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Abstract
Swarm-based optimization algorithms have been popularly used these days for optimization of various real world problems
but sometimes it becomes hard to estimate the associated characteristics due to their stochastic nature. To ensure a steady
performance of these techniques, it is essential to have knowledge about the range of variables, in which a particular algorithm
always provides stable performance and performing stability analysis of an algorithm can help in providing some knowledge
regarding the same. Many researchers have performed the stability analysis of several optimization algorithms and analyzed
their behavior. Social Group Optimization (SGO) is a newly developed algorithm which has been proven to yield promising
results when applied to many real world problems but in literature no work can be found on stability analysis of SGO.
In this paper, Von Neumann stability analysis approach has been used for performing stability analysis of Social Group
Optimization (SGO) to analyze the behavior of its algorithmic parameters and estimate the range in which they always give
stable convergence. The results obtained have been supported by sufficient experimental analysis and simulated using eight
benchmark function suite along with their shifted and rotated variations which prove that the algorithm performs better within
the stable range and hence convergence is ensured.

Keywords Stability analysis · Social Group Optimization · Evolutionary optimization · Parameter tuning

Introduction

In many real life applications, many complex optimization
problems are faced which needs effective solutions. These
functions have multiple maxima, minima and saddle points,
thus gradient descent/ascent based techniques fail to find
the proper solution or most likely lead to a local minima
or maxima. For finding the global best value efficient search-
ing of the entire search space becomes necessary. There
are several categories of algorithm that fulfill this need.
The prominent of them is swarm optimization in which the
search space is filled with swarm members with random
initial solutions. These members interact with each other
(definedby the algorithm), through a series of exploration and
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exploitation, finally attaining the global best location. Some
examples of such algorithms are Particle Swarm Optimiza-
tion (PSO) [1] which emulates flocking behavior of birds,
Artificial Bee Colony (ABC) [2] which emulates behavior
of bees, Social Group Optimization (SGO) [3] which emu-
lates human learningpattern of,GreyWolfAlgorithm (GWA)
[5] which emulates hunting patterns of Grey Wolves etc.
Social Group Optimization (SGO) is a fairly new addition
to the shelve. Nonetheless it is very promising addition as
it has better convergence rate as compared to many evolu-
tionary algorithms [4]. It has been successfully applied to
segmentation of skin melanoma images [6], segmentation of
brain MRI images [7], task scheduling in cloud [8], brain
tumor evaluation tool [9], automated detection of COVID-
19 infection [10], Transformer fault analysis [16], Antenna
array synthesis [17], short-term hydrothermal scheduling
[18], structural health monitoring in civil engineering [19],
solving Travelling Salesman problem [20], solving multi-
objective problems [21] and many more.

One essential requirement to be kept in mind while work-
ing with these heuristic algorithms is to ensure that the error
values remain bounded in a region and don’t explode. To
achieve this requirement, stability analysis of an optimiza-
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tion algorithm is essential as it provides the stable range of
parameters that prevents the errors from growing beyond
boundary making the algorithm converge faster to provide
desired solution. In many of the works found in literature, it
is observed that the efficacy of an algorithm is claimed by
experimentation, but that experimental analysis is subject to
that specific problem or situation. Stability analysis is such a
method which analyzes the robustness of a system and ’Von
Neumann’ method is a suitable method which have been
popularly used for this task for swarm optimization method-
ologies. Various such works can be found in the literature.
Gopal et al. [11] have worked on stability analysis of PSO,
Bansal et al. [12] in their work performed stability analysis
of Differential Evolution, Nair et al. [13] analyzed the stabil-
ity of Artificial Bee Colony, Farivar et al. [14] have reported
on stability analysis of Gravitational Search Optimization,
Biswas et al. [15] have analyzed the stability of Bacteria For-
aging Optimization etc. To the best of authors’ knowledge
the stability analysis of SGO algorithm is not yet attempted.
In this paper, authors have addressed the problem of stability
of SGO through ‘Von Neumann’ stability criterion and have
found stable ranges of parameters for the algorithm.

The rest of the paper is organized as follows. In the second
section introduces theSGOalgorithmandeffects of its update
equations on swarm members, in the third section provides
details of the VonNeumann Stability Analysis procedure and
explains stability analysis in context of swarm optimization.
Themathematical analysis of SGO algorithm is carried out in
the fourth section and the final section presents the results of
simulation based experiments to demonstrate the simulation
based find ups.

Social Group Optimization

Social Group Optimization (SGO) algorithm is a popula-
tion based distributed optimization algorithm that simulates
human learning pattern to iteratively search and reach the
global maximum or minimum. It has two distinct phases i.e.
improving phase and acquiring phase that execute sequen-
tially in each iteration to exploit and explore the search region
respectively.

Initialization

The initial position of the each member in the population is
generated by

Ai, j = A jmin + μ
(
A jmax − A jmin

)
,

i = 1, 2, . . . , N , j = 1, 2, . . . , D, (2.1)

Here Ai denotes position of the i th member in the D
dimensional space. Ai, j denotes the j th dimension of the

position vector. A jmax A jmin are the upper and the lower
bounds of j th parameter. N is the population size and D
is the dimensionality of the optimization problem under con-
sideration.

Improving phase

In this phase each swarm member Xi is updated as per Eq.
(2.2),

Anewi, j = c ∗ Aoldi, j + r ∗ (gbest j − Aoldi, j ) (2.2)

Here c is the self introspection factor and r is a random
number. Then Anewi, j is compared with Ai, j and the one who
provides better performance is accepted as value of Ai, j .
This equation has a clumping effect on the swarm members
as the values of Ai, j will be remapped randomly in the con-
nected areas defined by the 4 line segments given in Eqs.
(2.3a) to (2.3d) where r ∈ [rn, rx ]. Eqs. (2.3a) and (2.3b)
represent the update equation in improving phase (Eq. (2.2))
when value of r is rx and rn respectively. Equations (2.3c)
and (2.3d) represent the boundary condition xmin and xmax

defined by the optimization problem.

y = (c − rx ) ∗ x + rx ∗ gbest, (2.3a)

y = (c − rn) ∗ x + rn ∗ gbest, (2.3b)

x = xmin, and x = xmax (2.3c)

y = xmin, and y = xmax (due to boundary constraint)
(2.3d)

If we observe Eqs. (2.3a) and (2.3b), they intersect at the
point c ∗ gbest as shown in Fig. 1a. Thus, c ∗ gbest is the
cluster centroid. The cluster centroid is formed on the line
connecting the origin and gbest. So smaller c value always
forms the cluster closer to the origin. From Fig. 1a it is clear
that for any value of Xi in phe the range, there is always a
possibility that it gets mapped to c ∗ gbest (Can be verified
by taking a vertical cross section of the grey area shown in
Fig. 1a) and the farther a point is from the centroid on y-
axis, the range of values of Xi which gets mapped to the
value decreases. As the vertical cross-section of the proba-
ble area (Grayed portion in Fig. 1a) indicates probability of
y falling in the region, most points will clump around the
cluster centroid. In Fig. 1, the graphical representation of
transformation done by Improving phase is shown. The Fig.
1a shows the area defined by the Eqs. (2.3a)–(2.3d) and how
the range of Xi is reduced along each dimension(projection
on x-axis shows the initial range, and projection on y-axis
shows the range after improving phase). The Fig. 1b shows
a 2D visualization of clustering of Xi after improving phase.

The spread of the cluster roughly can be determined by
the angle between the lines reddenoted by φ. It is defined by
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Fig. 1 a Mapping of Xi in improving phase, b clustering in improving phase after first iteration (created with c, rn, rx , xmin, xmax, gbest values as
0.4,− 1, 1, −90, 90, 60 respectively)

Eqs. 2.3a and 2.3b. It is controlled by values of c and r as

tan(φ) = m1 − m2

1 + m1m2
,where m1,m2are slopes of lines

defined by Eqs. (12.3a) and (12.3b) respectively

�⇒ tan(φ) = (c − rn) − (c − rx )

1 + (c − rn) ∗ (c − rx )

�⇒ tan(φ) = rx − rn
1 + c2 − (rx + rn) ∗ c + rnrx

Hence the angle can be found as

φ = tan−1
(

rx − rn
1 + c2 − (rx + rn) ∗ c + rnrx

)
(2.4)

Acquiring phase

In acquiring phase, each swarm member Ai moves in the
search space with respect to gbest and another randomly
selected swarm member As . The update equation is given
by

if f (Ai ) < f (As) then

Anewi,: = Aoldi,:+r1∗(Aoldi,:−As,:)+r2∗(gbest−Aoldi,:)

else

Anewi,: = Aoldi,:+r1∗(As,:−Aoldi,:)+r2∗(gbest−Aoldi,:)

end if

Here As is a member of the swarm s.t. i �= s and r1, r2 ≥
0. The update equations in acquiring phase can be written
as

Anewi = Ai + (r2 ± r1)

(
r2 ∗ gbest ± r1 ∗ As

r2 ± r1
− Ai

)

�⇒ Anewi = Ai + rn(An − Ai ),

where An = r2 ∗ gbest ± r1 ∗ As

r2 ± r1
and rn = r2 ± r1

So Ai updates it’s position with respect to a vector which
is weighted mean of As and the gbest . Figure 2 shows the
direction of movement of Ai in acquiring phase.

So every swarmmember updates itself bymoving towards
or away from another swarm member while moving itself
slightly closer to gbest.

Stability analysis

The stability analysis is an important requirement of numer-
ical estimation schemes involving partial differential equa-
tions. In the pre-text context the stability reflects that the total
error of a numeric scheme remains bounded. In other words,
if some error is introduced it would remain under a bound
and would not explode or increase beyond a limit. The Von
Neumann stability analysis, which uses Fourier Decomposi-
tion, is an important technique, which is chosen to analyse
the stability of a scheme.
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Fig. 2 a New Position of Xi is towards Xs. b New position of Xi is further from Xs

von Neumann stability analysis

Consider the partial differential equation represents a system
X ,

δX

δτ
+ a

δX

δχ
= 0 (3.1)

a function of χ and τ , which evolves through space (χ ) and
time(τ ). The numeric estimate of the corresponding partial
differential equation is given by red

X(τ + �τ, χ) − X(τ − �τ, χ)

2 ∗ �τ

+ a ∗ X(τ, χ + �χ) − X(τ, χ − �χ)

2 ∗ �χ
= 0 (3.2)

Equation (3.2) shows numeric estimate of Eq. (3.1) The
Fourier series expansion of X(τ, χ) can be written as

X(τ, χ) =
∑

i∈1,...,b1,
t∈1,...,b2

Ame
−Jβmt�τ eJαmi�χ (3.3)

where χ = i�χ , τ = t�τ . �χ and �τ represent the inter-
vals that were used to sample values along the χ and τ axis.

Let X̂(t, i) represent an estimate of X(τ, χ) with an error
εt,ias shown in Eq. (3.4).

X(τ, χ) = X̂(t, i) + εt,i (3.4)

Herewewant to learnwhether the error associatedwith the
estimate grows or shrinks with each iteration. So we assume
that the error is associated with some components of the

Fourier expansion of X .We replace X in the numeric estimate
is replaced by its fourier component to check whether contri-
bution of a single fourier component increases or diminishes
over time. If it diminishes then the error associated with the
estimate decreases with time too. If the relation between any
Fourier coefficient in t th iteration with the corresponding
Fourier coefficient in (t + 1)th iteration can be represented
by the Eq. (3.5) and |g(αm)| ≤ 1 then contribution of each
Fourier component decreases with each iteration. So any
error associated with it will also diminish over time and we
will conclude that the numeric scheme is stable.

Ame
−Jβm (t+1)�τ = Ame

−Jβmt�τ ∗ g(αm) (3.5)

Stability Analysis in context of swarm optimization

In swarm optimization algorithms the update equation is the
form

At+1
i = c ∗ At

i + f (At
i , A

t
r ) (3.6)

Here Ar is another member of the swarm besides Ai . Ai

interacts with another member of the swarm to update it’s
value over each iteration. To determine if it is stablewewould
want to know if some error gets introduced in an iteration then
it diminishes or increases with each subsequent iteration.

For the stability analysis A is modelled as a continuous
variable across space and time, where each iteration and each
member of the swarm is taken as samples at τ = t�τ and
χ = i�χ . i.e.

At
i = A(t�τ, i�χ) = A(τ, χ)
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Fig. 3 a Representation of A as continuous variable from it’s grid samples. b Fourier decomposition of Ai

So all the distinct members of the swarm and each subse-
quent iteration is modelled as a single continuous function.

This allows us to find a Fourier series corresponding to At
i

as Eq. (3.7)

At
i =A(t�τ, i�χ) = A(τ, χ)

=
∑

i∈1,...,b1,t∈1,...,b2
Ame

−Jβmt�τ eJαmi�χ (3.7)

Now we can do von Neumann stability analysis on the
update equation (Eq. (3.6)) by replacing At

i with it’s Fourier

component Ame−Jβmt�τ eJαmi�χ . We would get a equation
of the form

Ame
−Jβm (t+1)�τ = Ame

−Jβmt�τ ∗ g(αm)

�⇒ e−Jβm�τ = g(αm)

If e−Jβm�τ lies inside the unit circle in the Hilbert Space
(complex space) then with each update the contribution of a
single Fourier component would diminish over time. So the
condition of stability is given as

|g(αm)| ≤ 1 �⇒ |e−Jβm�τ | ≤ 1 (3.8)

Optimization functions

Table 1 lists eight standard objective functions to be opti-
mized along with their shifted and rotated version. For this
the steps mentioned in the CEC 2014 [22] is followed. The
functions are mentioned under the column objective function
of Table 1 and are expressed as a function of z. But for better
control and more variety we define z as a function of x . So

we can shift,scale and rotate x vectors before passing them
into the functions.

The mappings from x to z are defined under the column
z. Different mappings from x to z are defined to generalize
the properties as stated-
Range of A: x j ∈ [−R, R]
Global Best value location: gbest = o
and M is a DxD rotation matrix. In this paper we will keep
R = 100 as per CEC 2014 [22] and we will use different
values of M ,o and D to test the algorithm.

Stability analysis of SGO algorithm

Approach for a solution

In SGO algorithm we have two phases that operate sequen-
tially in a single epochwhich gives the updated value of Anewi

for the next epoch. The equations governing the improving
phase is,

Aimpi, j = c ∗ Ai, j + r ∗ (gbest j − Ai, j ) (4.1)

and acquiring phase is,

Aacqi, j = Aimpi, j ± r1 ∗ (As, j − Aimpi, j )

+r2(gbest j − Aimpi, j ) (4.2)

Aacqi the value of Anewi for the next iteration. The update
equation can be written as

�⇒ Anewi, j = (c − r) ∗ (1 ∓ r1 − r2)Ai, j ± r1 ∗ As, j

+(r2 + (1 ∓ r1 − r2) ∗ r)gbest j (4.3)
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Table 1 List of optimization functions

Name z Objective function

Sphere z = M ∗ (x − o) Min f1(x) = ∑D
j=1 z

2
j

Rosenbrock z = M ∗
(
2.048(x−o)

R + 1
)

Min f2(x) = ∑D−1
j=1 (100(z j+1 − z2j )

2 + (z j − 1)2)

Ackley z = M ∗
(
32(x−o)

R

) Min f3(x) = −20 ∗ exp
(
−0.2 ∗

√
1
D

∑D
j=1 z

2
j

)

−exp
(

1
D

∑D
j=1 cos(2π z j )

)
+ 20 + e

Griewank z = M ∗
(
600(x−o)

R

)
Min f4(x) = ∑D

j=1
z2j

4000 − ∏D
j=1 cos

(
z j√
j

)
+ 1

Rastrigin z = M ∗
(
5.12(x−o)

R

)
Min f5(x) = 10D + ∑D

j=1(z
2
j − 10cos(2π z j ))

Alpine z = M ∗
(
10(x−o)

R

)
Min f6(x) = ∑D

j=1(|z j sin(z j ) + 0.1 ∗ z j |)
Sum of powers z = M ∗

(
(x−o)

R

)
Min f7(x) = ∑D

j=1 |z j+1
j |

Zakharov z = M ∗
(
10(x−o)

R

)
Min f8(x) = ∑D

j=1 z
2
j +

(∑D
j=1 0.5 j z j

)2 +
(∑D

j=1 0.5 j z j
)4

Equation (4.3) is a four dimensional equation w.r.t to the
parameters c, r , r1, r2. This equation is very difficult to solve
as von Neumann analysis won’t provide enough inequalities
to perfectly define ranges of all the parameters. Moreover we
will get equations where range of c, r is dependent on r1, r2
and vice versa, which is not desirable as both improving and
acquiring phases are independent of each other. But we can
use a simple trick to simplify these issues. In Eq. (4.1), let’s
assume Aimpi, j = At+1

i, j and replace At
i, j and At+1

i, j with the
corresponding Fourier component.Wewould get an equation
of the form,

Ame
−Jβm (t+1)�τ = Ame

−Jβmt�τ ∗ g(αm1) (4.4)

Doing the same for acquiring phase we would get,

Ame
−Jβm (t+1)�τ = Ame

−Jβmt�τ ∗ g(αm2) (4.5)

Fourier representation of Eq. (4.3) can be expressed as,

Ame
−Jβm (t+1)�τ = Ame

−Jβmt�τ ∗ g(αm1) ∗ g(αm2) (4.6)

and the corresponding condition for stability is

|g(αm1) ∗ g(αm2)| ≤ 1

But if

|g(αm1)| ≤ 1

and

|g(αm2)| ≤ 1

are satisfied, then the condition of stability will be
automatically satisfied. Therefore the stability analysis of

improving phase and acquiring phase independently can be
taken up to obtain the ranges for c, r , r1, r2.

Stability analysis

Improving phase

The Improving Phase has 2 parameters that govern the equa-
tion, c and r . c is the self introspection parameter which is
constant, i.e. its value stays the same throughout the algo-
rithm. r is a random number. The update equation is given in
Eq. (4.7)

Anewi, j = c ∗ Aoldi, j + r ∗ (gbest j − Aoldi, j ) (4.7)

By replacing Anewi, j and Aoldi, j with At+1
i, j and At

i, j
respectively, Eq. (4.7) can be rewritten as Eq. (4.8).

At+1
i, j = c ∗ At

i, j + r ∗
(
gbest j − At

i, j

)
(4.8)

In the update equation the dimensions are independent
of each other, we can drop j and assume it to be an one
dimensional problem without loss of generality. So the Eq.
(4.8) reduces to Eq. (4.9).

At+1
i = c ∗ At

i + r ∗ (
gbest − At

i

)
(4.9)

Here the superscript t denotes the value at t th iteration. For
simplifying our calculations we can take gbest as a constant.
This decision is justified by the fact that after some initial iter-
ations the value of gbest updates only occasionally through
the algorithm run.

As gbest is a constant we can remove the term from the
calculations for stability analysis as there are no errors asso-
ciatedwith a constant value.Mathematically, themth Fourier
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component of a constant term is 0 as the Fourier series of the
constant is represented by the constant itself.

Replacing At
i with it’smth Fourier component Ame−Jβmtτ

eJαmiχ (where J is the imaginary unit) in the Eq. (4.9) an
equation similar to the form Eq. (3.5) is obtained.

Ame
−Jβm (t+1)�τ eJαmi�χ = (c − r) ∗ Ame

−Jβmt�τ eJαmi�χ

�⇒ eJβm�τ = (c − r)

As per von neumann stability criterion(given in Eq. (3.8))
|eJβm�τ | ≤ 1. Upon solving the inequality we get,

|c − r | ≤ 1

�⇒ −1 ≤ c − r ≤ 1

�⇒ c − 1 ≤ r ≤ c + 1

We obtain the range of r as defined in Eq. (4.10). The
range of r is dependent on c.

c − 1 ≤ r ≤ c + 1 (4.10)

Slope: For rn = c − 1 and rx = c + 1 as r ∈ [c − 1, c + 1],
it can be found that

rx − rn = 2 (4.11a)

rx + rn = 2c (4.11b)

rxrn = c2 − 1 (4.11c)

Putting these values defined in Eqs. (4.11a)–(4.11c) in Eq.
(2.4), we get

φ = tan−1
(

2

1 + c2 − 2c2 + c2 − 1

)
(4.12)

φ = π

2
(4.13)

Therefore, if we use the complete stable range for improv-
ing phase, the angle of spread has to be π/2.

Experimental results To verify the findings, the acquiring
phase is removed from SGO algorithm and only the improv-
ing phase is considered. The stable range of r against the
three schemes of unstable ranges is compared. They are

1. r ∈ [c + 1, c + 3] (r all positive)
2. r ∈ [−c − 3,−c − 1] (r all negative)
3. r ∈ [−c − 2,−c − 1] ∪ [c + 1, c + 2]

Rastrigin, Rosenbrock and Alpine function are used for
the testing with D = 30, number of swarm members i.e.
N = 50 with 300 epochs (Or 50 ∗ 300 = 15,000 function
evaluations). Testing is performed in 3 phases.

• M ,o as identity matrix and null vector respectively. Aver-
age taken over 30 iterations.

• M as identity matrix and o as a random vector whose
value will be changed after each 10th iteration. Average
taken over 100 iterations.

• M as random rotation matrix and o as a random vector.
Their values will be changed after each 12th iteration.
Average andStandard deviation taken over 120 iterations.

Figures 4, 5 and 6 show the results of the 3 phases mentioned
above. From the figures it can be observed that, as c value
increases the stable range performs better than the other 3
unstable schemes.

Acquiring phase

The acquiring phase is governed by two parameters i.e. r1
and r2. In acquiring phase, if Ai is fitter than As , then Ai is
updated as

Anewi,: = Aoldi,: + r1 ∗ (Aoldi,: − As,:)
+r2 ∗ (gbest − Aoldi,:) (4.14)

else it is updated as

Anewi,: = Aoldi,: + r1 ∗ (As,: − Aoldi,:)

+r2 ∗ (gbest − Aoldi,:) (4.15)

Here As is a candidate solution such that i �= s and r1, r2 ≥
0. We start with Eq. (4.15). The equation can be rewritten as

At+1
i,: = At

i,: + r1 ∗ (At
s,: − At

i,:) + r2 ∗ (gbest − At
i,:)

(4.16)

Here the superscript t denotes the value at t th iteration.
Replacing

As=Ai±a,where a ∈ {±1,±2, . . .} and 1 ≤ i ± b ≤ N

as As is a member of the swarm and s �= i , we get

At+1
i,: = At

i,: + r1 ∗ (At
i±a,: − At

i,:) + r2 ∗ (gbest − At
i,:)
(4.17)

In the update equation the dimensions are independent
of each other. So it can be assumed as an one dimensional
problem without loss of generality. Then the Eq. (4.17) can
be rewritten as

At+1
i = At

i + r1 ∗ (
At
i±a − Xt

i

) + r2 ∗ (gbest − At
i )

(4.18)
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Fig. 4 Experimental results of testing of the improving phase with normal functions

Fig. 5 Experimental results of testing of the improving phase with shifted functions
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Fig. 6 Experimental results of testing of the improving phase with shifted+rotated functions

Similar to improving phase, gbest can be removed from
the stability analysis calculations of acquiring phase, as it
being a constant won’t contribute to the errors.

Replacing At
i with it’smth Fourier component Ame−Jβmt�τ

eJαmi�χ we get

Ame
−Jβm (t+1)�τ eJαmi�χ = (1 − r2) ∗

Ame
−Jβmt�τ eJαmi�χ + r1 ∗ (Ame

−Jβmt�τ eJαm (i±a)�χ

−Ame
−Jβmt�τ eJαmi�χ) (4.19)

Upon simplifying we get,

Ame
−Jβm (t+1)�τ eJαmi�χ

= (1 − r2) ∗ Ame
−Jβmt�τ eJαmi�χ + r1

∗ (Ame
−Jβmt�τ eJαm (i±a)�χ − Ame

−Jβmt�τ eJαmi�χ)

�⇒ Ame
−Jβm (t+1)�τ eJαmi�χ

= (1 − r1 − r2) ∗ Ame
−Jβmt�τ eJαmi�χ + r1

∗ Ame
−Jβmt�τ eJαm (i±a)�χ

�⇒ e−Jβm�τ = (1 − r1 − r2) + r1 ∗ eJθ ,

where θ = αm(±a)�χ

As per Von Neumann stability criterion, |eJβm�τ | ≤ 1.
So,

�⇒ |(1 − r1 − r2) + r1 ∗ eJθ | ≤ 1

�⇒
√

(1 − r1 − r2 + r1cosθ)2 + (r1sinθ) ≤ 1

�⇒
√

(1 − r2)2 − 4r1(1 − r1 − r2)sin2
(

θ

2

)
≤ 1

�⇒ (1 − r2)
2 ≤ 1 + 4r1(1 − r1 − r2)sin

2
(

θ

2

)

Thus we obtain the Eq. (4.20). The inequality applies for
all values of sin2

(
θ
2

)
.

(1 − r2)
2 ≤ 1 + 4r1(1 − r1 − r2)sin

2
(

θ

2

)
(4.20)

Substituting sin2
(

θ
2

) = 0 in Eq. (4.20) we get,

(1 − r2)
2 ≤ 1

�⇒ −1 ≤ 1 − r2 ≤ 1

�⇒ 0 ≤ r2 ≤ 2

Hence the range of r2 is obtained as

0 ≤ r2 ≤ 2 (4.21)
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Putting sin2
(

θ
2

) = 1 in Eq. (4.20) we get,

(1 − r2)
2 ≤ 1 + 4r1(1 − r1 − r2)

�⇒ ((1 − r2 − r1) + r1)
2 − 4r1(1 − r1 − r2) ≤ 1

�⇒ (1 − r2 − 2r1)
2 ≤ 1

�⇒ −1 ≤ 1 − r2 − 2r1 ≤ 1

�⇒ −r2 ≤ 2r1 ≤ 2 − r2

Thus the Eq. (4.22) defining relation between r1 and r2 is
obtained as

− r2 ≤ 2r1 ≤ 2 − r2 (4.22)

But there is an additional condition that r1 ≥ 0. By con-
sidering this condition, we get the triangular region with
boundaries defined by Eqs. (4.23a)–(4.23c).

r1 = 0 (4.23a)

r2 = 0 (4.23b)

r2 + 2r1 = 2 (4.23c)

But as Xs, j − Xi, j can be negative, r1 can be replaced
with −r1. The region obtained by replacing with −r1 has
boundaries defined by

r1 = 0 (4.24a)

r2 = 0 (4.24b)

r2 + 2r1 = 2 (4.24c)

So the complete region for r1 and r2, as shown in Fig. 7a,
is equal to the union of the regions defined by Eqs. (4.23a)–
(4.23c) and Eqs. (4.24a)–(4.24c). For ease of calculation,
this region has been approximated by the rectangular region
bounded by the constraint 0 ≤ r1 ≤ 1 and 0 ≤ r2 ≤ 1 as
shown in Fig. 7b.

The calculations for Eq. (4.14) is similar and by following
the same steps which was done for Eq. (4.15), we obtain the
equation as

e−Jβm�τ = (1 + r1 − r2) − r1 ∗ eJθ , where

θ = αm(±a)�χ (4.25)

As per von neumann stability criterion |eJβm�τ | ≤ 1. So,

�⇒ |(1 + r1 − r2) − r1 ∗ eJθ | ≤ 1

�⇒ (1 − r2)
2 ≤ 1 − 4r1(1 + r1 − r2)sin

2
(

θ

2

)

Thus we obtain the inequality

(1 − r2)
2 ≤ 1 + 4r1(1 − r1 − r2)sin

2
(

θ

2

)
(4.26)

The inequality applies for all values of sin2
(

θ
2

)
. Putting

sin2
(

θ
2

) = 0 in Eq. (4.26) gives us the same condition as
in Eq. (4.22). Putting sin2

(
θ
2

) = 1 in Eq. (4.20) we get,

(1 − r2)
2 ≤ 1 − 4r1(1 + r1 − r2)

�⇒ ((1 − r2 + r1) − r1)
2 + 4r1(1 + r1 − r2) ≤ 1

�⇒ (1 − r2 + 2r1)
2 ≤ 1

�⇒ −1 ≤ 1 − r2 + 2r1 ≤ 1

�⇒ r2 − 2 ≤ 2r1 ≤ r2

Thus the resulting inequality is

− r2 ≤ 2r1 ≤ 2 − r2 (4.27)

Using the condition that r1 ≥ 0 with Eq. (4.27), the tri-
angular region with boundaries defined by the lines Eqs.
(4.24a)–(4.24c) is obtained. Again, as done before, replacing
r1 with −r1, the region bounded by the lines is defined by
Eqs. (4.23a)–(4.23c). So for Eq. (4.14) the same rectangu-
lar region as Eq. (4.14), which is bounded by the constraint
0 ≤ r1 ≤ 1 and 0 ≤ r2 ≤ 1 is obtained.

Thus for acquiring phase the stable range for r1 and r2 is
obtained as r1 ∈ [0, 1] and r2 ∈ [0, 2].
Experimental results

To verify our findings, we remove the acquiring phase from
SGO algorithm and only keep the improving phase. The sta-
ble range of r is compared against 3 schemes of unstable
ranges of r , i.e.

(i) r1 ∈ [1, 2], r2 ∈ [0, 2] (r1 outside stable range)
(ii) r1 ∈ [0, 1], r2 ∈ [2, 4] (r2 outside stable range)
(iii) r1 ∈ [1, 1.5], r2 ∈ [2, 3] (Both outside stable range)

We have used Rastrigin, Rosenbrock and Alpine function
for the testing with D = 30, number of swarm members i.e.
N = 50 with 300 epochs (or 50 ∗ 300 = 15,000 function
evaluations). The testing is done in 3 phases.

• M ,o as identity matrix and null vector respectively. Aver-
age and Standard deviation taken over 30 iterations.

• M as identity matrix and o as a random vector whose
value will be changed after each 10th iteration. Average
and Standard deviation taken over 100 iterations.
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Fig. 7 Graph demonstrating stable region for SGO w.r.t r1 and r2

Fig. 8 Experimental results of testing of the acquiring phase

• M as random rotation matrix and o as a random vector.
Their values will be changed after each 12th iteration.
Average andStandard deviation taken over 120 iterations.

Figure 8 shows the results of the 3 phases mentioned above.
We can clearly see that the stable range performs better than
the 3 unstable schemes.

Numerical experiments

All the simulations were carried out in Matlab R2016a on
the system having Intel Core i7 2.67 GHz processor and 8
GB RAM.

To verify the findings, the performance of SGO algorithm
(with both acquiring and improving phase) is tested with the
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Table 4 Result of optimization (10D shifted functions)

Name Default range Stable range Unstable range
r ∈ [0, 1] r ∈ [c − 1, c + 1] r ∈ [c − 2, c − 1] ∪ [c + 1, c + 2]
r1, r2 ∈ [0, 1] r1 ∈ [0, 1], r2 ∈ [0, 2] r1 ∈ [1, 1.5], r2 ∈ [2, 3]

Sphere C:0.2 3027 ± 2.9e + 03 C:0.2 366.9± 6e+ 02 C:0.2 1.629e + 04 ± 5.1e + 03

C:0.4 4219 ± 3.5e + 03 C:0.4 90.55± 2.8e+ 02 C:0.4 1.401e + 04 ± 5.4e + 03

C:0.6 4674 ± 3.2e + 03 C:0.6 83.06± 2.6e+ 02 C:0.6 1.339e + 04 ± 5.6e + 03

C:0.8 5085 ± 3.6e + 03 C:0.8 4.261± 13 C:0.8 1.327e + 04 ± 4.9e + 03

C:1.0 8703 ± 5e + 03 C:1.0 1232± 1.6e+ 03 C:1.0 1.953e + 04 ± 5.6e + 03

Rosenbrock C:0.2 321 ± 4.6e + 02 C:0.2 69.21± 1.3e+ 02 C:0.2 1565 ± 9.3e + 02

C:0.4 367.1 ± 4.5e + 02 C:0.4 39.98± 49 C:0.4 1332 ± 7.4e + 02

C:0.6 482.6 ± 5.8e + 02 C:0.6 37.38± 45 C:0.6 885.1 ± 4.9e + 02

C:0.8 618.2 ± 9.2e + 02 C:0.8 37.73± 40 C:0.8 884.5 ± 5.6e + 02

C:1.0 1419 ± 1.5e + 03 C:1.0 187.9± 2.8e+ 02 C:1.0 1695 ± 1e + 03

Ackley C:0.2 15.6 ± 3.3 C:0.2 7.754± 5.5 C:0.2 19.88 ± 0.79

C:0.4 16.34 ± 3.2 C:0.4 7.513± 5.5 C:0.4 19.54 ± 0.8

C:0.6 16.52 ± 3.3 C:0.6 7.78± 6.4 C:0.6 19.13 ± 1

C:0.8 17.21 ± 2.9 C:0.8 7.489± 6.8 C:0.8 18.92 ± 1.6

C:1.0 17.34 ± 2.4 C:1.0 14.36± 4.5 C:1.0 19.83 ± 1

Griewank C:0.2 34.41 ± 29 C:0.2 3.27± 3.8 C:0.2 132 ± 40

C:0.4 39.38 ± 32 C:0.4 2.564± 4 C:0.4 121.9 ± 39

C:0.6 48.84 ± 33 C:0.6 1.257± 1.5 C:0.6 118.4 ± 49

C:0.8 43.49 ± 35 C:0.8 1.299± 2.6 C:0.8 108.9 ± 57

C:1.0 82.74 ± 44 C:1.0 15.55± 22 C:1.0 167.5 ± 43

Rastrigin C:0.2 57.92 ± 23 C:0.2 47.78± 18 C:0.2 124.6 ± 21

C:0.4 58.92 ± 19 C:0.4 50.39± 18 C:0.4 120.3 ± 19

C:0.6 61.83 ± 25 C:0.6 45.84± 17 C:0.6 114.8 ± 20

C:0.8 56.62 ± 24 C:0.8 41.75± 15 C:0.8 109 ± 24

C:1.0 68.83 ± 24 C:1.0 52.04± 21 C:1.0 116.8 ± 21

Alpine C:0.2 2.039± 1.6 C:0.2 2.692 ± 2.5 C:0.2 15.16 ± 2.8

C:0.4 1.762± 1.3 C:0.4 2.825 ± 2.8 C:0.4 13.56 ± 3.2

C:0.6 2.279± 1.7 C:0.6 2.378 ± 2.9 C:0.6 15.44 ± 3.5

C:0.8 1.98 ± 1.5 C:0.8 1.468± 2.3 C:0.8 14.65 ± 4

C:1.0 4.478 ± 1.9 C:1.0 2.593± 2.1 C:1.0 15.43 ± 3.3

Sum of powers C:0.2 0.07342 ± 0.1 C:0.2 0.0006466± 0.0019 C:0.2 0.4429 ± 0.32

C:0.4 0.09127 ± 0.16 C:0.4 0.001545± 0.0082 C:0.4 0.4041 ± 0.29

C:0.6 0.1412 ± 0.18 C:0.6 0.0006761± 0.0051 C:0.6 0.438 ± 0.4

C:0.8 0.1539 ± 0.23 C:0.8 4.373e− 06± 2.1e− 05 C:0.8 0.2851 ± 0.33

C:1.0 0.2864 ± 0.41 C:1.0 0.03304± 0.14 C:1.0 0.8882 ± 1.2

zakharov C:0.2 70.72 ± 75 C:0.2 32.9± 44 C:0.2 325.1 ± 1.2e + 02

C:0.4 96.77 ± 93 C:0.4 22.92± 21 C:0.4 260.9 ± 1.5e + 02

C:0.6 74.78 ± 62 C:0.6 20.71± 29 C:0.6 247.3 ± 1.2e + 02

C:0.8 112.2 ± 83 C:0.8 6.52± 5.8 C:0.8 227.4 ± 1.3e + 02

C:1.0 257.3 ± 1.5e + 02 C:1.0 132.8± 1.7e+ 02 C:1.0 560.5 ± 3.1e + 02
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Table 5 Result of optimization (30D shifted functions)

Name Default range Stable range Unstable range
r ∈ [0, 1] r ∈ [c − 1, c + 1] r ∈ [c − 2, c − 1] ∪ [c + 1, c + 2]
r1, r2 ∈ [0, 1] r1 ∈ [0, 1], r2 ∈ [0, 2] r1 ∈ [1, 1.5], r2 ∈ [2, 3]

Sphere C:0.2 77.6± 2.1e+ 02 C:0.2 390.2 ± 6.3e + 02 C:0.2 8.633e + 04 ± 1.4e + 04

C:0.4 41.89± 1.1e+ 02 C:0.4 207.9 ± 5.2e + 02 C:0.4 8.061e + 04 ± 1.4e + 04

C:0.6 95.06± 2.5e+ 02 C:0.6 123.3 ± 2.5e + 02 C:0.6 7.681e + 04 ± 1.5e + 04

C:0.8 135.5 ± 3.5e + 02 C:0.8 28.29± 69 C:0.8 8.327e + 04 ± 1.9e + 04

C:1.0 2.657e + 04 ± 8.6e + 03 C:1.0 3391± 3.5e+ 03 C:1.0 7.047e + 04 ± 1.1e + 04

Rosenbrock C:0.2 154.9 ± 65 C:0.2 131.5± 83 C:0.2 1.83e + 04 ± 5.7e + 03

C:0.4 148.3 ± 66 C:0.4 132.4± 94 C:0.4 1.781e + 04 ± 7.2e + 03

C:0.6 149 ± 1.2e + 02 C:0.6 98.49± 50 C:0.6 1.632e + 04 ± 6.5e + 03

C:0.8 162.8 ± 73 C:0.8 88.5± 45 C:0.8 1.378e + 04 ± 7.4e + 03

C:1.0 3719 ± 2e + 03 C:1.0 526.9± 4.7e+ 02 C:1.0 1.07e + 04 ± 4e + 03

Ackley C:0.2 14.99 ± 3.4 C:0.2 5.736± 4 C:0.2 20.88 ± 0.23

C:0.4 16.05 ± 3 C:0.4 5.402± 3.9 C:0.4 20.85 ± 0.25

C:0.6 16.1 ± 2.9 C:0.6 4.728± 4.1 C:0.6 20.71 ± 0.34

C:0.8 17 ± 2.6 C:0.8 3.782± 6.3 C:0.8 20.64 ± 0.54

C:1.0 18.42 ± 0.98 C:1.0 15.7± 3.5 C:1.0 20.93 ± 0.25

Griewank C:0.2 1.029± 0.65 C:0.2 4.266 ± 6.7 C:0.2 757.1 ± 1.2e + 02

C:0.4 2.702± 9 C:0.4 3.707 ± 5.7 C:0.4 703.1 ± 1.3e + 02

C:0.6 1.852± 2.5 C:0.6 2.472 ± 3.2 C:0.6 714.7 ± 1.2e + 02

C:0.8 1.712 ± 1.7 C:0.8 0.5808± 0.59 C:0.8 712.2 ± 1.5e + 02

C:1.0 216.5 ± 65 C:1.0 34.43± 44 C:1.0 625.5 ± 1.2e + 02

Rastrigin C:0.2 163.7± 37 C:0.2 210.5 ± 48 C:0.2 489.9 ± 31

C:0.4 187.2± 43 C:0.4 215.6 ± 47 C:0.4 481 ± 48

C:0.6 179± 35 C:0.6 213.2 ± 49 C:0.6 469.1 ± 46

C:0.8 163.9± 37 C:0.8 186.4 ± 46 C:0.8 455.1 ± 60

C:1.0 199.2 ± 36 C:1.0 168.9± 42 C:1.0 451 ± 43

Alpine C:0.2 0.906± 1.1 C:0.2 11.17 ± 8.6 C:0.2 66.76 ± 8.1

C:0.4 0.6791± 0.89 C:0.4 12.48 ± 10 C:0.4 63.11 ± 8.5

C:0.6 0.9522± 1 C:0.6 10.28 ± 8.4 C:0.6 61.82 ± 7.8

C:0.8 0.6743± 0.89 C:0.8 6.801 ± 6.6 C:0.8 62.73 ± 8.2

C:1.0 18.27 ± 4.1 C:1.0 8.297± 4.6 C:1.0 60.34 ± 10

Sum of powers C:0.2 1.08e− 05± 8.5e− 05 C:0.2 0.0002463 ± 0.0014 C:0.2 1.878 ± 0.94

C:0.4 8.633e− 07± 3.8e− 06 C:0.4 6.075e − 06 ± 2.6e − 05 C:0.4 2.552 ± 0.91

C:0.6 1.116e− 05± 3.9e− 05 C:0.6 1.256e − 05 ± 9.6e − 05 C:0.6 2.401 ± 1

C:0.8 3.137e − 06 ± 1e − 05 C:0.8 1.498e− 06± 1.3e− 05 C:0.8 2.081 ± 1

C:1.0 0.2864 ± 0.43 C:1.0 0.04058± 0.21 C:1.0 6.963 ± 9.3

Zakharov C:0.2 17.89± 14 C:0.2 235.9 ± 71 C:0.2 1308 ± 2.4e + 02

C:0.4 15.9± 14 C:0.4 191.2 ± 63 C:0.4 1281 ± 2.8e + 02

C:0.6 24.19± 33 C:0.6 170 ± 61 C:0.6 1148 ± 2.7e + 02

C:0.8 17.14± 16 C:0.8 99.43 ± 36 C:0.8 1134 ± 3.1e + 02

C:1.0 135.9 ± 76 C:1.0 124.3± 1.4e+ 02 C:1.0 1646 ± 3.7e + 02

ranges of r , r1, r2 found in the “Improving phase” section
and “Acquiring phase” section. These ranges are referred to
as stable range. We use r ∈ [−c − 2,−c − 1] ∪ [c + 1, c +
2] for the improving phase (defined in “Improving phase”

section (b)) and r1 ∈ [1, 1.5], r2 ∈ [2, 3] for the acquiring
phase (defined in “Acquiring phase” section (a)) to test the
performance of
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Table 6 Result of optimization (10D shifted and rotated functions)

Name Default range Stable range Unstable range
r ∈ [0, 1] r ∈ [c − 1, c + 1] r ∈ [c − 2, c − 1] ∪ [c + 1, c + 2]
r1, r2 ∈ [0, 1] r1 ∈ [0, 1], r2 ∈ [0, 2] r1 ∈ [1, 1.5], r2 ∈ [2, 3]

Sphere C:0.2 4150 ± 3.7e + 03 C:0.2 152.7± 3.3e+ 02 C:0.2 1.583e + 04 ± 4.4e + 03

C:0.4 4741 ± 3.6e + 03 C:0.4 196.6± 4.3e+ 02 C:0.4 1.316e + 04 ± 4.3e + 03

C:0.6 4688 ± 4e + 03 C:0.6 73.86± 2e+ 02 C:0.6 1.413e + 04 ± 6.2e + 03

C:0.8 5886 ± 4.5e + 03 C:0.8 9.128± 31 C:0.8 1.202e + 04 ± 5.5e + 03

C:1.0 9112 ± 5.2e + 03 C:1.0 1170± 1.6e+ 03 C:1.0 1.519e + 04 ± 6.3e + 03

Rosenbrock C:0.2 441 ± 5.2e + 02 C:0.2 129.1± 2.2e+ 02 C:0.2 2301 ± 1.5e + 03

C:0.4 680.6 ± 7.2e + 02 C:0.4 150.5± 2.1e+ 02 C:0.4 1688 ± 8.5e + 02

C:0.6 742.5 ± 1e + 03 C:0.6 90.62± 1.2e+ 02 C:0.6 1223 ± 7.4e + 02

C:0.8 1167 ± 1e + 03 C:0.8 105.7± 1.1e+ 02 C:0.8 865.1 ± 6.6e + 02

C:1.0 2651 ± 2.7e + 03 C:1.0 269.4± 3.7e+ 02 C:1.0 2126 ± 2.3e + 03

Ackley C:0.2 16.32 ± 3.4 C:0.2 7.619± 5.1 C:0.2 19.79 ± 0.64

C:0.4 16.42 ± 3.4 C:0.4 7.395± 5.5 C:0.4 19.4 ± 1

C:0.6 17.14 ± 2.8 C:0.6 6.921± 6.1 C:0.6 19.05 ± 1.3

C:0.8 17.17 ± 3.4 C:0.8 9.28± 6.8 C:0.8 18.78 ± 1.4

C:1.0 17.63 ± 2.3 C:1.0 15.17± 4.7 C:1.0 19.84 ± 0.73

Griewank C:0.2 28 ± 22 C:0.2 3.259± 5.9 C:0.2 156.5 ± 40

C:0.4 40.82 ± 36 C:0.4 2.472± 3.2 C:0.4 119.5 ± 40

C:0.6 51.83 ± 40 C:0.6 1.399± 1.4 C:0.6 99.43 ± 49

C:0.8 62.38 ± 48 C:0.8 0.865± 0.56 C:0.8 89.79 ± 51

C:1.0 80.87 ± 49 C:1.0 16.93± 29 C:1.0 148.6 ± 43

Rastrigin C:0.2 60.08± 20 C:0.2 60.45 ± 23 C:0.2 118.7 ± 19

C:0.4 62.86 ± 23 C:0.4 61.63± 19 C:0.4 114.3 ± 20

C:0.6 64.35 ± 22 C:0.6 56.46± 18 C:0.6 112.2 ± 19

C:0.8 58.07 ± 20 C:0.8 49.31± 19 C:0.8 103 ± 21

C:1.0 68.27 ± 24 C:1.0 56.37± 25 C:1.0 113 ± 19

Alpine C:0.2 3.978± 1.8 C:0.2 4.701 ± 3 C:0.2 14.16 ± 2.9

C:0.4 3.314± 1.9 C:0.4 5.029 ± 3.2 C:0.4 12.99 ± 2.3

C:0.6 3.742± 1.9 C:0.6 4.314 ± 3.3 C:0.6 12.58 ± 3.1

C:0.8 4.057 ± 2.5 C:0.8 3.464± 3.1 C:0.8 11.63 ± 2.9

C:1.0 5.353 ± 2.3 C:1.0 4.025± 2.4 C:1.0 13.01 ± 3.5

Sum of powers C:0.2 0.0389 ± 0.071 C:0.2 0.001253± 0.0051 C:0.2 0.433 ± 0.26

C:0.4 0.05334 ± 0.21 C:0.4 0.000174± 0.00089 C:0.4 0.3124 ± 0.24

C:0.6 0.05502 ± 0.11 C:0.6 6.444e− 05± 0.00046 C:0.6 0.2639 ± 0.26

C:0.8 0.1219 ± 0.27 C:0.8 1.661e− 05± 7.9e− 05 C:0.8 0.2353 ± 0.3

C:1.0 0.1476 ± 0.25 C:1.0 0.02807± 0.18 C:1.0 0.6131 ± 0.63

Zakharov C:0.2 112.8 ± 96 C:0.2 35.11± 61 C:0.2 361.1 ± 3.3e + 02

C:0.4 107 ± 1e + 02 C:0.4 30.75± 62 C:0.4 299.9 ± 1.7e + 02

C:0.6 114.8 ± 1e + 02 C:0.6 18.94± 38 C:0.6 252.1 ± 1.2e + 02

C:0.8 100.5 ± 78 C:0.8 5.325± 7.4 C:0.8 5767 ± 5.5e + 04

C:1.0 253.1 ± 1.4e + 02 C:1.0 112.1± 1.5e+ 02 C:1.0 545 ± 3e + 02

SGO when the parameters are outside of the stable range.
These ranges are referred as Unstable Range. Finally the
ranges of SGO mentioned in the original paper [3] is taken
to test how well the stable range performs compared to the

default ranges. These ranges are referred to asDefault Range.
The test is performed for 10D and 30D versions of the func-
tions mentioned in Table 1 using N = 10,epoch= 100 and
N = 50, epoch= 300 respectively. Values of M and o
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Table 7 Result of optimization (30D shifted and rotated functions)

Name Normal range Stable range Unstable range
r ∈ [0, 1] r ∈ [c − 1, c + 1] r ∈ [c − 2, c − 1] ∪ [c + 1, c + 2]
r1, r2 ∈ [0, 1] r1 ∈ [0, 1], r2 ∈ [0, 2] r1 ∈ [1, 1.5], r2 ∈ [2, 3]

Sphere C:0.2 44.55± 1.5e+ 02 C:0.2 499.7 ± 8.7e + 02 C:0.2 8.174e + 04 ± 1.5e + 04

C:0.4 50.19± 1.4e+ 02 C:0.4 318.4 ± 5.5e + 02 C:0.4 8.125e + 04 ± 1.1e + 04

C:0.6 60.07± 1.5e+ 02 C:0.6 80.06 ± 1.8e + 02 C:0.6 7.913e + 04 ± 1.5e + 04

C:0.8 76.53 ± 1.8e + 02 C:0.8 28.51± 68 C:0.8 8.128e + 04 ± 1.9e + 04

C:1.0 2.672e + 04 ± 8.5e + 03 C:1.0 3372± 3.3e+ 03 C:1.0 7.654e + 04 ± 1.4e + 04

Rosenbrock C:0.2 300.2 ± 1.6e + 02 C:0.2 218.1± 97 C:0.2 2.025e + 04 ± 7.1e + 03

C:0.4 301.2± 1.3e+ 02 C:0.4 319.3 ± 1.7e + 02 C:0.4 1.825e + 04 ± 6.3e + 03

C:0.6 232.4± 75 C:0.6 247.1 ± 1.2e + 02 C:0.6 1.543e + 04 ± 6.2e + 03

C:0.8 255.5± 1.1e+ 02 C:0.8 276.6 ± 1.5e + 02 C:0.8 1.157e + 04 ± 6.2e + 03

C:1.0 5432 ± 3.2e + 03 C:1.0 703.6± 4.9e+ 02 C:1.0 1.255e + 04 ± 4.9e + 03

Ackley C:0.2 13.54 ± 3.6 C:0.2 5.819± 3.7 C:0.2 20.83 ± 0.17

C:0.4 14.91 ± 3.6 C:0.4 5.07± 3.5 C:0.4 20.76 ± 0.22

C:0.6 15.53 ± 3.4 C:0.6 3.752± 3.2 C:0.6 20.69 ± 0.34

C:0.8 15.27 ± 3.2 C:0.8 3.137± 4.9 C:0.8 20.47 ± 0.64

C:1.0 18.34 ± 1 C:1.0 15.87± 3.5 C:1.0 20.83 ± 0.21

Griewank C:0.2 1.252± 0.87 C:0.2 3.504 ± 4.8 C:0.2 781.7 ± 1.3e + 02

C:0.4 1.443± 2 C:0.4 4.617 ± 7.5 C:0.4 737.8 ± 1.4e + 02

C:0.6 1.905 ± 5 C:0.6 1.698± 2.3 C:0.6 706 ± 1.3e + 02

C:0.8 1.413 ± 1.3 C:0.8 0.7584± 0.68 C:0.8 719.5 ± 1.4e + 02

C:1.0 222.3 ± 75 C:1.0 27.92± 28 C:1.0 665.1 ± 1.1e + 02

Rastrigin C:0.2 164.1± 36 C:0.2 251.8 ± 54 C:0.2 514.2 ± 42

C:0.4 187.6± 40 C:0.4 266.4 ± 47 C:0.4 483.4 ± 47

C:0.6 202.5± 35 C:0.6 266.6 ± 40 C:0.6 469.1 ± 53

C:0.8 157.4± 32 C:0.8 208.1 ± 55 C:0.8 448.3 ± 53

C:1.0 214.3 ± 43 C:1.0 182.3± 50 C:1.0 431.8 ± 42

Alpine C:0.2 8.209± 3.3 C:0.2 26.75 ± 13 C:0.2 66.29 ± 7.5

C:0.4 8.573± 3.2 C:0.4 24.11 ± 11 C:0.4 63.25 ± 6.4

C:0.6 8.227± 3.3 C:0.6 23.71 ± 12 C:0.6 60.11 ± 7.6

C:0.8 8.554± 3.6 C:0.8 14.64 ± 11 C:0.8 56.65 ± 7.1

C:1.0 21.24 ± 4.8 C:1.0 11.81± 4.8 C:1.0 56.12 ± 8.4

Sum of powers C:0.2 1.089e− 06± 2.6e− 06 C:0.2 8.12e − 06 ± 4.1e − 05 C:0.2 7.027 ± 9.1

C:0.4 2.836e− 06± 1.3e− 05 C:0.4 8.852e − 06 ± 4.3e − 05 C:0.4 4.929 ± 5.1

C:0.6 8.458e − 06 ± 7.4e − 05 C:0.6 2.259e− 06± 4.7e− 06 C:0.6 5.645 ± 6.7

C:0.8 1.965e − 06 ± 3.2e − 06 C:0.8 8.893e− 07± 1.1e− 06 C:0.8 4.328 ± 5.5

C:1.0 0.1477 ± 0.26 C:1.0 0.03755± 0.27 C:1.0 7.039 ± 15

Zakharov C:0.2 15.93± 15 C:0.2 230.9 ± 72 C:0.2 1358 ± 2.6e + 02

C:0.4 19.02± 21 C:0.4 233.8 ± 1.4e + 02 C:0.4 1231 ± 2.7e + 02

C:0.6 17.32± 28 C:0.6 155.7 ± 56 C:0.6 1166 ± 2.7e + 02

C:0.8 12.97± 15 C:0.8 107.7 ± 52 C:0.8 1072 ± 2.8e + 02

C:1.0 147.7 ± 98 C:1.0 146.2± 1.5e+ 02 C:1.0 1619 ± 4.6e + 02

(“Optimization functions” section) are changed to test the
optimization functions in different scenarios. In Tables 2, 3,
4, 5, 6, 7, the bold value represents the optimal value obtained
out of three types of ranges mentioned above.

Default numerical benchmark functions

This is the simplest scenario where the gbest or the o vector
lies at the origin and no rotation is done i.e. M is the identity
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Fig. 9 Experimental results of optimizing 10D Default functions. The solid,dashed and dotted lines denote stable range, default range and unstable
range respectively

Fig. 10 Experimental results of optimizing 10DDefault functions. The solid, dashed and dotted lines denote stable range, default range and unstable
range respectively

matrix. The results can be seen in Figs. 9, 10 and Table 2 for
the 10D experiment and Figs. 11, 12 and Table 3 for the 30D
experiment.

The results show that the default range and stable range
perform nearly similar while the unstable range gives the
worst results. These results are more apparent as the c value
increases.
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Fig. 11 Experimental results of optimizing 30DDefault functions. The solid, dashed and dotted lines denote stable range, default range and unstable
range respectively

Fig. 12 Experimental results of optimizing 30DDefault functions. The solid, dashed and dotted lines denote stable range, default range and unstable
range respectively

Shifted Gbest numerical benchmark functions

In this scenario the gbest or theo vector is shifted to a different
position randomly chosen inside the D-dimensional space

defined by the range of Ai . No rotation is done i.e. M is the
identity matrix. The results can be observed in Figs. 13, 14
andTable 4 for the 10Dexperiment andFigs. 15, 16 andTable
5 for the 30D experiment. The unstable range clearly gives
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Fig. 13 Experimental results of optimizing 10D Shifted functions. The solid, dashed and dotted lines denote stable range, default range and unstable
range respectively

Fig. 14 Experimental results of optimizing 10D Shifted functions. The solid, dashed and dotted lines denote stable range, default range and unstable
range respectively

the worst result. Between default range and stable range,the
stable range converges a bit slower than default range in some
cases, but it always goes on to find a better value than the
default range in all the functions. The controlled randomness

may be the reason. In most of the algorithms, it is assumed
that the range of random parameters should be (0,1), but
the relationship and dependencies among the parameter is
ignored, which should not be the case.
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Fig. 15 Experimental results of optimizing 30D Shifted functions. The solid,dashed and dotted lines denote stable range, default range and unstable
range respectively

Fig. 16 Experimental results of optimizing 30D Shifted functions. The solid, dashed and dotted lines denote stable range, default range and unstable
range respectively

Shifted and rotated numerical benchmark functions

In this scenario the gbest or the o vector is shifted to a dif-
ferent position randomly chosen inside the D-dimensional

space defined by the range of Ai . Random rotation is done
i.e.M is set as a randomD-dimensional rotationmatrix. From
Figs. 17, 18 and Table 6 could be observed that stable range
performed better than the other unstable ranges for the 10D
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Fig. 17 Experimental results of optimizing 10D Shifted and Rotated functions. The solid, dashed and dotted lines denote stable range, default
range and unstable range respectively

Fig. 18 Experimental results of optimizing 10D Shifted and Rotated functions. The solid, dashed and dotted lines denote stable range, default
range and unstable range respectively
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Fig. 19 Experimental results of optimizing 30D Shifted and Rotated functions. The solid, dashed and dotted lines denote stable range, default
range and unstable range respectively

Fig. 20 Experimental results of optimizing 30D Shifted and Rotated functions. The solid, dashed and dotted lines denote stable range, default
range and unstable range respectively

experiment and in Figs. 19, 20 and Table 7 for the 30D exper-
iment same observations were obtained. Here also unstable
range performed worst and stable range always converged.

Conclusion

Stability analysis helps in determining the reliability factor
of an algorithm. In this paper, Von Neumann stability analy-
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sis procedure was used to determine the appropriate range of
parameters for which SGO algorithm always converges. The
results were supported experimentally with suitable figures
and tables. From the analysis, it is deduced that unstable range
of parameters of an algorithm may degrade its performance
and should be avoided. Moreover, dependencies and rela-
tionship between the parameters of an algorithm should be
determined because they contribute a lot to the performance
and stability analysis provides a way to solve the purpose.
This theoretical analysis procedure could be combined with
other experimental methodologies in determining the robust-
ness of any algorithm and thus minimizing the chance of
failure. Stability analysis of many recent algorithms such
as monarch butterfly optimization (MBO) [23], earthworm
optimization algorithm (EWA) [24], elephant herding opti-
mization (EHO) [25], moth search (MS) algorithm [26],
Slime mould algorithm (SMA) [27], Harris hawks optimiza-
tion (HHO) [28] and Past Present Future optimization(PPF)
[29] which claims to provide promising results experimen-
tally, yet cannot be found in the literature. So, this paves a
way for the researchers to work upon more such algorithms.
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