
Characteristic Gene Selection via Weighting Principal
Components by Singular Values
Jin-Xing Liu1,5, Yong Xu1,6*, Chun-Hou Zheng2, Yi Wang3, Jing-Yu Yang4

1 Bio-Computing Research Center, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen, Guangdong, China, 2 College of Electrical Engineering and

Automation, Anhui University, Hefei, Anhui, China, 3 School of Mechanical Engineering and Automation, Shenzhen Graduate School, Harbin Institute of Technology,

Shenzhen, Guangdong, China, 4 School of Computer Science and Technology, Nanjing University of Science and Technology, Nanjing, Jiangsu, China, 5 College of

Information and Communication Technology, Qufu Normal University, Rizhao, Shandong, China, 6 Key Laboratory of Network Oriented Intelligent Computation,

Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen, Guangdong, China

Abstract

Conventional gene selection methods based on principal component analysis (PCA) use only the first principal component
(PC) of PCA or sparse PCA to select characteristic genes. These methods indeed assume that the first PC plays a dominant
role in gene selection. However, in a number of cases this assumption is not satisfied, so the conventional PCA-based
methods usually provide poor selection results. In order to improve the performance of the PCA-based gene selection
method, we put forward the gene selection method via weighting PCs by singular values (WPCS). Because different PCs
have different importance, the singular values are exploited as the weights to represent the influence on gene selection of
different PCs. The ROC curves and AUC statistics on artificial data show that our method outperforms the state-of-the-art
methods. Moreover, experimental results on real gene expression data sets show that our method can extract more
characteristic genes in response to abiotic stresses than conventional gene selection methods.
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Introduction

The growth of plants is greatly affected by a variety of abiotic

stresses, such as cold, drought, salt, heat, UV-B light, osmotic

press, and so on. In response to these abiotic stresses, plants have

evolved a number of defense mechanisms that can increase

tolerance to the adverse conditions. The underlying concept is that

there exists a specific set of interacting genes responding to the

abiotic stresses. Therefore, understanding abiotic stress responses

is now thought to be one of the most important topics in plant

science [1].

In order to obtain the characteristic genes responding to these

stresses, many conventional experimental methods were proposed,

such as RT-PCR [2,3] and Northern blotting [4,5], etc. RT-PCR

can accurately position the genes in tissue or cell and Northern

blotting can display the information of detected genes. However,

these two methods have the following fatal flaw: only a limited

amount of genes can be simultaneously studied. To overcome this

flaw, people have developed the gene microarray technology [6–

8], which makes it possible to monitor gene expression levels on a

genomic scale [9,10].

With the rapidly development of gene microarray technology,

how to efficiently analyze gene expression data becomes a matter

of great urgency. During the last decade, feature selection from

gene expression data has been extensively studied. The most

commonly used methods of feature selection first calculate a score

for each gene, respectively, then select the genes with high scores

[11]. These methods are often denoted as univariate feature

selections (UFS). The main virtues of UFS are: (a) intuitive and

easy to understand; (b) computationally simple; and (c) fast [12]. A

common disadvantage of UFS based methods is that each feature

is separately considered, thereby ignoring feature dependencies. In

order to handle the problem, the method of multivariate feature

selection (MFS), also denoted as dimension reduction, was

introduced [13]. MFS uses all the gene expression data

simultaneously to select the genes. Until now, many mathematical

methods for MFS have been used for gene expression data

analysis. For example, Park et al. gave the theoretical analysis on

feature extraction capability of class-augmented PCA [14]. Ma

et al. used PCA to identify differential gene pathways in [15]. De

Haan et al. used PCA to analyze microarray data [16]. Musumarra

et al. used PLS to identify genes for new diagnostics [17].

Boulesteix et al. provided a systematic comparison of the PLS

methods for the analysis of gene data [18].

However, the classical methods, such as PCA and PLS, still

have some drawbacks, e.g. the principal components (PCs) of PCA

or the latent components (LCs) of PLS are usually dense, which

makes it difficult to interpret PCs or LCs without subjective

judgment. To overcome these drawbacks, many mathematical

tools have been devised to reduce the complexity of the data.

Among them, sparse methods have significant advantage, while

giving up little statistical efficiency. For example, Zou et al.

PLoS ONE | www.plosone.org 1 July 2012 | Volume 7 | Issue 7 | e38873



Figure 1. ROC curves for artificial data. (SNR denotes the signal-to-noise ratio).
doi:10.1371/journal.pone.0038873.g001
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proposed sparse PCA using the lasso [19]. In [20], Journée et al.

described a general power method for sparse PCA. Lai et al. used

sparse local discriminant projections for feature extraction [21].

Moreover, many sparse methods have been widely used for gene

expression data analysis. Lass et al. used the SPCA for clustering

and feature selection [22]. In [23], Witten et al. proposed a

penalized matrix decomposition, which was used to analyze plant

gene expression data by Liu et al. [24]. Cao et al. used sparse PLS

discriminant analysis for biologically relevant feature selection

[25].

Though sparse methods are useful, yet these methods used the

first LC of PLS or PC of SPCA to select feature. For example,

Boulesteix et al. used the first LC of PLS to select the important

genes [18]. Liu et al. used the first PC of SPCA for characteristic

genes selection [26]. These methods indeed assumed that the first

component of PLS or SPCA plays a dominant role in gene

selection. However, we identify that in a number of cases this

assumption is not satisfied and conventional PCA-based gene

selection methods usually provide poor results. Actually, not only

the first LC or PC but also the remaining LCs or PCs include the

important information for gene selection [27]. So if only the first

LC or PC is used in selecting genes, the poor results may have

been obtained with loss of some important information.

In this paper, in order to select characteristic genes, a novel

method is proposed that is based on the weighted PCs of SPCA by

singular values (WPCS). First, the PCs of SPCA and singular

values are calculated. Second, using the singular values as the

weights of PCs, the weighted PCs (WPC) are gotten. Then, as the

absolute value of the i-th entry of every WPC somewhat denotes

the importance of the i-th gene, we take the sum of all the i-th

entries of all the WPC as the extent of importance of the i-th gene

and use it to select features. The genes corresponding to the first m

largest sums are selected as characteristic genes. The experimental

results show that our method is efficient and powerful for gene

selection. Our work has the following contributions: first, it

proposes, for the first time, the method of weighting PCs by

singular values for gene selection. Second, from the viewpoint of

minimizing reconstitution error, it clearly presents the idea of the

proposed method. Third, it conducts a large number of gene

selection experiments.

Results and Discussion

In this section, our proposed WPCS method is compared with

the following existing methods. (a) SPCA-1 method uses only the

first one PC of SPCA (proposed by Journée et al. [20]) to identify

the characteristic genes; (b) SPCA-2 method uses the first two PCs

of SPCA to identify the characteristic genes; (c) PLS method uses

partial least squares regression (PLS) (proposed by Boulesteix et al.

[18]) to identify the characteristic genes.

First, these methods are carried on the artificial data. Then,

these methods are used to extract the characteristic genes

responding to abiotic stresses from real gene expression data.

Simulation on Artificial Data
To investigate the performance of the methods, the average

receiver operator characteristic (ROC) curves are shown in

Figure 1 with six different SNR.

Figure 1(A) and 1(B) show that our WPCS and the competitive

methods can identify the patterns even with very low SNR. As

shown in Figure 1, with different SNR, WPCS outperforms other

methods. For example, with SNR = 1.0, PLS method are

dominated by SPCA-2 and SPCA-1; and our WPCS can achieve

the best results.

The area under curve (AUC) statistics are listed in Table 1, from

which we can conclude that under the same SNR, the ascending

order of accuracy given by these methods is: PLS, SPCA-1, SPCA-

2 and WPCS.

From the experiments on artificial data, a conclusion can be

drawn that WPCS method outperforms other methods for feature

selection.

Gene Ontology (GO) Analysis
The Gene Ontology (GO) Term Enrichment tool can be used

to help discover what those genes may have in common [28].

GOTermFinder is a web-based tool that finds the significant GO

terms shared among a list of genes. The analysis of GOTermFin-

der provides significant information for the biological interpreta-

tion of high-throughput experiments. In this paper, our proposed

method will be evaluated by GOTermFinder [29], which is

publicly available at http://go.princeton.edu/cgi-bin/

GOTermFinder. Its threshold parameters are set as following:

maximum p-value = 0.01 and minimum number of gene prod-

ucts = 2.

Here, only the main results of GO are given. Figure 2 shows

the sample frequency of response to stimulus (GO: 0050896)

given by the four methods. From Figure 2(A), WPCS method

outperforms the others in all the data sets of shoot samples with

six different stresses. Figure 2(B) shows that only in drought-

stress data set of root samples, our method is dominated by

SPCA-1 and SPCA-2 methods. In other data sets, our method

is superior to the others.

Figure 3(A) shows the sample frequency of response to stress

(GO: 0006950) in shoot samples. From Figure 3(A), it can be seen

that only in drought-stress data set, the PLS method is slightly

superior to our method. In other data sets, our method is superior

to the other methods. Figure 3(B) shows that only in drought-stress

data set of root samples, our WPCS gives a similar result to that of

SPCA-1 and SPCA-2 methods, and exceeds that of PLS method.

In other data sets, our WPCS method surpasses the others.

The remarkable results are listed in Tables 2–5. The number of

genes responding to stimulus (GO: 0050896) selected by the four

methods in shoot and root samples are listed in Table 2 and

Table 3, respectively.

As Table 2 listed, in shoot samples, WPCS method outperforms

the others in all the data sets with six different stresses. As Table 3

listed, in root samples, only in drought-stress data set, WPCS

method is dominated by SPCA-2. For other stresses data sets,

WPCS outperforms our competitive methods.

Table 4 and Table 5 give the gene numbers and P-value of

response to stress (GO: 0006950) selected by the four methods in

shoot and root samples, respectively.

To sum up, for all the data sets except drought-stress data set,

our method is superior to other methods. For the drought-stress

Table 1. AUC statistics for artificial data.

SNR = 0.5 SNR = 1 SNR = 1.5 SNR = 2 SNR = 2.5 SNR = 3

SPCA-1 0.6985000 0.8186722 0.8517611 0.8738500 0.8733944 0.8665222

SPCA-2 0.7131000 0.8888778 0.9469222 0.9668333 0.9730667 0.9800500

WPCS 0.7615000 0.9579889 0.9918333 0.9971667 0.9988222 0.9989444

PLS 0.6282000 0.7269556 0.7812667 0.8061889 0.8261889 0.8506667

doi:10.1371/journal.pone.0038873.t001
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data set in shoot samples, only the PLS method slightly suppresses

our WPCS method.

To further study the characteristic genes closely related to the

stresses, the cold stress in shoot samples and UV-B stress in root

samples are analyzed. Table 6 lists the numbers of response to cold

(GO: 0009410) in shoot samples selected by these methods. The

background sample frequency of response to cold (GO: 0009410)

is 0.9% (276/29887). As Table 6 listed, our method can select

more genes than others.

In detail, we compare the genes selected by WPCS with the

genes selected using others. Different genes selected using WPCS

and neglected by other methods are listed in Table 7. As Table 7

listed, the functions of genes selected using WPCS are closely

related with cold stress.

Table 8 gives the numbers of response to light stimulus (GO:

0009416) in root samples selected using these methods. The

background sample frequency of response to light stimulus (GO:

0009416) is 1.8% (547/29887).

As Table 8 listed, WPCS can select more genes than others.

Moreover, we compare the genes selected by WPCS with the ones

by other methods. The genes selected using WPCS and neglected

by others are listed in Table 9. As Table 9 listed, the functions of

genes selected using WPCS are closely related with UV-B stress.

From the experiments and analyses on gene expression data, a

conclusion can be drawn that WPCS method is very efficient and

powerful for gene selection.

Conclusion
In this paper, a novel method of gene selection, WPCS, is

proposed, that uses the weighted PCs by SVs as the basis of

selection. The idea of WPCS is clearly shown. WPCS works as

follows. First, it obtains the PCs of SPCA and SVs. Second, using

the SVs as the weights of PCs, it obtains the WPC. Then, it sums

the absolute value of the WPC in row, and sorts the sum in

descending order. Finally, it selects the genes corresponding to the

top part of the sum as the characteristic genes. A large number of

experiments on artificial data and gene expression data demon-

strate that the proposed WPCS method outperforms the state-of-

the-art gene selection methods. For gene expression data, WPCS

can extract more characteristic genes in response to abiotic stresses

than the other methods.

Figure 2. The Response to stimulus (GO: 0050896).
doi:10.1371/journal.pone.0038873.g002

Figure 3. The Response to stress (GO: 0006950).
doi:10.1371/journal.pone.0038873.g003
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Materials and Methods

Artificial Data
The artificial data are in Rp with p~2000 and generated as

A*(0, S4). Let ~vv1*~vv4 be four 2000-dimensional vectors, such

that ~vv1k~1, k~1, � � � ,50 , and ~vv1k~0, k~51, � � � ,2000 ;

~vv2k~1, k~51, � � � ,100 , and ~vv2k~0, k=51, � � � ,100 ;

~vv3k~1, k~101, � � � ,150 , and ~vv3k~0, k=101, � � � ,150 ; and

~vv4k~1, k~151, � � � ,200 , and ~vv4k~0, k=151, � � � ,200 . Let

E be 2000-dimensional noise matrix, E*N(0,1). Then the noise

matrix is added to ~vv with different Signal-to-Noise Ratios (SNR).

The first four eigenvectors of S4 are chosen to

be vk~~vvk= ~vvkk k, k~1,2,3,4 . To make these four eigenvectors

dominate, we let the eigenvalues bec1~400,c2~300, c3~200,

c4~100 and ck~1 for k~5, � � � ,2000. Then the simulation

scheme in [30] is used to generate the artificial data, which include

ten samples in each test.

Gene Expression Data
The raw data include two classes: roots and shoots in each

stress, which were downloaded from NASCArrays [http://affy.

arabidopsis.info/] [31], reference numbers are: control, NAS-

CArrays-137; cold stress, NASCArrays-138; osmotic stress,

NASCArrays-139; salt stress, NASCArrays-140; drought stress,

NASCArrays-141; UV-B light stress, NASCArrays-144; and heat

stress, NASCArrays-146. The sample numbers of each stress type

are listed in Table 10. There are 22810 genes in each sample.

The data are adjusted for background of optical noise using the

GC-RMA software by Wu et al. [32] and normalized using

quantile normalization. The results of GC-RMA are gathered in

a matrix for further processing.

Selection of the Parameters
In SPCA, we take l0-norm penalty and set c~0:1. In PLS, only

the first component is used. For the sake of comparison, on gene

expression data, 300 genes are roughly selected by all the methods.

Singular Value Decomposition (SVD)
In this subsection, the details of the WPCS method are

presented. Let A denote an n|p matrix of real-valued gene

expression data, which consists of p genes in n samples. In the case

of gene expression data, aij is the expression level of the j-th gene

in the i-th sample. The elements of the j-th column in A form the

n-dimensional vector rj , which is referred to as the transcriptional

response of the j-th gene. Correspondingly, the elements of the i-th

row in A form the p-dimensional vectorsi, referred to as the

expression profile of the i-th sample. Usuallypwwn, so it is a

classical small-sample-size problem. To integrate SPCA and SV,

the singular value decomposition (SVD) and the SPCA via

cardinality penalty (l0-penalty) are introduced as follows.

If the variables contained in the columns of A with rank

rƒ min (n,p) are centered, the equation for SVD of A is as follows:

A~UDVT , ð1Þ

Table 2. Response to stimulus (GO: 0050896) in shoot samples.

Stress SPCA-1 SPCA-2 WPCS PLS

Type SFR PV SF PV SF PV SF PV

Cold 120/300* 40.0% 2.39E-21 135/300 45.0% 2.19E-30 138/300 46.0% 2.33E-32 136/300 45.3% 5.19E-31

Drought 126/300 42.0% 8.50E-25 151/300 50.3% 1.62E-41 159/300 53.0% 1.17E-47 147/300 49.0% 2.36E-38

Salt 125/300 41.7% 3.27E-24 132/300 44.0% 1.19E-28 147/300 49.0% 8.34E-39 115/300 38.5% 8.57E-19

UV-B 145/300 48.3% 6.44E-37 146/300 48.7% 1.31E-37 158/300 52.7% 7.51E-47 146/300 48.7% 1.20E-37

Heat 109/300 36.3% 2.05E-15 121/300 40.3% 7.12E-22 142/300 47.5% 2.89E-35 105/300 35.0% 1.24E-13

Osmotic 110/300
36.7%

6.18E-16 123/300 41.0% 7.06E-23 147/300 49.0% 2.19E-38 116/300 38.7% 4.96E-19

Note: The response to stimulus on characteristic genes are shown, whose background frequency in TAIR set is 4570/29887 (15.3%), where 4570/29887 denotes having
4570 genes to respond to stimulus in whole 29887 genes set.
RSF: sample frequency, PV: P-value.
*In the table, the sample frequency, e.g. 120/300, denotes the method select 300 genes, in which there are 120 genes responding to stimulus.
doi:10.1371/journal.pone.0038873.t002

Table 3. Response to stimulus (GO: 0050896) in root samples.

Stress SPCA-1 SPCA-2 WPCS PLS

Type SF PV SF PV SF PV SF PV

Cold 116/300 38.7% 4.79E-19 121/300 40.3% 1.12E-21 137/300 45.7% 1.78E-31 120/300 40.0% 3.46E-21

Drought 138/300 46.0% 3.62E-32 143/300 47.7% 1.48E-35 137/300 45.7% 1.55E-31 119/300 39.7% 1.12E-20

Salt 132/300 44.0% 2.52E-28 136/300 45.3% 6.80E-31 147/300 49.0% 2.06E-38 130/300 43.3% 4.23E-27

UV-B 100/300 33.3% 2.60E-11 116/300 38.7% 4.79E-19 142/300 47.3% 6.67E-35 105/300 35.0% 1.34E-13

Heat 87/300 29.0% 3.30E-06 99/300 33.0% 4.75E-11 121/300 40.3% 6.93E-22 93/300 31.0% 1.41E-08

Osmotic 109/300 36.3% 1.92E-15 114/300 38.0% 5.57E-18 130/300 43.3% 4.43E-27 102/300 34.0% 3.29E-12

doi:10.1371/journal.pone.0038873.t003
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where U is an n|r matrix of left singular vectors with UT U~I, V

is a p|r matrix of right singular vectors with VT V~I, and D is a

diagonal matrix of singular values. Let uk denote column k-th of

U, let vk denote column k-th of V, and note that dk denotes the k-

th diagonal element of the matrix D. According to Eckart et al.

[33],

A(l)~
Xl

k~1

ukdkvT
k , ð2Þ

which is the closest rank-l matrix to A. The term ‘‘closest’’ means

that A(l) minimizes the square error sum between the elements of

A and A(l):

Sparse Principal Component Analysis (SPCA)
The results given with l0- and l1- norm penalty in SPCA are

similar, which is also shown in [20]. Since the l0-norm is faster

than l1-norm, l0-norm penalty is taken on SPCA. Let F~UD and

Z~V, eq.(1) can be written as follows:

A~FZT , ð3Þ

where ZT Z~I and FT F~S~AT A. It is the classical PCA

formation.

Extracting one principal component (PCs) amounts to comput-

ing the dominant eigenvector of S (or, equivalently, dominant

right singular vector of A). That is, PCA seeks to project the data

onto the linear combination of variables that maximizes the

sample variance. It is well-known that the solution to this problem

is given by the right singular vector of A. In general, PCs is not

expected to have many zero coefficients. So, to makes it easy to

interpret PCs without subjective judgment, Sparse PCA proposed

by Journée et al. in [20] is used to generate the sparse PCs.

Let us consider the optimization problem.

ql0
(c) ~

def
max
z[Bp

zTSz{c zk k0, ð4Þ

with sparsity-controlling parameter c§0, :k k0 denotes the l0-

norm, that is, the number of non-zero components (cardinality).

According to [20], eq.(4) can be rewritten as follows:

ql0
(c)~ max

v[Bn
max
z[Bp

vT Az
� �2

{c zk k0, ð5Þ

where the maximization with respect to z[Bp for a fixed v[Bn has

the closed form solution

z�i ~z�i (c)~
½sign((aT

i v)2{c)�zaT
i vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPp

k~1 ½sign((aT
k v)2{c)�

z
(aT

k v)2
q , i~1, � � � ,p: ð6Þ

According to [20], eq.(5) can be cast in the following form:

ql0
(c)~ max

x[Bn

Xp

i~1

aT
i v

� �2
{c

h i
z
: ð7Þ

Table 4. Response to stress (GO: 0006950) in shoot samples.

Stress SPCA-1 SPCA-2 WPCS PLS

Type SF PV SF PV SF PV SF PV

Cold 87/300 29.0% 5.19E-25 96/300 32.0% 1.52E-31 97/300 32.3% 2.61E-32 84/300 28.0% 6.72E-23

Drought 76/300 25.3% 9.02E-18 103/300 34.3% 5.07E-37 110/300 36.7% 7.81E-43 111/300 37.0% 1.68E-43

Salt 84/300 28.0% 6.06E-23 94/300 31.3% 3.57E-30 96/300 32.0% 1.15E-31 79/300 26.3% 8.58E-20

UV-B 95/300 31.7% 1.28E-30 93/300 31.0% 4.13E-29 104/300 34.7% 8.09E-38 99/300 33.0% 1.07E-33

Heat 88/300 29.3% 1.46E-25 89/300 29.7% 2.20E-26 104/300 34.7% 5.61E-38 85/300 28.3% 1.31E-23

Osmotic 81/300 27.0% 7.48E-21 90/300 30.0% 5.38E-27 102/300 34.0% 4.37E-36 88/300 29.3% 1.32E-25

Note: The response to stress (GO: 0006950) obtained by GO Term Enrichment Analysis are shown, whose background frequency in TAIR set is 2351/29887 (7.9%), where
2351/29887 denotes having 2351 genes to respond to stress in whole 29887 genes set.
doi:10.1371/journal.pone.0038873.t004

Table 5. Response to stress (GO: 0006950) in root samples.

Stress SPCA-1 SPCA-2 WPCS PLS

Type SF PV SF PV SF PV SF PV

Cold 84/300 28.0% 7.21E-23 81/300 27.0% 9.01E-21 98/300 32.7% 6.51E-33 79/300 26.3% 1.48E-19

Drought 100/300 33.3% 1.68E-34 99/300 33.0% 1.03E-33 100/300 33.3% 1.58E-34 79/300 26.3% 1.34E-19

Salt 92/300 30.7% 1.79E-28 99/300 33.0% 9.23E-34 103/300 34.3% 6.50E-37 91/300 30.3% 9.12E-28

UV-B 50/300 16.7% 1.30E-04 66/300 22.0% 5.55E-12 88/300 29.3% 1.33E-25 55/300 18.3% 1.09E-06

Heat 71/300 23.7% 1.11E-14 78/300 26.0% 4.21E-19 89/300 29.7% 2.14E-26 75/300 25.0% 3.20E-17

Osmotic 87/300 29.0% 6.81E-25 96/300 32.0% 1.89E-31 101/300 33.7% 2.52E-35 81/300 27.0% 6.93E-21

doi:10.1371/journal.pone.0038873.t005

Gene Selection via Weighting Principal Components
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Here, fort[R, sign(t) denotes the sign of the argument and

tz~ maxf0,tg.
For large enoughc, z�(c)~0. Since.

max
z=0

Azk k2
2

zk k0

~ max
z=0

P
i ziai

�� ��2

2

zk k0

ƒ max
z=0

P
i Dzi D2 aik k2

2P
i Dzi D2

~ max
i

aik k2
2~ ai

�k k2
2,

ð8Þ

we get.

Azk k2
2{c zk k0v0, ð9Þ

for all nonzero vector z, when c . ai
�k k2

2.So, this derivation

assumes that cv ai
�k k2

2, then.

aT
i x

� �2
{cw0: ð10Þ

Otherwisec§ aik k2
2, so

z�i (c)~0, i~1,:::,p: ð11Þ

The Idea of the Proposed Method
The residual sum of squares (RESS) can be used for evaluating

the quality of the reconstitution of A with M PCs of SPCA.

According to [34], it can be computed as follows:

RESSM~ A{ÂA½M�
���

���
2

~Y{
XM

l~1

ll ,

ð12Þ

where ÂA½M� is a reconstitution of A, Y denotes the sum of all the

squared elements, and ll is the singular value of the l-th

component. The smaller the value of RESS is, the better the

SPCA model is. From eq.(12), we can see that a larger M may give

a better estimation of ÂA½M�. If M takes value r (rank of A),

Table 6. The numbers of response to cold (GO: 0009410) in shoot samples.

Method SPCA-1 SPCA-2 WPCS PLS

Number and percent 38 genes,12.7% 45 genes,15.0% 48 genes,16.0% 33 genes,11.0%

P-value 1.45E-27 2.43E-36 2.73E-40 1.18E-21

doi:10.1371/journal.pone.0038873.t006

Table 7. Different genes of response to cold (GO: 0009410) in shoot samples.

Gene No. Function of Gene

At1g21910 Participates in plant developmental processes as well as biotic and/or abiotic stress signaling.

At1g22770 Regulates several developmental processes, such as circadian clock, carbohydrate metabolism, and cold stress response.

At1g29395 Expression is induced by short-term cold-treatment, water deprivation, and abscisic acid (ABA) treatment.

At2g19450 Role in senescence and seed development induced by cold-stress.

At2g25930 Temperature stress reduced the pyk20 transcript level.

At2g28900 Predominantly expressed in leaves and is also inducible by cold treatment.

At2g33380 Plays a role as a peroxygenase involved in oxylipin metabolism during biotic and abiotic stress.

At2g38470 Involved in response to various abiotic stresses

At2g47180 Increases tolerance to chilling stress

At3g05880 Induced by low temperatures, dehydration and salt stress.

At3g48360 Mediates multiple responses to nutrients, stresses, and hormones.

At3g53990 Low temperature and salt responsive protein family.

At4g30650 Low temperature and salt expression protein homologous.

At4g30660 Putative low temperature and salt responsive protein.

At4g37610 Under cold stress indicates increased expression.

At5g52300 Induced by low temperature, exogenous abscisic acid (ABA) and drought.

At5g57560 Controlling tolerance to cold stress

doi:10.1371/journal.pone.0038873.t007
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RESSr~ A{ÂA½r�
���

���
2

~Y{
Xr

l~1

ll ,

ð13Þ

where the matrix A can be perfectly reconstituted. Let M~1, the

RESS1 can be expressed as follows:

RESS1~ A{ÂA½1�
���

���
2

~Y{l1

~Y{
Xr

l~1

llz
Xr

l~2

ll ,

ð14Þ

Substituting eq.(13) into eq.(14), the RESS1 can be obtained as

follows:

RESS1~RESSrz
Xr

l~2

ll : ð15Þ

As eq.(15) shown, if only one PC is used to reconstitute the matrix

A, RESS1 may be larger
Pr
l~2

ll than RESSr. So, if only the first

PC is used for characteristic gene selection, some important

information may be lost, especially when the second one or two

SVs are approximately equal to the first one. In order to obtain a

better reconstitution, all the PCs of SPCA need to be utilized.

In SPCA, F is the matrix of factor scores and Z is a loading

matrix of the principal components (PCs), which transforms the

original data matrix into factor scores. The data matrix A, factor

scores matrix F and PCs Z are shown in Figure 4.

As Figure 4 shown, the PCs Z give the coefficients of the linear

combinations used to compute the factors scores F. So the bigger

the absolute value of the elements in PCs Z is, the more

contribution it gives for the factor scores matrix, the more

important the corresponding gene in A is. So the characteristic

genes can be selected according to the PCs Z.

Let.

Zi~ z1i,z2i, � � � ,zpi

� �T
,i~1, � � � ,r ð16Þ

denote the i-th PC, and then the PCs can be given as the follows:

Z~ Z1,Z2, � � � ,Zr½ �: ð17Þ

Substituting F~UD into eq.(3), it can be reformed as follows:

A~UDZT , ð18Þ

where D is the diagonal matrix of singular values. Let

ẐZT~DZT , ð19Þ

eq.(18) can be reformed as follows:

A~UẐZT : ð20Þ

Substituting eq.(17) into eq.(19),

Table 8. The numbers of response to light stimulus (GO: 0009416) in root samples.

Method SPCA-1 SPCA-2 WPCS PLS

Number and percent 17 genes, 5.7% 20 genes, 6.7% 24 genes, 8.0% 17 genes, 5.7%

P-value 1.74E-02 2.90E-04 7.42E-07 1.55E-02

doi:10.1371/journal.pone.0038873.t008

Table 9. Different genes of response to light stimulus (GO:0009416) in root samples.

Gene No. Function of Gene

At2g29500 HSP20-like chaperones superfamily protein.

At3g54890 Encodes a component of the light harvesting complex associated with photosystem I.

At3g55120 Catalyzes the conversion of chalcones into flavanones.

At5g02810 Acts as transcriptional repressor of CCA1 and LHY.

At5g12030 Encodes a cytosolic small heat shock protein with chaperone activity that is induced by heat and high light intensity stress.

At5g15960 stress-responsive protein (KIN1).

At5g24470 Encodes a pseudo-response regulator whose mutation affects various circadian-associated biological events such as red light sensitivity of
seedlings during early photomorphogenesis.

At5g45340 abscisic acid 89-hydroxylase 3.

doi:10.1371/journal.pone.0038873.t009
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ẐZ~ DZT
� �T

~ZDT

~ Z1,Z2, � � � ,Zr½ �

d1 0 � � � 0

0 d2 � � � 0

..

. ..
.

P
..
.

0 0 � � � dr

2
6666664

3
7777775

~ d1Z1,d2Z2, � � � ,drZr½ �:

ð21Þ

The matrix ẐZ is referred to as weighted PCs (WPC), which can

be obtained via weighting PCs by the diagonal matrix of SVs

(WPCS).

Substituting eq.(16) into eq.(21), the WPC can be reformed as

follows:

ẐZ~

d1z11 d2z12 � � � drz1r

d1z21 d2z22 � � � drz2r

..

. ..
.

P
..
.

d1zp1 d2zp2 � � � drzpr

2
66664

3
77775
: ð22Þ

As the absolute value of the i-th row of WPC ẐZ somewhat

denotes the importance of the i-th gene, the absolute value sum of

all the entries in the i-th row as the evaluating vector EV, which

can be expressed as follows:

EV~

Pr
i~1

Dd1z1i D

Pr
i~1

Dd2z2i D

..

.

Pr
i~1

Ddpzpi D

2
66666666664

3
77777777775

: ð23Þ

In particular, if the dimensionality of the gene data is p, the EV

has p entries. After sorting the evaluating vector EV, the genes

corresponding to the first m largest entries can be selected as

characteristic genes.

In summary, the main steps of WPCS method are shown as

follows.

(1) Given the observation matrix A[Rn|p, c§0, numw0.

(2) To obtain the PCs Z, execute SPCA on the A.

(3) To obtain the SVs, execute the SVD.

(4) Obtain the WPC ẐZ via multiplying PCs by the diagonal

matrix of SVs.

(5) Obtain the evaluating vector EV by summing the absolute

value of WPC ẐZ in row.

Table 10. The number of each stress type in the raw data.

Stress Type cold drought salt UV-B heat osmotic control

Number 6 7 6 7 8 6 8

doi:10.1371/journal.pone.0038873.t010

Figure 4. The graphical depiction of SPCA of a matrix A with
factor scores F and PCs Z. In this figure, with factor scores F and PCs
Z. ~rrj is the row vector of PCs Z the j-th gene, which transforms the
original data vector rj into factor scores r̂rj . Correspondingly, ~ssi is the
column vector of PCs Z, which transforms the original data vector si

into factor scores ŝsi .
doi:10.1371/journal.pone.0038873.g004

Figure 5. Workflow diagram of WPCS.
doi:10.1371/journal.pone.0038873.g005

Gene Selection via Weighting Principal Components

PLoS ONE | www.plosone.org 9 July 2012 | Volume 7 | Issue 7 | e38873



(7) Sort the EV in descending order.

(7) Select the genes corresponding to the first m largest entries as

characteristic genes.

The workflow diagram of our method is shown in Figure 5.
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