption during
both the measurement and reconstruction procedures. To speed up the data acquisition,
we introduced the TV regularizer to tackle the ill posedness of PSR phase retrieval. As
is demonstrated by both simulated and experimental data, the introduction of the TV
regularizer allows at least a twofold reduction in the number of intensity images while
maintaining competitive resolution and quality. To speed up the iterative reconstruction, we
applied Nesterov’s method to the nonconvex PSR phase retrieval problem. The accelerated
algorithm converges at least an order of magnitude faster than the conventional one. On the
theoretical side, we demonstrated through theoretical analyses that the lower-order fidelity
function has favorable geometrical properties that ensure convergence of the Wirtinger flow
iterates using a prespecified step size. Our findings extend previous results on classical
phase retrieval to the PSR case, which may help bridge the gap between empirical and
theoretical studies. The proposed algorithmic framework is generally applicable to the
existing lensless on-chip microscopy platforms, and may thus facilitate a wide range of
biomedical applications, such as whole slide histopathology and cell biology.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cells11131999/s1. References [33,75,80,81] are cited in the Sup-
plementary Materials.
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