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Abstract Wallerian demyelination is characteristic of

peripheral nerve degeneration after traumatic injury. After

axonal degeneration, the myelinated Schwann cell under-

goes a stereotypical cellular program that results in the

disintegration of the myelin sheath, a process termed

demyelination. In this review, we chronologically describe

this program starting from the late and visible features of

myelin destruction and going backward to the initial

molecular steps that trigger the nuclear reprogramming few

hours after injury. Wallerian demyelination is a wonderful

model for myelin degeneration occurring in the diverse

forms of demyelinating peripheral neuropathies that plague

human beings.
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Abbreviations

p75NTR p75 neurotrophin receptor

NCAM Neural cell adhesion molecule

GDNF Glial cell-derived neurotrophic factor

BDNF Brain-derived neurotrophic factor

Egr2 Early growth response protein 2

Mpz Myelin protein zero

Mbp Myelin basic protein

AP-1 Activator protein 1

NICD Notch intracellular domain

Sox2 Sex determining region Y-box 2

MAPK Mitogen-activated protein kinases

ERK Extracellular signal-regulated kinases

MEK MAPK-ERK-Kinase

MKK Mitogen-activated protein kinase kinase

ATF3 Activating transcription factor 3

GTPase Guanosine triphosphate hydrolase

Introduction

Demyelination is a tricky word to pronounce (phonetic:

) but it is nevertheless critical in

human health. In the peripheral nervous system, myelin

made by Schwann cells covers the majority of the axons

and the loss of this myelin is termed peripheral demyeli-

nation. For clinicians, demyelination merely means the

status of the nerve when myelin is gone but for biologists

this also means the process through which Schwann cells

lose their myelin (demyelinating cells). Indeed peripheral

demyelination does not result from Schwann cells death

but from a dedifferentiation process that transforms a

myelinated Schwann cell into a demyelinated Schwann

cell. This last cell is able to remyelinate during nerve

regeneration.

The causes of peripheral demyelination are multiple:

toxic (tellurium or diphtheric for example), metabolic (di-

abetes), infectious (Mycobacterium leprae), hereditary

(Charcot–Marie–Tooth diseases), immune (Guillain–Barré

syndrome, CIDP), thermic (hot or cold burn), ischemic, or

& Nicolas Tricaud

nicolas.tricaud@inserm.fr

Hwan Tae Park

phwantae@dau.ac.kr

1 INSERM U1051, Institut des Neurosciences de Montpellier
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traumatic (nerve compression, crush, or cut). Traumatic

nerve injury induces Wallerian degeneration, which

includes axonal degeneration and the subsequent Wallerian

demyelination. Wallerian demyelination is the most com-

mon cause of peripheral nerve demyelination and probably

everyone in this world has suffered this at least once.

Indeed the smallest cut may easily sever a nerve bundle in

the skin leading to pain, axonal degeneration, and Schwann

cells demyelination. In peripheral nerves, neuronal plas-

ticity allows axons to grow back and the nerve bundle to

regenerate [1]. However, elimination of myelin is critical

as myelin proteins are known to inhibit axonal regeneration

[1]. Finally, demyelinated Schwann cells then remyelinate

axons to restore the full nerve function.

Because nerve cut or crush induces a synchronized

demyelination of Schwann cells downstream of the injury

in the nerve, Wallerian demyelination has been the model

of choice to study molecular and cellular mechanisms of

demyelination. Recent cell biology investigations revealed

that Wallerian demyelination is a stereotyped succession of

molecular and cellular steps that lead to myelin degradation

and loss. Microscopically visible events such as formation

of myelin ovoids (small cellular chambers containing

myelin clump) are typical of the late stages of Schwann

cell demyelination and they were characterized using light

and electron microscopy early in the twentieth century.

However, these visible events result from early invisible

molecular processes that occur in Schwann cell. These

invisible processes were characterized only recently using

new imaging, genetic, molecular, and cellular technologies.

Our goal here is to review both late cellular and early

molecular processes that lead to Wallerian demyelination

in Schwann cells. We propose to start with late events and

to go back in time toward the initial event(s) that triggers

demyelination following axonal degeneration.

Wallerian demyelination

As originally described by Waller in 1850, degeneration of

peripheral nerves after injury is announced by the produc-

tion of numerous small chambers along the distal stump of

peripheral nerves [2]. These drastic changes of myelin

morphology are accompanied by the biochemical destruc-

tion of the myelin sheath, which appears prominently

1 week after injury. Indeed biochemical signs of demyeli-

nation such as myelin protein digestion, drop of lipid

content, and cholesterol ester sharply increase after 1 week

[3–6]. Before these late degenerative events are observed by

biochemical and histochemical analyses, morphological

changes in the myelin sheath can be detected during the first

week post-injury and they can be conveniently divided into

an early stage (up to 3 day) and a later stage (3–6 days)

based on two pronounced characteristic features: complete

axonal degeneration and macrophage infiltration. During the

early stage, Schwann cell response to nerve injury is obvious

as myelin ovoids appear in the cytoplasm and paranodal

loops retract on the degenerating axon [7–9]. Molecularly,

Schwann cells are also dedifferentiating into an immature

state [10]. During the later stage (3–6 days), the number of

macrophages sharply increases and these cells also start to

digest myelin fragments expulsed by demyelinating Sch-

wann cells [11, 12]. Actually since myelin ovoids retain

obvious myelin structures under electron microscopy and

because chemical destruction of the myelin has barely

started by 1 week after injury, myelin disintegration (or

breakdown) has been considered to be better terminology to

describe the Schwann cell demyelination process that gen-

erates myelin ovoid [6, 12–14]. However alongside myelin

ovoid formation, it has recently been suggested that myelin

digestion by Schwann cells themselves also plays an

important role in the biochemical destruction of myelin

sheath early during Wallerian demyelination [15–18]. Thus,

Schwann cell demyelination may encompass both myelin

disintegration and digestion even though the respective role

of each process has never been formally demonstrated.

Recent studies have demonstrated that this degenerative

process of demyelination by Schwann cells is not limited to

Wallerian degeneration. In hereditary demyelinating neu-

ropathy, Schwann cell phenotype changes very much as in

Wallerian degeneration [19]. In addition, demyelination

induced by toxic material or immune attacks in inflammatory

neuropathies also shows paranodal retraction, myelin

clump—which is actually not ovoid in the respect of intact

axon—and dedifferentiation indicating that these features also

contribute to pathologic demyelination in various neuropathic

diseases [20–23]. Thus, the understanding of mechanistic

aspects of Schwann cell demyelination in Wallerian degen-

eration might provide an important insight into the

pathognomonic mechanism of demyelinating neuropathies.

24 h to 3 days: myelin collapse

During the early period of Wallerian degeneration, the

generation of myelin ovoids is theoretically helpful for the

clearance of compact myelin sheath within Schwann cells.

Since Young described the myelin fragmentation process

as the result of surface tension generated by myelin itself

[24], there was not much progress in the understanding of

the myelin ovoid formation during Wallerian degeneration.

The active involvement of Schwann cell in the generation

of these small chambers was first seen as a ‘‘contraction’’

of reactive and hypertrophic cells [13]. Successive mor-

phological analysis using electron microscopy by Webster

[9] and Ghabriel and Allt [25] showed the stereotypic
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segmentation of myelin at Schmidt–Lanterman incisures.

These incisures are cellular channel of cytoplasm, crossing

the compact myelin in order to ‘‘irrigate’’ the cell [26].

Incisures collapse occurred with an increase of cytoplasm

in existing incisures, incisures dilatation, and not with de

novo generation of new incisures. The apparent increased

number of incisures in injured nerves probably results from

small uncomplete incisures being more visible

[7, 25, 27, 28]. Since adherens junctions and junctional

proteins such as E-cadherin present in incisures are

destroyed during Wallerian degeneration [18, 29], it is

unlikely that more incisures form de novo at that time.

Instead, the junctional destruction may allow an increase of

cytoplasm in incisures that would make them more visible

in demyelinating conditions. In this sense, junctional

destruction in incisures may be a first step in the initiation

of myelin fragmentation. The dilatation of incisures is not

limited to Wallerian degeneration as it is reported in many

other demyelinating conditions including the segmental

demyelination of inflammatory neuropathies [30–32].

Furthermore, duplication of peripheral myelin protein 22

gene responsible for hereditary peripheral neuropathy

Charcot–Marie–Tooth disease 1A resulted in an abnormal

actin structure in incisures [33, 34]. Thus, the alteration of

incisural structure may be a general pathognomonic feature

of demyelinating neuropathies in the nerve.

The junctional complex composed of E-cadherin/catenins

is highly localized to outer mesaxon, Schmidt–Lanterman

incisures, and paranodal area. Its molecular composition is

very similar to epithelial adherens junctions [35, 36]. The

maintenance of compact myelin structure in adult nerves

requires not only myelin proteins but also appropriate local-

ization of this junctional complex in non-compact regions

including incisures [36]. There seems to be a specific mech-

anism by which these junctional structures in non-compact

areas are dismantled during Wallerian degeneration. First of

all, the selective destruction of E-cadherin is dependent on

actin polymerization [18]. In normal nerves, F-actin is highly

enriched in incisures [37] and new actin polymerization

occurs within these structures shortly after nerve injury. The

inhibition of the actin polymerization not only prevents

E-cadherin destruction but also myelin fragmentation. This is

actually the earliest event that relates molecular changes

occurring in Schwann cells to myelin fragmentation after

nerve injury. Interestingly, although the protein level of b-

catenin, an intracellular component of adherens junction, is

not significantly reduced during Wallerian degeneration (un-

published observation), b-catenin is released from dissolved

junctional region and translocated into the Schwann cell

nucleus in an actin polymerization-dependent manner, illus-

trating the dissolution of junctional structures [18]. The role of

nuclear translocation of b-catenin in Schwann cells after

injury has not been determined yet.

However, actin polymerization-dependent junctional

destruction does not seem to be sufficient to complete

myelin fragmentation during Wallerian degeneration.

Indeed the disappearance of the axon during Wallerian

degeneration allows the apposition and the fusion of the

innermost plasma membrane at incisures (Fig. 1). The

resulting transverse cleavage requires simultaneous plasma

membrane severance and repair for closing myelin around

ovoids [25, 26]. This membrane remodeling seems to

require a function of lysosomal enzymes which are recently

considered to be essential components for membrane repair

in various cellular phenomena [38–40]. Holtzman and

collaborators showed the activation of lysosome in Sch-

wann cells after injury [41]. In accordance with this, the

expression of Lysosomal Associated Membrane Protein-1

(LAMP-1), a lysosomal marker, is dramatically increased

in injured nerves and initially localize to incisures during

myelin fragmentation [21, 42]. Morphological analyses

showed that myelin membrane cleavage is not complete in

peri-incisural areas when lysosome was inhibited [21]

indicating that myelin fragmentation into small chamber,

that definitely employs membrane cleavage/repair pro-

cesses, requires lysosomal activity (Fig. 1).

Interestingly, it was recently shown that lysosomal

function is actually related to an autophagy process in

Wallerian demyelination (Fig. 1) [15, 21]. Autophagy is a

self-eating process for recycling cellular organelles

including mitochondria and peroxisome during diverse

cellular events. Autophagy initiates with the formation of

an isolation membrane that extends around the target

organelle to form an autophagosome, which finally fuse

with lysosome for the degradation of the target [43]. After

peripheral nerve injury, autophagy is activated within a day

in Schwann cells and mice defective for autophagy in these

cells specifically exhibited delayed biochemical myelin

destruction and stable compact myelin sheath even 7 days

after injury [15, 21]. This is in line with the role of lyso-

some in myelin fragmentation. In addition, autophagy and

lysosome activation have also been shown to occur in

peripheral nerves during inflammatory demyelinating

neuropathy, tellurium-induced neuropathy, and hereditary

demyelinating neuropathy [15, 21, 44, 45]. So it is very

likely that autophagy and lysosome activation is a common

mechanism for Schwann cells to demyelinate in various

type of demyelinating neuropathies.

4–24 h: cellular reprogramming
and dedifferentiation

Before myelin collapse, 24 h after the initiation of Walle-

rian demyelination, very little changes are observed in the

myelin sheath, but a complete revolution has nevertheless
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been engaged in the cell. Indeed demyelination is not a

mere degenerative process resulting in apoptotic or

necrotic cell death, but it represents a deep reprogramming

of the myelinated Schwann cell [46]. Indeed the cell ded-

ifferentiates and re-expresses genes that were active in the

pro-myelinating cell or in the previous immature states

[47–49]. However, while the demyelinating Schwann cell

is morphologically and biochemically close to a pro-

myelinating cell [10, 50], it is not just a phenocopy: Sch-

wann cell also expresses during demyelination genes that

were not expressed previously such as Sonic Hedgehog

(Shh) and Olig1 [51, 52].

This step of cellular reprogramming, which starts in the

nucleus around 4 h after nerve injury, is a key point to

understand demyelination but it remains largely uncharted.

The best characterized event in this step is the activation of

the leucine-zipper zinc-finger transcription factor, c-Jun

(Fig. 1). This factor is a key component of the AP-1

transcription complex and the terminal effector of the Jun-

N-terminal kinase (JNK) pathway (e.g., [53]). During

Wallerian demyelination, c-Jun is strongly upregulated as

early as 4 h after nerve injury with a maximum activation

at 12 h [54, 55]. Reducing c-Jun expression in Schwann

cells significantly delays demyelination and impairs func-

tional recovery after nerve injury [51, 55]. This

transcription factor appears as a key factor of the Schwann

cell reprogramming as it upregulates genes related to

neuronal growth and regeneration such as N-cadherin,

p75NTR, and NCAM, and the signaling molecules GDNF,

artemin, Shh, and BDNF, and it downregulates myelin-

related genes expression such as Egr2, Mpz, Mbp, periaxin,

and E-cadherin [51, 55, 56]. C-Jun targets also include

genes involved in the morphogenetic and the myelin

clearing processes observed during demyelination [51, 57].

In particular, JNK-c-Jun pathway stimulates the injury-in-

duced autophagic flux in Schwann cells [15].

Another trigger for cell reprogramming is probably the

Notch pathway and its nuclear component NICD, which is

also activated during Wallerian demyelination (Fig. 1). If

the stimulation of this pathway is sufficient to induce

demyelination in vivo [58], the molecular mechanisms that

activates the pathway and mediate its effect on the cell

genome remain unknown.

Beyond transcriptional changes induced by c-Jun and

Notch activation several additional modifications occur in

the nucleus during demyelination. Sox2, one of the group

of transcription factors that induce pluripotent stem cells

from adult somatic cells [59], is strongly upregulated in

Schwann cells during Wallerian demyelination [60], sug-

gesting an increased chromatin plasticity. Interestingly

Sox2 remains normally upregulated in injured nerves of

mice deleted for c-Jun indicating it is not genetically

Fig. 1 Illustration of the different steps occuring in a myelinated Schwann cell during Wallerian demyelination. The timeframe is shown at the

top and between each timepoint the different events occuring in the cell during the respective time period are shown
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downstream of c-Jun [55]. So an additional mechanism

may activate Sox2 expression and transcriptional plasticity

in demyelinating cells (Fig. 1). Histone deacetylase

HDAC2 is also upregulated 24 h after nerve injury in

mouse sciatic nerve [61]. This epigenetic factor promotes

the expression of Oct6, a key pro-myelinating factor that

represses c-Jun activation. This slows down the cell

reprogramming and, together with HDAC1, allows the

synchronization of remyelination after axon regeneration

[61]. To go further, DNA methylation [62] and Polycomb

complex [52] have been shown to be involved in Wallerian

demyelination, confirming that Schwann cell also under-

goes epigenetic remodeling of the genome that leads to the

spectacular fragmentation of the myelin sheath.

One path that Schwann cells follow when they

demyelinate is probably the epithelial-to-mesenchymal

transition (EMT) (Fig. 1), the process through which

epithelial cells acquire migration and proliferation abilities.

First, EMT factors Zeb2 was recently shown to be upreg-

ulated 6 h after nerve injury and when the gene was deleted

Schwann cells were able to demyelinate but could not

remyelinate [63, 64]. Zeb2 deletion did not affect c-Jun and

Sox2 upregulation after nerve injury [63] but antagonized

inhibitory effects of Notch and Sox2 on myelination [64].

This suggests that Zeb2 acts downstream of c-Jun and Sox2

and participates to remyelination by inhibiting dedifferen-

tiation signals rather than activating demyelination process.

Similarly, we found that Snai2, another gene characteristic

of EMT, was upregulated after nerve injury in the sciatic

nerve of mice (NT unpublished data). Second, EMT is

characterized by a shift from E-cadherin expression in the

epithelial phenotype to N-cadherin expression in the mes-

enchymal phenotype [65]. In peripheral nerves, E-cadherin

is expressed in myelinating Schwann cells [36], while

N-cadherin is expressed in pro-myelinating cells and pre-

cursors and re-expressed in demyelinating cells [66]

(Fig. 1). Finally, the nuclear translocation of b-catenin in

dedifferentiating Schwann cells following injury [18] may

also represent an EMT-like process during demyelination.

As myelinating Schwann cells show an epithelial-like

polarization [67], these data suggest that demyelination is

an EMT-like process where epithelial-like myelinated

Schwann cell is reprogrammed to mesenchymal-like

demyelinated cell.

1–4 h: mitochondria and MAPK pathways ignite
and amplify the demyelination signal

Starting around 4 h after nerve injury, Schwann cell

reprogramming, which follows c-Jun, Notch, and Sox2

activation, leads 20 h later to the first signs of myelin

collapse and, 2 days later, to the complete disintegration of

the myelin sheath. As Wallerian demyelination is triggered

by axonal injury and degeneration, in order to reach the

Schwann cell nucleus, axonal signal(s) have to be trans-

duced into the glial cell and propagated in the cytoplasm.

The role of MAPK pathways in this process is well

documented.

Indeed, ERK1/2 signaling is robustly activated around

4 h after nerve injury [54, 68–70] and activation of the raf/

MEK/ERK pathway is sufficient to induce demyelination

of Schwann cells in vitro and in vivo [68, 71] (Fig. 1).

Blocking this pathway partially prevented demyelination

[71]; however, it did not prevent c-Jun activation [72, 73],

suggesting that additional mechanisms are involved.

Indeed p38 is activated in Schwann cells as soon as

15 min after nerve injury in the lesion area and a bit later,

6 h, in more distal parts [74–77] (Fig. 1). Pharmacological

inhibition of p38 activation or the enzyme deletion hin-

dered demyelination, while its pharmacological activation

in non-injured nerves was sufficient to induce both c-Jun

phosphorylation and demyelination [76–78] ].

Another early event reported in Schwann cells after

nerve injury is Rac1 activation and actin polymerization in

Schmitt–Lanterman incisures [18]. While this actin poly-

merization is one of the first steps in the collapse of

incisures occurring later during demyelination, it is not

directly involved in c-Jun activation [18]. However,

Rac1 has been shown to be essential for the activation of

MKK7/JNK pathway in Schwann cells in culture suggest-

ing this MAPK pathway may participate in c-Jun

phosphorylation and demyelination [73] (Fig. 1). Indeed,

while MKK7 activation promoted c-Jun phosphorylation in

cultures [55] Rac1, MKK7 and JNK inhibition prevented it

in nerve explant [73]. JNK expression and phosphorylation

are quickly increased following injury in mouse sciatic

nerves [55, 73] and ATF3, a transcription factor translo-

cated in the nucleus after c-Jun activation via JNK, is also

upregulated in Schwann cell nucleus [79]. However, as it

has been reported that JNK activation is also a major event

during axonal degeneration/regeneration after axotomy, it

is possible therefore that JNK phosphorylation in injured

nerves results from axonal injury and not from Schwann

cell demyelination. ATF3 upregulation in Schwann cells

nuclei may also result from c-Jun activation via p38 instead

of JNK. So the role of MKK7/JNK pathway during Wal-

lerian demyelination remains unclear.

The use of multiple MAPK pathways to induce the

demyelination program in Schwann cells suggests that,

beyond c-Jun and Sox2, numerous transcription and

cotranscription factors are targeted during the process,

underlining the concept of reprogramming (Fig. 1). In

addition, it is very likely that multiple signaling pathways

and basic cellular processes are affected by MAPK in

demyelinating Schwann cells. Thus, Schwann cells
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physiology probably changes even before transcriptional

modifications occur.

What is the origin of this massive and broad signaling

resulting from the recruitment of MAPK pathways?

Recently, we questioned the role of Schwann cell mito-

chondria during Wallerian degeneration. Using fluorescent

probes targeted to mitochondria of Schwann cells in the

crushed sciatic nerve of living mice [80], they found that

mitochondria release a pulse of calcium in the cytoplasm

just 1 h after crush. This mitochondrial calcium wave was

necessary and sufficient to activate MAPK pathways and

phosphorylate c-Jun thereafter (NT unpublished results).

This indicates that mitochondria play an initial and central

role during Schwann cell demyelination by releasing cal-

cium that activates MAPK pathways (Fig. 1). In addition,

this places mitochondria as the first target of an axonally

initiated signal inside Schwann cells during Wallerian

demyelination. Interestingly c-Jun upregulation that occurs

in Schwann cells after crush was not prevented by blocking

mitochondrial calcium release (NT unpublished results),

showing that a mitochondria-independent pathway is likely

to be also involved.

0–1 h: axonally derived signal is transduced
in Schwann cells

Just like the very first moment of the Big Bang of the

universe is crucial and unclear, the very first event(s) that

triggers the Wallerian demyelination in Schwann cells is

not known. There are many ways the Schwann cell can

enter in the demyelination program but when a myelinated

axon is severed, demyelination is triggered in less than 1 h

in the distal part of the sciatic nerve and still the molecular

triggers are not known. One hypothesis has nevertheless

been raised.

In 2005, Guertin and collaborators [81] reported that as

soon as 10 min after sciatic nerve cut, ErbB2/3 receptors

were selectively phosphorylated in the distal clump of the

nerve. Interestingly, this receptor activation did not last

long—few hours—but a second long lasting activation

appeared 3 days after the injury, suggesting that ErbB

receptors were involved in two successive steps during

Wallerian demyelination. Very early on, ErbB receptors

phosphorylation occurred first in Schwann cell microvilli

that cover the node of Ranvier and then propagated to the

outer plasma membrane, abaxonal side, at the Schwann cell

extremities [81] (Fig. 1). Pharmacologically inhibiting the

receptors activation delayed Wallerian demyelination. As

ErbB2/3 receptors is activated by Neuregulin 1, this sug-

gested that this molecule, while required for Schwann cell

survival, proliferation, and myelination [82], could also

induce demyelination. Indeed it was also reported that

Neuregulin 1-ErbB2 acted upstream of rac1-GTPase to

regulate actin polymerization during Wallerian degeneration

and inhibition of rac1 GTPase suppressed myelin fragmen-

tation [18]. In addition, the aberrant activation of ErbB2 by

M. leprae has been shown to lead to demyelination [83]. So

a model of the initial Wallerian demyelination event

includes the activation of ErbB2/3 receptors by Neuregulin 1

and the following amplification of the signal through Rac-

MKK7-JNK and Ras-MEF-ERK1/2 pathways [68, 71, 73].

However, this model is not complete as genetic ablation of

ErbB2 in adult Schwann cells did not produce a noticeable

phenotype during Wallerian demyelination [84]. In addition,

at the present time, there is no evidence that Neuregulin 1 or

any other molecules that activates ErbB2/3 receptors is

involved in triggering Wallerian demyelination. Thus, the

signal that initiates Wallerian demyelination is still enig-

matic and further studies addressing this issue are required

not only for understanding the mechanism but also for

providing therapeutic opportunities in the treatment of

demyelinating diseases.

Conclusion and perspectives

While the troubles resulting from the loss of myelin in

peripheral nerves are serious and common enough in

humans to define a specific class of peripheral neuropathy,

limiting the term ‘‘demyelination’’ to the loss of myelin is

strongly restrictive because they are many ways through

which myelin can be lost. Among these different ways,

Wallerian demyelination resulting from traumatic nerve

injury is both the most common cause of demyelination and

the simplest model of Schwann cell demyelination process.

This model has been instrumental in the molecular and

cellular characterization of the dedifferentiation process.

More data and experiments are required to fully characterize

Wallerian demyelination but a clear picture is already

emerging. In order to consolidate it, more effort will prob-

ably be needed characterizing late visible ‘‘macroscopic’’

events such as ovoids formation and destruction. In addition

other concomitants cellular events such as mitochondrial

and metabolic changes and miRNA and small non coding

RNA activity would probably add significantly to the global

picture of Wallerian demyelination.

The most critical point is probably the earliest events

that occur in Schwann cells when the axon initiates its self-

destruction. Indeed, Wallerian demyelination appears to

start in an amplification pathway that spreads from the

extremities of the myelin to the nucleus of the Schwann

cell. This molecular amplification allows the multiple

changes that are required to dedifferentiate the cell. This

scheme is characteristic of a program that always initiates

from a code source. So if the final goal of scientists and
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medical doctors is to prevent pathological demyelination,

then there is no use to try to target some factors involved in

the program because alternative parallel events are proba-

bly already in course toward the deadly end. The only

logical way would be to target the initial trigger of the

program. Therefore, the earliest events are targets of choice

for a therapeutic approach.

Finally, we have here limited our study to the Wallerian

demyelination process, mostly reporting in vivo events

following nerve crush or cut because in vitro or ex vivo

demyelination models are prone to artifacts. Wallerian

demyelination is not pathological because it is the natural

response to the destruction of the axon. In the absence of

demyelination axons do not regenerate and regrowth

properly [1], so it is no use to prevent Wallerian

demyelination. It is however worth noting that similar

molecular and cellular events have been reported in many

models of pathological peripheral nerve demyelination

such as hereditary, toxic, metabolic, or autoimmune dis-

eases. This suggests that while there are many ways

through which demyelination can be triggered a similar or

even identical program is engaged in all these demyeli-

nating diseases. In these conditions, provided one can

target the right earliest event of the program, it could be

possible to block Schwann cell demyelination in the long

term in multiple diseases with the same tool.
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