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 23 

Abstract  24 

Ovarian cancer (OC) is one of the deadliest cancers affecting the female reproductive 25 

system. It may present little or no symptoms at the early stages, and typically unspecific 26 

symptoms at later stages. High-grade serous ovarian cancer (HGSC) is the subtype 27 

responsible for most ovarian cancer deaths. However, very little is known about the 28 

metabolic course of this disease, particularly in its early stages. In this longitudinal study, 29 

we examined the temporal course of serum lipidome changes using a robust HGSC mouse 30 

model and machine learning data analysis. Early progression of HGSC was marked by 31 

increased levels of phosphatidylcholines and phosphatidylethanolamines. In contrast, later 32 

stages featured more diverse lipids alterations, including fatty acids and their derivatives, 33 

triglycerides, ceramides, hexosylceramides, sphingomyelins, lysophosphatidylcholines, and 34 

phosphatidylinositols. These alterations underscored unique perturbations in cell membrane 35 

stability, proliferation, and survival during cancer development and progression, offering 36 

potential targets for early detection and prognosis of human ovarian cancer. 37 

 38 

Teaser  39 

Time-resolved lipidome remodeling in an ovarian cancer model is studied through 40 

lipidomics and machine learning. 41 

 42 
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Introduction 47 

 48 

The absence of reliable non-invasive ovarian cancer (OC) diagnostics leads to more deaths 49 

than any other cancer associated with the female reproductive system, with 419,085 deaths 50 

from 1990 to 2019 in the United States alone (1). It is the fifth leading cause of cancer-51 

related death in women (2). Failure of early detection remains the most daunting challenge 52 

in OC diagnosis (3). In the United States, the 5-year survival rate is 93.1% for localized OC, 53 

but it is reduced drastically to only 30.8% for metastatic OC (4). High-grade serous ovarian 54 

cancer (HGSC) is the most frequent subtype accounting for 70-80% of all OC deaths (5, 6). 55 

Early diagnosis is therefore imperative for reducing OC mortality. However, OC often 56 

eludes detection until an advanced stage (6) and the molecular pathogenesis underlying 57 

early-stage OC remains poorly understood. To study the biochemical underpinnings of 58 

early-stage OC pathogenesis, we conducted in-depth lipidomic analyses in a Dicer1-Pten 59 

double-knockout (DKO) mouse model as a function of time. These mice faithfully 60 

recapitulate human HGSC with phenotypic, histopathologic, and molecular similarities (7, 61 

8) and exhibit stepwise development and progression of HGSC, beginning with a 62 

premalignant phase, tumor initiation, and malignant growth in the primary tissue before 63 

advancing to early metastases, widespread metastases, and ultimately death. 64 

It is now widely accepted that cancer is a metabolic disease (9). As such, 65 

metabolomics/lipidomics are central to cancer biology. Metabolomics and lipidomics allow 66 

for measuring and identifying small-molecule metabolites or lipids in complex clinical 67 

specimens such as serum and tissue samples (10). Two basic types of metabolomics 68 

experiments exist, either targeted or non-targeted (11). These experiments are typically 69 

conducted using nuclear magnetic resonance (NMR) spectroscopy and/or mass 70 

spectrometry (MS). Non-targeted metabolomics/lipidomics allows for the unbiased 71 

detection of thousands of metabolites/lipids, while targeted approaches focus on a known 72 

set of target species. For an unbiased discovery investigation of a specific disease, as in this 73 

work, non-targeted approaches are typically the first step. Non-targeted workflows lead to 74 

the generation of big data, necessitating mining methods such as machine learning. These 75 

methods are a subset of artificial intelligence that involve developing systems that can learn 76 

and improve with more experience without being explicitly programmed to do so (12). 77 

Combining machine learning with metabolomics and lipidomics is a powerful approach to 78 

learn about cancer biology (13), providing a unique opportunity for the discovery of 79 

candidate prognostic and predictive biomarkers. 80 

Multiple studies have attempted to find metabolome or lipidome alterations associated with 81 

ovarian cancer in biofluids (14-18). In Gaul et al., using serum metabolomics, serous 82 

epithelial ovarian cancer (EOC) was discriminated from healthy controls (HC) (HC n = 49, 83 

EOC n = 46) using 16 metabolites including numerous lipids (14). The discrimination 84 

achieved 100% accuracy in the cohort studied using support vector machines (SVM) (14). 85 

Braicu and co-workers conducted a serum metabolomics study detailing profound lipid 86 

metabolism alterations (15). Serum samples of 147 OC patients were compared with 98 87 

control subjects with benign ovarian tumors and non-neoplastic diseases. Improved 88 

predictive values were achieved when cancer antigen 125, the current OC clinical 89 

biomarker, was used alongside some lipid species identified in the study (15). Metabolomics 90 

investigations on ovarian cancer mouse models have also been conducted. Jones et al. 91 

performed metabolomic serum profiling for the detection of early-stage HGSC in DKO 92 

mice, identifying 18 discriminatory metabolites, including lipids in the 93 
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phosphatidylethanolamine (PE), triglyceride (TG), lysophosphatidylethanolamine 94 

(LysoPE), and phosphatidylinositol (PI) classes (19).  95 

Here, we present the first in-depth machine learning longitudinal analysis of the serum 96 

lipidome of a DKO HGSC mouse model using a four-pronged approach: 1) unsupervised 97 

machine learning methods and univariate statistical analyses to map global lipidome 98 

alterations, 2) hierarchical clustering analysis to identify lipidome changes in response to 99 

HGSC progression, 3) multiple machine learning algorithms with varying inductive biases 100 

to identify time-resolved HGSC evolution, and 4) Kaplan-Meier estimates and Restricted 101 

Mean Survival Times analyses to find prognostic circulating lipid marker candidates. 102 

 103 

Results 104 

Research design and computational pipeline. 105 

To study HGSC development and progression, we employed DKO mice (Dicer1 flox/flox Pten 106 
flox/flox Amhr2 cre/+) and DKO control mice (Dicer1 flox/flox Pten flox/flox Amhr2 +/+) models 107 

using high-density blood sampling (Figure 1a). A total of 15 mice in both groups were used 108 

for analysis. Starting from the two-month mark, blood samples were collected biweekly 109 

until humane sacrifice of the animals, or at the end of the study at 46 weeks. This 110 

longitudinal design resulted in 221 and 238 blood samples collected for DKO and DKO 111 

control mice, respectively. As expected, DKO mice had a shorter lifespan than DKO control 112 

mice, as shown by the Kaplan-Meier (Figure S1a) and the Nelson-Aalen (Figure S1b) 113 

estimate curves. Furthermore, the restricted mean survival time difference (ΔRMST) 114 

between DKO and DKO control mice was about three weeks (Figure S1c). 115 

Given the time-course data misalignment, each time point was converted to a “percentage 116 

lifetime” variable to align the dataset (Figure 1b). The percentage lifetime was computed 117 

by taking the percentage of the age of each mouse in weeks normalized by the total lifespan 118 

of the mouse (or age of the mice) at the last time point of blood collection (see Methods). 119 

Percent lifetimes were binned into five stages, which we named the “lifetime stage”. 0-30% 120 

lifetime was named as lifetime stage I (DKO n = 28, DKO control n = 34), 30-45% lifetime 121 

was lifetime stage II (DKO n = 41, DKO control n = 45), 45-60% lifetime was lifetime stage 122 

III (DKO n = 43, DKO control n = 42), 60-75% lifetime was lifetime stage IV (DKO n = 123 

41, DKO control n = 45), and 75-100% lifetime was lifetime stage V (DKO n = 68, DKO 124 

control n = 72). Where n refers to the number of time points present in each lifetime stage.  125 

The longitudinal lipidomic dataset was then investigated to (1) identify global lipidome 126 

alterations between DKO and DKO control mice within these lifetime stages, (2) investigate 127 

the longitudinal lipidome evolution in response to HGSC progression, (3) identify lipidome 128 

signatures for each of the five lifetime stages via supervised ML, and (4) identify prognostic 129 

circulating candidate biomarkers via survival analysis (Figure 1c). 130 

 131 

Global lipidomic changes in the DKO HGSC model. 132 

In-depth lipidomic profiling of all 459 serum samples was carried out using reverse-phase 133 

(RP) ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS). A 134 

total of 17,293 and 4,414 features (de-adducted and de-isotoped m/z, retention time pairs) 135 

were extracted from the RP UHPLC-MS dataset in the positive and negative ion modes, 136 

respectively. After data curation and structural annotation, 1070 lipids were identified by 137 

matching to an in-house lipid MS2 database. The classes of lipids detected included 138 

triacylglycerols (TG), fatty acids (FA), hexosylceramides (HexCer), 139 
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lysophosphatidylcholines (LPC), lysophosphatidylethanolamines (LPE), 140 

phosphatidylcholines (PC), ether phosphatidylcholines (PC-O), phosphatidylethanolamines 141 

(PE), ether phosphatidylethanolamines (PE-O), phosphatidylinositols (PI), ceramides (Cer), 142 

sterols, and sphingomyelins (SM). Figure 2a shows fold changes (Log2FC [DKO/control]) 143 

for all 1070 annotated lipids and time points combined, indicating significant lipidome 144 

remodeling. Of the 1070 compounds annotated, 87 lipids (Table S1) had corrected P-values 145 

lower than 0.05 (Welch’s T-test, Benjamini-Hochberg (BH) correction q-value < 0.05). 146 

Some of the top-most altered lipids included HexCer(d34:1), PE(O-37:6), PE(O-36:6), and 147 

FA(14:1) (Figure 2b). 148 

 149 

To investigate global differences between DKO and DKO control mice, the 87 significant 150 

lipids were used to conduct unsupervised learning for all combined time points. PCA 151 

(Figure S2a), kernel PCA (Figure S2b), t-SNE (Figure S2c), and uMAP (Figure S2d) 152 

analyses were conducted; however, clear group clustering was unsuccessful. We also 153 

investigated time-resolved lipidome remodeling in DKO vs. DKO control mice through 154 

standard univariate analysis. For each lifetime stage, the number of significant lipid features 155 

was identified (Welch’s T-test P-value < 0.05).  Fourteen lipids were significant in lifetime 156 

stage I, 121 in lifetime stage II, 56 in lifetime stage III, 136 in lifetime stage IV, and 298 in 157 

lifetime stage V (Figure 2c). There was a progressive increase in the number of significantly 158 

altered lipids as HGSC advanced, except for the observed decrease from lifetime stage II to 159 

III.  This overall temporal trend seems to mimic HGSC evolution in humans where the 160 

disease evolves from an asymptomatic early stage with only minimal metabolic changes to 161 

being more easily detectable at more advanced stages where profound metabolic changes 162 

are expected. A breakdown for the significant lipids common across stages is presented in 163 

the upset plot in Figure 2d. A total of 71.4 % of the lipids were unique to lifetime stage I, 164 

48.8 % to stage II, 46.4 % to stage III, 44.8 % to stage IV, and 68.1 % to stage V. 165 

Furthermore, a total of 19 serum lipids were found to be significantly altered in at least three 166 

of the five lifetime stages (Table S2). Of these, 68.4 % were PC or PC-O, making these the 167 

most upregulated lipid classes based on univariate time-resolved analysis. 168 

 169 

Lipidome alterations in response to ovarian cancer progression. 170 

Taking advantage of the granularity of our longitudinal RP UHPLC-MS dataset, we 171 

investigated lipidome changes associated with OC progression by identifying lipid 172 

trajectory clusters and calculating pairwise correlations between lipids in each cluster 173 

(Figure 3, Table 1). The dataset consisting of 87 significant lipids (Welch’s T-test, BH q-174 

value < 0.05, DKO vs. DKO mice) was used for this analysis. To study the temporal 175 

evolution of these lipid alterations, time-resolved average lipid abundances in DKO and 176 

DKO control mice were computed. Using fold changes between the average lipid 177 

abundances (Log2[DKO/control])), hierarchical clustering was used to identify four main 178 

lipid trajectory clusters (A-D). In cluster A, the lipid fold changes increased in DKO mice 179 

from lifetime stage I to II, decreased from II to III, and then spiked back up in V. Similar 180 

temporal trends were observed for cluster B lipids. However, in cluster C, lipids increased 181 

from lifetime stage I to II, decreased from II to III, and increased back from III to IV, 182 

followed by a mostly slight downward trend from lifetime stage IV to V. Finally, cluster D 183 

lipids had a relatively mild temporal change from lifetime stage I to IV, with a sharp increase 184 

from IV to V (Figure 3a-b). A correlation network graph for these clusters is presented in 185 

Figure 3c, showing the connectivity of related and the same lipid classes. A common 186 

characteristic of clusters A, B, and C was an increase of the specific lipids in DKO mice 187 

from lifetime stage I to II, followed by a decrease in from stage II to III. These clusters were 188 

mostly composed of ether-linked and ester phospholipids such as PC, PC-O, PE, PE-O, and 189 
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LPE. Of these lipid classes, PC and PC-O were the most represented, with 53.8% in cluster 190 

A, 100% in cluster B, and 88.8% in cluster C. On the other hand, sphingolipids classes such 191 

as HexCer and Cer comprised 79% of all cluster D lipid species. Significant serum lipidome 192 

rewiring was apparent with disease progression as shown by clustering analysis, with mostly 193 

PC and PC-O being perturbed at early stages and HexCer and Cer at advanced stages. 194 

 195 

Time-resolved machine learning discriminates tumor stages of HGSC in DKO mice.  196 

We subsequently employed in-depth machine learning (ML) to further characterize the five-197 

lifetime stages. The feature selection strategy in the ML computational pipeline (Figure 4a) 198 

led to the selection of five lipid features for lifetime stage I, 25 for lifetime stage II, 18 for 199 

lifetime stage III, 24 for lifetime stage IV, and 42 for lifetime stage V (Table S3). After 200 

feature selection, five ML algorithms, including logistic regression, random forests (RF), k-201 

nearest neighbors (k-NN), support vector machine (SVM), and a voting classifier composed 202 

of the four prior ML algorithms were used to discriminate DKO from DKO control mice 203 

within each of the lifetime stages (Figure 4a). ML algorithms were trained under fivefold 204 

cross-validation conditions, while a separate test set was used for testing purposes. Detailed 205 

ML prediction results are presented in Table S4. For lifetime stage I (training set n = 43, 206 

test set n = 19), RF, k-NN, and a voting classifier gave the best receiver operating curve area 207 

under the curve (ROC AUC) test set score of 0.80 (Figure 4b and g). For lifetime stage II 208 

(training set n = 60, test set n = 26), RF gave the highest ROC AUC test set score of 0.70 209 

(Figure 4c and g). For lifetime stage III (training set n = 59, test set n = 26), logistic 210 

regression had the highest ROC AUC test set score of 0.85 (Figure 4d and g). For lifetime 211 

stage IV (training set n = 60, test set n = 26), RF gave the highest ROC AUC test set score 212 

of 0.66 (Figure 4e and g), and finally, for lifetime stage V (training set n = 98, test set n = 213 

42), SVM gave the highest score of 0.75 (Figure 4f and g). 214 

 215 

Given that early detection of ovarian cancer is important for improving clinical outcomes, 216 

an AUC value of 0.80 for the first-lifetime stage (0-30%) suggests the possibility of early 217 

detection of OC via serum lipidomics, should the lipids in the panel also show significant 218 

alterations in humans. The discriminant lipids included a medium-chain fatty acid, 3-219 

hydroxyphenyl-valerate, and four phospholipids: PE(O-34:3), PC(17:0_18:2), PC(38:6), 220 

and PE(O-16:1_20:5) (Figure 5a and Table S3). Furthermore, the highest AUC value for 221 

the five lifetimes was 0.85 for lifetime stage III (45-60%); the selected discriminant lipid 222 

features included ester phospholipids PC(18:0_18:0), PC(16:0_20:4), PC(18:0_20:4), 223 

PC(18:0_22:4), PC(37:6), and PI(18:1_20:4), ether phospholipids PE(O-18:0_18:2) and 224 

PC(O-38:6), ceramides Cer(d33:1), Cer(d41:2), Cer(d45:1), cerebrosides HexCer(d38:0-225 

OH) and HexCer(d40:0) or HexCer(t42:0-OH), a fatty acid FA(18:2), a glycerol ester, 226 

TG(18:0_18:1_18:2), prostaglandin A1, and a pyrimidine derivative (Figure 5c, Table S3). 227 

Other selected lipid markers for lifetime stages II, IV, and V are shown in Figures 5b, d, e, 228 

and Table S3. A summary of the lipid categories represented in each of the ML discriminant 229 

panels is given in Figure 5f. Phospholipids were the most represented category in all the 230 

five lipid discriminant panels. Of all the phospholipid classes, PC and PC-O were the most 231 

abundant species. The least represented lipid category was steroid lipids, with just one 232 

cholesterol derivative selected in the lifetime stage V (75-100%) panel. Furthermore, of all 233 

the lipids selected as markers, only phospholipids and fatty acyls (composed mostly of fatty 234 

acids) were selected in all the lifetime stages.  In summary, the early progression of OC was 235 

marked by increased levels of phospholipids, notably PC and PC-O while, in contrast, later 236 

stages were marked by more diverse lipids alterations, including sphingolipids, fatty acyls, 237 

glycerolipids, steroid lipids, and phospholipids. Apart from phospholipids, sphingolipids 238 

were the most represented lipid category at stages IV and V, consisting of mostly HexCer, 239 
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Cer, and SM (Figure 5f). These results agree with the lipid trajectory clustering results 240 

discussed earlier. 241 

 242 

Prognostic circulating lipids in DKO mice 243 

Because prognostic makers are useful in providing information on the likely health outcome 244 

of cancer patients, we employed survival analysis methods to investigate lipid species 245 

predictive of the course of OC in DKO mice. First, candidate lipids were selected by 246 

comparing all 1070 lipid features in DKO lifetime stages II – V with DKO lifetime stage I. 247 

Lipids features with p-values < 0.05 (Welch’s T-test) and at least one fold change (log2FC, 248 

DKO lifetime stage II-V vs. DKO stage I) were selected, resulting in a set of ten different 249 

lipids in DKO lifetime stages I vs. II (Figure 6a), 56 in I vs. III (Figure 6b), 68 in I vs. IV 250 

(Figure 6c), and 29 in I vs. V (Figure 6d). A breakdown of overlapping and unique lipid 251 

features in these subsets is given in the upset plot in Figure 6e. A total of 12 lipids were 252 

present in at least three sets from various lifetime pair comparisons. These lipids were 253 

selected as prognostic candidates (Figure 6e). Furthermore, the 19 lipid features found to 254 

be differential in at least three of the five lifetime stages (Figure 2d) were also selected as 255 

candidate prognostic lipids.  All fifteen DKO animals were binned into two groups based 256 

on a median split using all 31 candidate prognostic lipids. A DKO ‘Low’ group was built 257 

from mice with lipid abundances lower than or equal to the median of the relative 258 

abundances of the selected lipids, while mice with abundances greater than the median were 259 

bundled into a DKO ‘High’ group. Three lipid species of the 31 lipid candidates had a 260 

statistically significant difference in their Kaplan Meier (KM) curves via the log-rank test. 261 

These included PC(39:4) (p-value = 0.003, Figure 6f), PC(37:2) (p-value = 0.02, Figure 262 

6g), and PC(40:7) (p-value = 0.008, Figure 6h). Of the 3 prognostic lipids, PC(39:4) had 263 

the strongest prognostic effects with an ΔRMST of 10.96, followed by PC(40:7) (ΔRMST 264 

= 9.35), and then PC(37:2) (ΔRMST = 7.75) (Figure S3). All the prognostic circulating 265 

lipids had elevated levels in DKO mice compared to DKO control mice for all time points 266 

combined (Figure 6h). 267 

 268 

Discussion  269 

Given that most metabolomic cancer studies are based on a snapshot of the metabolic 270 

process (14-18), it is not surprising that an understanding of the metabolic pathogenesis of 271 

HGSC remains elusive. In this study, we performed nontargeted serum lipidomics of DKO 272 

mice, an ovarian HGSC mouse model. We examined the temporal interplay of serum lipids 273 

in ovarian HGSC progression. Ovarian HGSC originates in the fallopian tube where 274 

fallopian tube epithelial (FTE) cells may be transformed into serous tubal intraepithelial 275 

carcinoma (STIC) lesions. STIC metastasize into the ovary and then to the omentum (20). 276 

The omentum, an extensive network of adipose tissue, provides a secondary metastasis hub 277 

(21, 22), further underscoring the importance of investigating ovarian HGSC pathogenesis 278 

through lipidome alterations. Reassuringly, our study identified similarly altered lipids as a 279 

previous study at a fixed time point (19), validating the experimental approach applied here. 280 

As expected, and given the pathogenesis of HGSC (20), significant lipid alterations were 281 

evident from the data analysis performed when all time points were combined. The most 282 

altered lipid classes at a global level included sphingolipids and phospholipids, with the 283 

general trend showing that the number of significant lipids for each lifetime stage increased 284 

as ovarian HGSC progressed. PC and PC-O were the most perturbed lipid classes, following 285 

perturbations shown in previous metabolomic studies (23). 286 

 287 

Phospholipids 288 
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Phospholipids, specifically ether and ester phospholipids, are by far the predominant lipid 289 

classes present in clusters A-C of the temporal trend analyses conducted in this study, with 290 

PC and PC-O being the key lipid families. This finding is not surprising, as PC comprise 291 

approximately 40-50% of all total cellular phospholipids (24). Furthermore, cancer cells 292 

require increased generation and maintenance of cellular membranes, largely composed of 293 

phospholipids (25). Iorio et al. reported the activation of phosphatidylcholine-cycle 294 

enzymes in human epithelial ovarian cancer (EOC) cells (26). In that study, the authors 295 

reported increased phosphocholine (Pcho) levels and upregulation of choline kinase 296 

(ChoK)-mediated phosphorylation, providing a plausible explanation for the observed 297 

increase in PC levels, particularly for the progression from lifetime stage I to II in clusters 298 

A-C. These data strongly suggest upregulation of the Kennedy pathway (27), with a 299 

predominance of PC generation. Altered PC levels in ovarian cancer have been previously 300 

reported in human studies (28) and in an ovarian cancer mouse model (23). This temporal 301 

trend for phospholipids agrees with the discriminant lipids selected for DKO classification 302 

tasks for all lifetime stages (Figure 5f). PCs and PC-Os comprise most of the lipids selected 303 

for classification within lifetime stage II. In addition, phospholipids have the highest 304 

percentage of discriminant lipids at all lifetime stages, with a decreasing proportion as 305 

HGSC progresses. This finding suggests that phospholipids may play lesser roles in 306 

advanced HGSC. In addition, three PC species (PC(39:4), PC(37:2), and PC(40:7)) were 307 

identified as potential prognostic circulating lipids. 308 

 309 

Of all discriminant lipids identified, most phospholipids species increased, while a few 310 

decreased, such as LPE and LPC. LPC perturbations have been reported in an ovarian cancer 311 

human study (28) and LPE species have been suggested as early-stage ovarian cancer 312 

biomarkers in another human study (14). In a study of the triple knock out (TKO) HGSC 313 

mouse model, LPE and LPC were likewise altered (23). In our study, LPE(18:1), 314 

LPC(20:4/0:0), and LPC(20:5/0:0) were selected as discriminant lipids for lifetime stage V, 315 

with decreased levels in DKO mice. LPC and LPE are the first step in Land’s cycle, the 316 

biochemical pathway involved in the remodeling of PC and PE (29). LPC and LPE are 317 

mainly derived from partial hydrolysis of PC and PE, respectively, via phospholipase A1 318 

and A2 (PLA1 & PLA2) (30). Decreased relative abundances of these lipid classes at lifetime 319 

stage V can be explained by the sustained upregulation of PC and PE. Indeed, longitudinal 320 

lipidome analysis of the TKO mouse model showed that most LPC species were lower in 321 

abundance and most PC species much higher in HGSC (23). Furthermore, in a large-scale 322 

profiling study of metabolic dysregulation in human ovarian cancer, LPC and LPE were 323 

reported to be elevated in localized epithelial ovarian cancer (EOC) and downregulated in 324 

metastatic EOC (31). These results align with findings for lifetime stage V for LPE and 325 

LPC. 326 

 327 

Another class of phospholipids that emerged as important were the phosphatidylinositols 328 

(PI). These lipids are the central actors in the PI and PIP2 cycles underpinning several 329 

mammalian cell signaling pathways (32). There, PI is converted into phosphatidylinositol-330 

4-phosphate (PI4P), which is further converted into phosphatidylinositol-4,5-bisphosphate 331 

(PIP2) via various phosphokinases. PIP2, on the other hand, is a component of the 332 

phosphatidylinositol 3-kinase (PI3K) pathway that has been extensively implicated in 333 

cancer (33). PI3Ks are lipid kinases that phosphorylate PIP2 at the 3-OH inositol group to 334 

yield phosphatidylinositol 3,4,5-trisphosphate (PIP3). PIP3 activates the serine/threonine 335 

protein kinase, which plays a key role in carcinogenesis (33). The perturbation of PI levels 336 

in HGSC can be rationalized by increased phosphatidylinositol 3-kinase (PI3-kinase) 337 

activity, due to the increased copy numbers of the p110α catalytic subunit of the enzyme in 338 
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ovarian cancer (34). This altered signaling pathway has been linked to cell proliferation 339 

(35), glucose metabolism (36), and various types of oncogenic transformations (37). In 340 

addition, alteration of PI levels has been reported in a DKO lipidomic study (19), and 341 

proposed as a potential trait of early-stage OC in humans (14). 342 

 343 

Sphingolipids 344 

Cluster D in the hierarchical clustering temporal analysis results (Figure 3) consists mainly 345 

of ceramides (Cer) and hexosylceramides (HexCer) with a characteristic abundance spike 346 

from lifetime stage IV to V (i.e., towards the end of the animal’s life cycle). Ceramides are 347 

essential intermediates in sphingolipid metabolism, acting as substrates for more complex 348 

sphingolipids or degradation products. For example, HexCer and sphingomyelins (SM) are 349 

derived from Cer, while SM and HexCer can be degraded to Cer by sphingomyelinases 350 

(SMAse) and cerebrosidases, respectively. Altered sphingolipid metabolism has been 351 

implicated in leukemia (38), hepatocellular  (39), colorectal (40) and ovarian cancers (41). 352 

Long-chain ceramides have been identified as possible diagnostic biomarkers of human 353 

epithelial ovarian cancer (41). Sphingolipid metabolism has also been implicated in 354 

regulating autophagy (42). Autophagy's primary role is to regulate cellular homeostasis by 355 

removing damaged organelles and aggregated proteins; however, under high-stress 356 

conditions, such as nutrition starvation, autophagy contributes to maintaining cellular 357 

functions by supplying energy to the cell (43). As such, in the early cancer stages, autophagy 358 

possesses an anti-carcinogenic function by attempting to maintain normal cellular 359 

operations (43). On the other hand, at the late stages of cancer development, autophagy 360 

confers tumor cell survival functions to counteract metabolic stress (44), directly explaining 361 

the temporal trends of lipids in cluster D. As such, the role of autophagy in cancer can be 362 

said to be paradoxical. Furthermore, ceramide glycosyltransferases, an enzyme class that 363 

catalyzes the formation of hexosylceramides, has been implicated in playing a role in tumor 364 

progression (45). Overexpression of uridine diphosphate-glucose ceramide 365 

glucosyltransferase (UGCG), the gene involved in the synthesis of glucosylceramide, has 366 

also been reported in ovarian cancer cells (45). The highest abundance increase for a 367 

discriminant lipid was for HexCer(d34:1) in lifetime stage V. Finally, five SM species were 368 

selected in the lifetime stage V classification task, all having low relative abundances in 369 

DKO mice vs. DKO controls. In contrast, cluster D lipids showed overwhelmingly increased 370 

levels of Cer and HexCer at the late stages. This metabolic trend suggests a conversion of 371 

SM to Cer via SMAse to sustain the continued proliferative effects of Cer in tumor cells.   372 

 373 

Fatty Acids, Triglycerides and Other Derivatives 374 

Cancer cells can shunt energy from glucose into fatty acid synthesis (46), and the metabolic 375 

rearrangements are pivotal in cell signaling and tumor growth (47). The observed alterations 376 

in fatty acids abundances at every single lifetime stage examined are a result of this 377 

metabolic shift. Enzymes associated with lipid syntheses, such as acetyl-CoA carboxylase 378 

(ACC) and ATP-citrate lyase (ACL), are overexpressed and involved in tumorigenesis in 379 

various tumors cell types (48-50). Fatty acid synthase (FAS), a multi-enzyme protein whose 380 

main role is to synthesize palmitate from acetyl-CoA and malonyl-CoA, has also been found 381 

to be upregulated in ovarian cancer tissues and associated with poor disease prognosis (51). 382 

Furthermore, stearoyl-CoA desaturase-1 (SCD1), the enzyme that catalyzes the production 383 

of saturated fatty acids from mono-unsaturated fatty acids, is upregulated in ovarian cancer 384 

stem cells (52). Exogenous fatty acid metabolism also plays a role in ovarian cancer 385 

development (46). For instance, fatty acid binding protein (FABP4) has been identified at 386 

the interface of adipocytes and ovarian tumor cells in omental metastases (53). Furthermore, 387 

CD36, a member of the fatty acid transport proteins (FATP), a transmembrane transport 388 
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protein that allows long-chain fatty acids into the cells, has also been implicated in breast 389 

cancer progression and metastasis (54).  Our ML algorithm selected FA species as 390 

discriminant across all lifetime stages. Five of these were decreased in DKO mice relative 391 

to controls. These species included 3-hydroxyphenyl-valerate, FA(26:1), and FA(18:3). 392 

Changes in FA levels during tumor development most likely indicate the interplay between 393 

FA synthesis and FA cell uptake, concomitant with FA metabolism associated with the 394 

synthesis of complex lipids.  395 

 396 

Estrogens, whose significant roles in the development and metastasis of ovarian cancer are 397 

well-documented (55), have been linked to increased levels of TG in mice (56) and humans 398 

(57, 58). This provides a biological link between estrogens and TG in ovarian cancer 399 

pathogenesis. Furthermore, in a metabolic study involving over a hundred thousand subjects 400 

and a ten-year follow-up period, serum TG were shown to positively correlate with 401 

gynecological (ovarian, endometrial, cervical) cancer risk (59). In our study, TG(60:12) was 402 

selected as one of the cluster A lipids, with levels spiking up from lifetime stage I to II, 403 

decreasing from II to III, and then increasing in stages IV and V. In addition, two 404 

triglycerides, TG(56:9) and TG(58:9), belong to cluster D lipids which have a characteristic 405 

spike from lifetime stages IV to V. For ML classification tasks, most TG played a 406 

discriminatory role in lifetime stage V, with 8 out of 9 having higher relative abundance in 407 

DKO mice. A serum metabolomics study comparing DKO mice with controls also found a 408 

triglyceride (TG 55:7) that increased in DKO mice (19). Triglycerides are used for energy 409 

storage, which is very much needed to support cell growth as cancer progresses. This 410 

suggests the upregulation of the monoacylglycerol and glycerol phosphate pathways.  411 

 412 

Other selected discriminant lipids included prostaglandin A1 (PGA1), an eicosanoid. This 413 

lipid was lower in DKO mice in the third lifetime stage. Higher abundances of prostaglandin 414 

and prostaglandin D2 have been found to inhibit human ovarian cancer cell growth both in 415 

vitro and in mice (60). Similarly, A-class prostaglandins are known to have antiproliferative 416 

effects by blocking the cell cycle and activating apoptotic cascades (61). A cholesterol 417 

derivative was also selected as a discriminant lipid in lifetime stage V, with an increased 418 

abundance in DKO mice. Cholesterol metabolites have been linked to the promotion of 419 

tumorigenesis (62). Furthermore, high serum cholesterols level has been linked to increased 420 

ovarian cancer risk in a prospective study (63). 421 

 422 

Conclusions 423 

We here present a deep temporal lipidomic study of an HGSC ovarian cancer mouse model. 424 

The main findings are summarized in Figure 7, pointing at numerous alterations in a variety 425 

of lipid pathways. Phospholipids were the most perturbed lipid class. They also represented 426 

the highest number of altered species at the early stages of HGSC development, pointing to 427 

cell integrity fortification processes associated with cancer progression. We also found that 428 

ceramide and hexosylceramide levels predominantly increased in DKO mice at the later 429 

stages of OC progression. It is well known that sphingolipid metabolism is linked to cancer 430 

development and progression via autophagy. In the early stages, an attempt is made to 431 

inhibit tumorigenesis; however, at later stages, those lipids assist in cancer proliferation.  432 

Furthermore, we identified sets of lipids that discriminate between DKO and DKO control 433 

mice, even at the earliest stages of disease progression. In addition, three phospholipid 434 

species were identified as circulating prognostic markers in DKO mice. These findings 435 

underscore the potential for the existence of early-stage diagnostic or prognostic lipid 436 

biomarker panels for human ovarian cancer. 437 

 438 
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 439 

Materials and Methods 440 

 441 

Experimental Design 442 

Dicer flox/flox Pten flox/flox Amhr2 cre/+ DKO females and Dicer flox/flox Pten flox/flox control 443 

females that do not carry Amhr2 cre/+ were generated, with the genotypes confirmed by PCR 444 

amplification of DNA. Mice were housed in the Baylor College of Medicine vivarium in 445 

dedicated mouse rooms in microisolator cages. When animals reached eight weeks of age, 446 

serum samples were collected from mice every two weeks until the end of the study or 447 

humane endpoint for sacrifice. When a DKO mouse with an advanced-stage cancer was 448 

determined to be severely sick, the mouse was anesthetized for the last blood collection via 449 

cardiac puncture, and euthanized. The submandibular vein was chosen for the serial blood 450 

collection by alternating cheek sides following a valid animal protocol (AN-716). A total of 451 

100-200 µl blood sample was collected into a BD serum separator, allowed for 30 minutes 452 

clotting time, and followed by centrifugation and serum collection. Collected serum samples 453 

were stored at -80 °C for further metabolomics analysis. DKO mice were sacrificed for this 454 

study in accordance to the animal protocol approved by the institutional animal Care and 455 

Use Committee (IACUC) at Baylor College of Medicine. Samples from 15 DKO mice (n = 456 

231) and 15 control mice (n = 238) were used for lipidomics analyses. Prior to data analysis, 457 

timepoints for each sample collected were converted into a percentage lifetime metric with 458 

the following mathematical formula: 459 

 460 

% Lifetime =  
Age of mice (weeks)

Total lifespan of mice (weeks)
× 100 461 

 462 

The % lifetimes were then binned into five categories: 0-30% (stage I), 30-45% (stage II), 463 

45-60% (stage III), 60-75% (stage IV), and 75-100% (stage V). 464 

 465 

Reagents 466 

Optima LC-MS grade water, 2-propanol, acetonitrile, formic acid (99.5+%), ammonium 467 

formate, and ammonium acetate were purchased from Fisher Chemical (Fisher Scientific 468 

International, Inc. Pittsburgh, PA) and used to prepare chromatographic mobile phases and 469 

solvents for extraction. Isotopically labeled lipid standards (Table S5) were purchased from 470 

Avanti Polar Lipids (Alabaster, AL) and used to prepare the lipid internal standard mixture. 471 

 472 

Sample Preparation 473 

The lipid extraction solvent was prepared by adding 700 µL of the isotopically labeled lipid 474 

standard mixture (Table S5) to 42 mL of 2-propanol. Serum samples were thawed on ice, 475 

followed by the extraction of non-polar metabolites. The extraction procedure was carried 476 

out by adding the prepared extraction solvent to 10-25 µL serum sample in a 3:1 ratio. 477 

Following this step, samples were vortex-mixed for 30 s and centrifuged at 13,000 rpm for 478 

7 min.  The supernatant was transferred to LC vials and stored at -80 °C until analysis, 479 

which was performed within a week. A blank sample, prepared with LC-MS grade water, 480 

underwent the same sample preparation process as the serum samples. A pooled quality 481 

control (QC) sample was prepared by adding 2-5 µL aliquot of supernatant to each serum 482 

sample. This QC sample was analyzed every 10 injections to assess LC-MS instrument 483 

stability through the course of the experiment. Samples were run in a randomized order on 484 

consecutive days. 485 

 486 

UHPLC-MS Analysis  487 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 4, 2023. ; https://doi.org/10.1101/2023.01.04.520434doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.04.520434
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Reverse-phase (RP) ultra-high performance liquid chromatography-mass spectrometry 488 

(UHPLC-MS) analysis was performed with a Thermo Accucore C30, 150 × 2.1 mm, 2.6 489 

µm particle size column mounted in a Vanquish LC coupled to an Orbitrap ID-X Tribrid 490 

mass spectrometer (ThermoFisher Scientific). The mobile phases and chromatographic 491 

gradients used are described in Supplementary Table S6. MS data were acquired in positive 492 

and negative ion modes in the 150-2000 m/z range with a 120,000 mass resolution setting. 493 

The most relevant MS parameters are provided in the supplementary section Table S7. 494 

Samples were kept at 4 °C in the autosampler during LC-MS analysis while the column 495 

temperature was set to 50 °C. An injection volume of 2 µL was used for all runs. For lipid 496 

annotation, MS/MS experiments were performed using the Thermo Scientific AcquireX 497 

data acquisition workflow. Tandem MS data were acquired at a resolution of 30,000 and an 498 

isolation window of 0.4 m/z. Precursor ions were fragmented with HCD and CID activation 499 

methods. For HCD, stepped normalized collision energy (NCE) of 15, 30, and 45 and a CID 500 

collision energy of 40 were used to fragment the precursor ions. 501 

 502 

UHPLC-MS Data Processing  503 

Spectral features (described as m/z, retention time pairs) were extracted with Compound 504 

Discoverer v3.2 (ThermoFisher Scientific) from the raw files. This procedure included 505 

retention time alignment of chromatographic peaks, peak picking, peak area integration, and 506 

compound area correction using a QC-based regression curve. The sample blank injection 507 

was used to remove background peaks: features with less than five times the peak area of 508 

corresponding features in the sample blank were marked as background signals and 509 

removed from the dataset. Additionally, features that were not present in at least 50% of the 510 

QC sample injections or had a relative standard deviation (RSD) of more than 30% in the 511 

QC injections were removed from the dataset. 512 

 513 

Lipid Annotation  514 

Lipid annotation was conducted for selected spectral features detected following filtering. 515 

The exact masses and MS/MS spectra of all features were first matched against a curated 516 

in-house lipid spectral database. For features of interest that did not have matches in the 517 

local database, the generated elemental formulas, exact masses, and MS/MS spectra were 518 

matched against databases such as Lipid Maps (64) and mzCloud (65). A total of 1070 519 

species, which included fatty acids, glycerophospholipids, sphingolipids, and glycerolipids, 520 

were successfully annotated with this approach and used for further analysis. The complete 521 

dataset of annotated species is available through the Metabolomics Workbench, as described 522 

above. 523 

 524 

Global Lipidome Analysis 525 

To investigate alterations at the lipidome level, fold changes were computed by taking the 526 

base two logarithmic ratio of the lipid abundances for DKO mice to the DKO control mice 527 

(log2
[DKO]

[control]
). Statistically significant lipids were identified via Welch’s T-test (DKO 528 

n=221, DKO control n=238) followed by a Benjamini-Hochberg correction using the 529 

Statsmodel library (v. 0.12.2). Eighty-seven lipids with q < 0.05 were identified as 530 

significant. These lipids features were log-transformed (log2𝑋) and auto-scaled prior to 531 

unsupervised machine learning. Principal component analysis (PCA), kernel PCA (kPCA), 532 

and t-distributed stochastic neighbor embedding (t-SNE) were performed with the sci-kit 533 

learn library (v. 0.24.1). In addition, uniform manifold approximation and projection 534 

(UMAP) were performed using the umap library (v. 0.5.1). A two-step pipeline was set up 535 

to identify the best hyperparameters for kPCA. First, a kPCA dimensionality reduction to 536 

the first two components, followed by a logistic regression classifier, then GridSearchCV 537 
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in the sci-kit learn library was used to select the best kernel and gamma value for the 538 

algorithm. The gamma value selected was 0.03, while the kernel used was the radial basis 539 

function (RBF). For t-SNE, the following hyperparameters were used: perplexity= 4, early 540 

exaggeration=10. Perplexity controls how the balance between the local and global structure 541 

of the data, while early exaggeration is the factor that increases the attractive forces between 542 

data points. Time-resolved lipid changes were computed by comparing the five lifetime 543 

stages of DKO and DKO control mice with a Welch’s T-test. Lipids with p < 0.05 were 544 

identified as significant. In addition, overlapping significant features in the time-resolved 545 

univariate test were identified using an upset plot library (v. 0.6.0). Significant lipids that 546 

appeared in at least three lifetime stages were screened as potential prognostic circulating 547 

lipids for ovarian cancer. 548 

  549 

Lipidome Longitudinal Analysis 550 

Fold changes, as described above, were computed for 87 lipids with q < 0.05, and 551 

hierarchical clustering analysis (HCA) was then used to identify clusters of lipidomic 552 

trajectories using those fold changes. Each row of the dataset is equivalent to the fold change 553 

values over the five lifetime stages for a given lipid feature. The goal of this analysis was to 554 

cluster lipids that have a similar trend over time. HCA was performed using the SciPy 555 

library (v. 1.6.2). The distance hyperparameter, that is the distance between two 556 

observations (lipids), used was the correlation metric, which is defined as follows: 557 

 558 

1 − 
( 𝑥 − �̂�)  ∙  ( 𝑦 − �̂�)

‖𝑥 − �̂�‖2 ‖𝑦 −  �̂�‖2
 559 

 560 

Where 𝑥 and 𝑦 are two lipid features.  561 

The second hyperparameter, the linkage hyperparameter, is the measure of the distance 562 

between two clusters to be merged. Complete linkage was used – this method computes the 563 

maximum distance between any single data point in the first cluster and any single data 564 

point in the second cluster, which is defined as follows: 565 

 566 

𝐷(𝑋, 𝑌) =
max

𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌
𝑑(𝑥, 𝑦) 567 

 568 

The algorithm then fuses clusters that have the shortest distance between each other. Where 569 

𝑑(𝑥, 𝑦) is the distance between lipids 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌 and 𝑋 and 𝑌 are two sets of lipid 570 

clusters. Four lipid clusters were identified to have biologically meaningful trends over time. 571 

The longitudinal lipid changes of the four lipid clusters were visualized using the Holoview 572 

Python library (v. 1.14.6). The correlation network graphs of the four clusters were plotted 573 

using Plotly (v. 5.3.1) and networkX (v. 2.5). Lipids with 𝑟 ≥ 0.5 (Pearson’s correlation 574 

coefficient) are displayed with a link on the network graphs.  575 

 576 

Machine Learning Classification Methods 577 

Feature selection 578 

For each lifetime stage, only lipid features with P values < 0.05 (Welch’s T-test) were 579 

retained. Furthermore, one feature was retained for every two highly correlated lipid 580 

features (Pearson’s correlation, r > 0.8). Samples were divided into a training set (70% of 581 

total samples) and a test set (30% of total samples). Lipid features were selected by fitting 582 

the training datasets with a meta-transformer for selecting features based on importance 583 

weights. In this case, random forests were used, and features were ranked via their Gini 584 

index feature importance score. The features with a Gini index greater or equal to the mean 585 
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of all Gini indices were the final lipid features selected for classification purposes. The 586 

number of trees used for the random forest classifiers was a hundred, and all samples were 587 

autoscaled prior to feature selection with random forests. Feature selection was carried out 588 

with the SelectFromModel function and Random Forest classifier in the sci-kit learn library 589 

(v. 0.24.1). 590 

 591 

ML algorithms 592 

Classification tasks were performed by training machine learning models to discriminate 593 

DKO from DKO control mice using the features selected as described above. The machine 594 

learning algorithms used included logistic regression, random forest, k-nearest neighbors, 595 

support vector machines, and a voting ensemble classifier. The default parameters of 596 

Python’s sci-kit learn machine learning library (v. 0.24.1) were used. As indicated above, 597 

70% of samples were used for training purposes, with a 5-fold cross-validation method, 598 

while the remaining 30% were used as the test set. The classifiers were evaluated using the 599 

area under the curve of the receiver operating characteristic curve (AUC ROC) metric. ROC 600 

is a probability curve that plots the true positive rate (TPR) against the false positive rate 601 

(FPR) at various threshold values. This feature makes it an unbiased metric score, 602 

particularly for an unbalanced dataset. 603 

 604 

Logistic regression 605 

Logistic regression is a regression algorithm used for classification purposes, in this case, 606 

binary classification (DKO vs. DKO control mice). It is an extension of linear regression, 607 

as it computes a weighted sum of input features in addition to a bias term. However, instead 608 

of outputting a numeric value as in linear regression, the numeric value is passed through a 609 

sigmoid function that computes a probability (�̂�) value between 0 and 1.  610 

�̂� = 𝜎(𝑤𝑥 + 𝑏) 611 

Where 𝜎(∙) is the logistic function, 𝒘 is the weights/vector coefficient, 𝑥 is lipid features, 612 

𝒃 is the bias term, and �̂� is the final prediction. 𝒘 and 𝒃 are the parameters set during training 613 

and are used to classify samples of the test sets. Probability values are stratified as described 614 

below: 615 

 616 

�̂� = {
0 if �̂� < 0.5

 1  if �̂� ≥ 0.5
 617 

 618 

In our case, samples with �̂� < 0.5 were classified as control animals, while �̂� ≥ 0.5 were 619 

classified as DKO animals. 620 

 621 

Random forest classification 622 

Random forests are an ensemble of decision trees. A decision tree takes the form of an 623 

inverted tree, starting with a root node at the top, with the node split by lipid features into 624 

internal nodes, culminating with the leaf node. While lipid features split each node, as 625 

indicated, the leaf nodes give the final classification of either DKO or DKO control mice. 626 

Decision trees are assembled to form the random forest via bootstrap aggregation, which 627 

reduces prediction variance by random sampling of training samples with replacement. The 628 

algorithm also introduces additional randomness during tree construction by using a random 629 

subset of features to search for the best features to split the node, resulting in greater tree 630 

diversity. For this work, the number of trees in the forest is a hundred, and the quality of 631 

node split is measured by the Gini impurity.  632 

 633 

Support vector machines  634 
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The goal of support vector machines (SVM) is to identify a separating hyperplane 𝒃 + 𝒘𝑻𝒙 635 

that will discriminate two classes of samples with the widest possible margins. Where 𝒘 is 636 

the weights or coefficient vector, 𝒃 is the bias term, and 𝒙 is the feature value. This goal is 637 

accomplished by learning the 𝒘 and 𝒃 terms during training with the following equation: 638 

 639 

Min

𝑤, 𝑏, 𝜉 

1

2
‖𝑤‖2 + 𝐶 ∑ 𝜉, subj. to.  𝑦(𝒃 + 𝒘𝑻𝒙) ≥ 1 −  𝝃 and 𝝃 ≥ 0 640 

 641 

Where 𝐶 is a regularization parameter that penalizes or accommodates 𝜉, 𝜉 is the slack 642 

variable that allows for a soft margin classification, allowing some training data to fall 643 

within the SVM margin. Therefore, the goal is to minimize the weights, bias, and slack 644 

variables, subject to a correct prediction while accommodating the slack variables. In this 645 

work, 𝐶 was set to 1. A kernelized SVM was used to transform datasets that are not linearly 646 

separable to a higher-dimensional space, where they may be linearly separable. The kernel 647 

used in this work is the radial basis function kernel which is defined below: 648 

𝑘(𝑝, 𝑞) =  𝑒−𝛾‖𝑝−𝑞‖2+𝐶 649 

Where 𝑝 and 𝑞 represent data points and 𝛾 is the kernel coefficient. After training, given a 650 

test sample 𝑥, its prediction score can be obtained with OV score =  𝑏 + 𝑤𝑥. If the ovarian 651 

cancer (OV) score ≤ 0, the sample is classified as control mice, and vice-versa.   652 

 653 

k-Nearest Neighbors (k-NN) 654 

k-NN is a non-parametric supervised learning algorithm using an instance-based learning 655 

method. It simply stores training data instances and computes votes based on the majority 656 

class of the k nearest neighbors. The number of neighbors selected was five in this work, 657 

and a uniform weight function was used. That is, all points in each neighborhood were 658 

weighted equally.  659 

 660 

Voting classifier  661 

Because we selected machine learning models with different inductive biases, we explored 662 

an ensemble method voting classifier. The estimators for the voting classifier include all the 663 

ML models prior described: logistic regression, random forests, SVM, and k-NN. In 664 

addition, soft voting was performed, using average predicted probabilities to predict class 665 

labels. 666 

 667 

Prognostic Lipid Discovery Methods and Survival Analysis 668 

Feature selection was performed by a lifetime stage-resolved volcano plot analysis. This 669 

involves plotting the -log10P-value (Welch’s T-test, DKO lifetime stages II-V vs. DKO stage 670 

I) against the log2FC (Fold change, DKO lifetime stage II-V vs. DKO stage I). Lipid features 671 

with P-values < 0.05 and at least one log2FC for each comparison pair were identified as 672 

significant. Volcano plot analysis was performed using the Bioinfokit library (v. 2.0.8). 673 

Overlapping significant features in the DKO volcano plot analysis were identified using an 674 

upset plot via the Upset python library (v. 0.6.0). Lipids that were significant in at least three 675 

of the four DKO lifetime stages comparisons were screened as potential prognostic 676 

circulating lipids for ovarian cancer. In addition, significant lipids in at least three lifetime 677 

stages comparison of DKO vs. control lifetime stages comparisons were also screened. 678 

 679 

The selected lipids were used to split the DKO samples into two groups using the median 680 

split method. For the last serum collection before mice death or end of the study, the DKO 681 

samples with less than or equal to the median of the lipid’s relative abundance were 682 

designated as the “low metabolite level” group. In contrast, the DKO samples with greater 683 
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than the median of the lipid’s relative abundance were designated the “high metabolite 684 

level” group. Furthermore, the survival function 𝑆(𝑡) = 𝑃(𝑇 > 𝑡), which is the probability 685 

that a mouse survives longer than some specified time 𝑡, was computed using the Kaplan 686 

Meier (KM) estimate described in the equation below:  687 

  688 

�̂�(𝑡) =  ∏(1 −
𝑑𝑖

𝑛𝑖
)

𝑡𝑖<𝑡

 689 

 690 

Where 𝑑𝑖 is the number of mice death events at time 𝑡, while 𝑛𝑖 is the number of mice at 691 

risk of death prior to time 𝑡. The log-rank test (p < 0.05) was used to determine if the 692 

differences between KM curves were statistically significant. In addition, the restricted 693 

mean survival time (RMST) is defined below:  694 

 695 

RMST(𝑡) = ∫ 𝑆(𝜏)𝑑𝜏
𝑡

0
 696 

 697 

This metric was used to compare two survival curves by measuring the area under the 698 

survival curve, which is a measure of “time lost.” Kaplan Meier estimates and the RMST 699 

was also used to compute and compare the survival curves of DKO vs. control mice, 700 

respectively. Finally, the hazard curves were computed using the Nelson-Aalen estimate, 701 

and all survival analysis methods in this work were performed using the Python lifelines 702 

library (v. 0.26.3). 703 

 704 

Statistical Analysis 705 

Computational analysis was carried out as indicated in the respective sections above using 706 

the Python 3.8.8 programming language. NumPy (v. 1.20.1) was used for numerical 707 

computations, the Pandas (v. 1.2.4) library was used to perform data handling, and data 708 

manipulation, Matplotlib (v. 3.3.4), Plotly (v. 5.3.1) and Holoview (v. 1.14.6) were used for 709 

data plotting and visualization.  710 

 711 

 712 

 713 
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 928 

Figures and Tables 929 

 930 

Figure 1. Blood sampling scheme, study design, and analysis plan. (a) Blood samples 931 

were collected every two weeks, starting at the two-month mark. Lipidomics 932 

experiments were conducted using ultra-high performance liquid chromatography 933 

mass spectrometry (UHPLC-MS). (b) Conversion of the mice age in weeks to 934 

percentage lifetime makes lipidomic comparisons effective. (c) Computational 935 

analysis plan. 936 
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 937 

 938 

Fig 2. Global lipidomic changes observed upon HGSC progression. (a) Overall fold 939 

changes for all annotated features, for all time points combined. (b) Fold changes 940 

for 87 significant lipid features (Welch’s T-test, Benjamini-Hochberg correction q-941 

value < 0.05) for all time points combined. (c) The number of significant lipidomic 942 

features (Welch’s T-test p-value < 0.05) for each lifetime stage. (d) Upset plot 943 

showing overlapping significant lipids in various lifetime stages. Sets containing 944 

lipid features present in at least three lifetime stages are colored brown. 945 

 946 
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 947 

Fig 3. Lipidome changes in response to ovarian cancer progression. (a) Hierarchical 948 

clustering analysis shows the grouping of lipidome trajectories into four types of 949 

clusters. (b) Longitudinal lipid changes for the selected clusters indicating fold 950 

changes. (c) Network graph for the clusters shown in (a). Nodes represent lipids, 951 

while the links connect nodes with a high Pearson’s correlation (r 0.5).  952 
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 953 

 954 

Table 1. Annotations for lipid clusters associated with ovarian cancer progression. 955 

Proposed lipid annotation, experimental m/z value, chromatographic retention time 956 

(RT) in minutes (min), and main adduct type detected are shown. DG: 957 

Diacylglycerols, TG: Triacylglycerols, FA: Fatty acids, HexCer: Hexosylceramides, 958 

LPC: Lysophosphatidylcholines, LPE: Lysophosphatidylethanolamines, PC: 959 

Phosphatidylcholines, PC-O: Ether phosphatidylcholines, PE: 960 

Phosphatidylethanolamines, PE-O: Ether phosphatidylethanolamines, PI: 961 

Phosphatidylinositols, Cer: Ceramides, and SM: Sphingomyelins. 962 

 963 

ID Lipids Adduct RT 

[min] 

Mass 

Error 

(ppm) 

Experimental 

m/z 

 Cluster A 

4260 HexCer(d42:2) [M+CH3COOH-

H]- 

6.50 3.93 868.6917 

2626 PC(20:0_20:4) [M+H2CO2-H]- 5.20 3.13 882.6257 

1876 PC(O-16:0_16:0) [M+CH3COOH-

H]- 

5.17 4.31 778.6001 

2412 PC(O-18:1/20:3) [M+CH3COOH-

H]- 

5.03 3.36 854.6309 

2587 PC(O-18:1_22:6) 

and PC(O-

22:7_18:0) 

[M+CH3COOH-

H]- 

4.33 3.31 876.6153 

1650 PE(16:0_20:4) [M-H]- 4.35 4.46 738.5122 

1651 PE(16:0_20:4) [M-H]- 4.17 4.62 738.5113 

1623 PE(O-15:1_22:5) [M-H]- 4.35 4.71 734.5164 

10366 TG(60:12) [M+NH4]+ 7.56 2.82 968.7729 

6813 HexCer(d18:1_24:1) [M+H]+ 6.54 4.42 810.6853 

6839 PC(38:3) [M+H]+ 4.95 -1.03 812.6155 

7604 PC(41:6) [M+H]+ 5.04 1.81 848.6179 

7565 PC(41:7) [M+H]+ 5.26 -2.04 846.5990 

 Cluster B 

1870 PC(16:0_16:0) [M+H2CO2-H]- 4.26 3.38 778.5629 

2050 PC(16:0_18:0) [M+H2CO2-H]- 5.45 4.03 806.5949 

1679 PC(16:0_18:2) [M+H2CO2-H]- 4.14 -0.76 802.5597 

2411 PC(O-18:1_20:3) [M+CH3COOH-

H]- 

4.52 -1.85 854.6264 

2400 PC(O-18:1_20:4) 

and PC(O-

16:0_22:5) 

[M+CH3COOH-

H]- 

4.52 3.18 852.6151 

 Cluster C 

886 LPE(20:0) [M-H]- 2.27 4.47 508.3431 

6573 PC(37:3) [M+H]+ 4.80 2.48 798.6027 

7105 PC(39:4) [M+H]+ 5.26 0.83 824.6170 

5618 PC(O-32:0) [M+H]+ 5.22 1.41 720.5911 

5604 PC(O-32:1) [M+H]+ 4.48 1.61 718.5756 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 4, 2023. ; https://doi.org/10.1101/2023.01.04.520434doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.04.520434
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

6493 PC(O-38:5) [M+H]+ 4.56 -0.28 794.6060 

7022 PC(O-40:6) [M+H]+ 5.26 0.73 820.6220 

7023 PC(O-40:6) [M+H]+ 4.62 2.81 820.6237 

6984 PC(O-40:7) [M+H]+ 4.40 0.10 818.6059 

 Cluster D 

1111 Cer(d33:1) [M+CH3COOH-

H]- 

4.69 4.80 582.5131 

966 Cer(d34:1) [M-H]- 4.70 2.96,  536.5064,  

1149 Cer(d34:1) [M+CH3COOH-

H]- 

4.72 4.28 596.5285 

1217 Cer(d40:1) [M-H]-, 

[M+CH3COOH-

H]- 

6.82 4.62, 4.38 620.6014, 

680.6229 

1297 Cer(d42:2) [M-H]- 6.79 4.73,  646.6174,  
1290 Cer(d42:3) [M-H]- 6.45 4.27 644.6011 

1504 Cer(d42:3) [M+CH3COOH-

H]- 

6.46 4.19 704.6228 

1473 HexCer(d34:1) [M-H]- 4.32 3.17 698.5611 

1761 HexCer(d34:1) [M+CH3COOH-

H]- 

4.09 4.21 758.5819 

1762 HexCer(d34:1) [M+CH3COOH-

H]- 

4.32 2.37 758.5805 

2078 HexCer(d42:1) [M-H]- 6.83 4.50 810.6857 

2532 HexCer(d42:1) [M+CH3COOH-

H]- 

6.83 2.53 870.7061 

2065 HexCer(d42:2) [M-H]- 6.40 3.76 808.6698 

2522 HexCer(d42:2) [M+CH3COOH-

H]- 

6.41 3.83 868.6916 

2415 HexCer(d42:2) [M+H2CO2-H]- 6.40 3.70 854.6758 

2557 SM(d42:1) [M+CH3COOH-

H]- 

7.16 3.95 873.7100 

7815 PC(42:8) [M+H]+ 4.08 1.32 858.6018 

9401 TG(56:9) [M+NH4]+ 7.59 0.26 918.7547 

10226 TG(58:9) [M+NH4]+ 7.65 5.36 946.7908 

 964 

 965 

 966 

 967 

 968 

 969 
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 970 

Fig 4.  Discriminating DKO from DKO control mice via machine learning.  (a) Machine 971 

learning pipeline. The pipeline starts with a t-test filtering method for each of the 972 

five ML tasks: lipid features with less than 0.05 p-value (Welch’s t-test p < 0.05) 973 

were selected. Next, one of two lipid features with a high Pearson’s correlation score 974 

(r > 0.8) was removed from the dataset to avoid unnecessary redundancies. Finally, 975 

lipid features with a Gini index greater or equal to the mean of all Gini indices were 976 

selected for training and testing purposes. ROC-AUC test set for DKO classification 977 

for (b), lifetime stage I (c), lifetime stage II (d), lifetime stage III (e), lifetime stage 978 

IV (f), and lifetime stage V. (g) The best ROC-AUC scores for each lifetime stage.  979 

TPR: True positive rate, FPR: False positive rate, k-NN: k-Nearest Neighbors, RF: 980 

Random Forests, SVM: Support Vector Machine, Voting: Voting Ensemble 981 

Classifier.  982 

 983 

 984 

 985 
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Fig 5.  Discriminant lipids for each of the five lifetime stages. (a) Lifetime stage I: 0-987 

30% lifetime. (b) Lifetime stage II: 30-45% lifetime. (c) lifetime stage III: 45-60% 988 

lifetime (d) Lifetime stage IV: 60-75% lifetime. (e) Lifetime stage V: 75-100% 989 

lifetime. (f) frequency of lipid classes, groups, and categories in the discriminant 990 

lipid panels. TG: Triacylglycerols, FA: Fatty acids, HexCer: Hexosylceramides, 991 

LPC: Lysophosphatidylcholines, LPE: Lysophosphatidylethanolamines, PC: 992 

Phosphatidylcholines, PC-O: Ether phosphatidylcholines, PE: 993 

Phosphatidylethanolamines, PE-O: Ether phosphatidylethanolamines, PI: 994 

Phosphatidylinositols, Cer: Ceramides, and SM: Sphingomyelins 995 

  996 
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 997 

 998 

Fig 6.  Prognostic circulating lipid candidates. Volcano plots comparing DKO lifetime 999 

stage I with (a) DKO lifetime stage II, (b) DKO lifetime stage III, (c) DKO lifetime 1000 

stage IV and (d) DKO lifetime stage V. P- values for volcano plot analysis were 1001 

calculated using Welch’s T-test. (e) Upset plot showing the intersection of the 1002 

various groups of significant lipids selected from volcano plots. Lipids present in at 1003 

least three sets were colored brown. Kaplan-Meier survival curves for (f) PC(39:4), 1004 

(g) PC(37:2) and (h) PC(40:7). P-values were computed with the Log rank test. (i) 1005 

Selected prognostic circulating lipids. PC: Phosphatidylcholines FC: Fold changes. 1006 

ΔRMST: differences in restricted mean survival times.    1007 
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 1008 

Fig 7.  Schematic of metabolic pathways showing key metabolic alterations in the DKO 1009 

mice lipidome. Lipid classes detected in the study are indicated as bolded blue text, 1010 

while unbolded blue text signifies other metabolites in the metabolic pathway. Red 1011 

text indicates enzymes known to be overly expressed in ovarian cancer cells or other 1012 

related cancer, with the relevant references. For each detected lipid class presented, 1013 

information about the cluster they belong to in the temporal trend analyses is 1014 

provided, in addition to the breakdown information on discriminant lipids selected 1015 

by ML algorithms. A red circle represents the cumulative change in detected lipid 1016 

classes (increase in DKO mice), a green circle (decrease in DKO mice), or a white 1017 

circle (no cumulative change). Cumulative changes are computed by counting the 1018 

number of both increased and decreased levels among the selected discriminant lipid 1019 

in all lifetime stages. Pathway information was derived from existing literature. 1020 

Abbreviations: G3P: Glycerol-3-phosphate, PA: Phosphatidic acid, DG: 1021 

Diacylglycerols, TG: Triacylglycerols, PC: Phosphatidylcholines, PC O-: Ether 1022 

phosphatidylcholines, PE: Phosphatidylethanolamines, PE O-: Ether 1023 

phosphatidylethanolamines, LPE: Lysophosphatidylethanolamines, LPC: 1024 

Lysophosphatidylcholines, PI: Phosphatidyl inositol, HMG CoA: 3-hydroxy-3-1025 

methylglutaryl coenzyme A, MUFA: mono-unsaturated fatty acids, PUFA: Poly-1026 

unsaturated fatty acids, SM: Sphingomyelin, Cer: Ceramide, HexCer: 1027 

Hexosylceramide, CK: Choline kinase, ACC: acetyl-CoA carboxylase, ACL: ATP-1028 

citrate lyase, FAS: Fatty acid synthase, SCD1: Stearoyl-CoA desaturase-1, UGCG: 1029 

uridine diphosphate-glucose ceramide glucosyltransferase. 1030 

 1031 

 1032 

 1033 

 1034 

 1035 

 1036 
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Supplementary Materials 1037 

 1038 

Figure S1. Survival analysis comparison of DKO and DKO control mice. (a) Kaplan-Meier 1039 

survival curve estimate, DKO vs. DKO control mice. (b), Nelson-Aalen hazard curve estimate, 1040 

DKO vs. DKO control mice. (c), Restricted Mean Survival Times (RMST), DKO vs. DKO 1041 

control mice.  1042 
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 1044 

Figure S2. DKO and DKO control mice comparison via unsupervised learning methods. (a), 1045 

PCA score plot. (b), Kernel PCA score plot. (c), tSNE score plot. (d), UMAP score plot. Eighty-1046 

seven statistically significant lipid abundances were used for unsupervised learning, and all-time 1047 

points were combined. 1048 
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 1050 

Figure S3. Restricted Mean Survival Times (RMST) plots for all prognostic lipid 1051 

candidates. (a), PC(37:2). (b), PC(39:4). (c), PC(40:7). 1052 
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Table S1. Eighty-seven statistically significant (q < 0.05) lipids for the DKO vs. DKO control 1054 

comparison, all time points combined. DG: Diacylglycerols, TG: Triacylglycerols, FA: Fatty 1055 

acids, HexCer: Hexosylceramides, LPC: Lysophosphatidylcholines, LPE: 1056 

Lysophosphatidylethanolamines, PC: Phosphatidylcholines, PC-O: Ether phosphatidylcholines, 1057 

PE: Phosphatidylethanolamines, PE-O: Ether phosphatidylethanolamines, PI: 1058 

Phosphatidylinositols, Cer: Ceramides, and SM: Sphingomyelins. 1059 

 1060 

ID Retention  

Time [min] 

Lipids Adduct  

24 1.54 FA(14:1) [M-H]- 

1472 4.67 PE(O-34:3) [M-H]- 

1111 4.69 Cer(d33:1)  [M+CH3COOH-H]- 

966 4.70 Cer(d34:1)   [M-H]- 

1149 4.72 Cer(d34:1)  [M+CH3COOH-H]- 

1217 6.83 Cer(d40:1) [M-H]- 

1454 6.64 Cer(d41:2) [M+CH3COOH-H]- 

1297 6.79 Cer(d42:2)  [M-H]- 

1290 6.46 Cer(d42:3)  [M-H]- 

1504 6.46 Cer(d42:3)  [M+CH3COOH-H]- 

111 2.37 FA(18:1)  [M-H]- 

1473 4.33 HexCer(d34:1) [M-H]- 

1761 4.09 HexCer(d34:1)  [M+CH3COOH-H]- 

1762 4.32 HexCer(d34:1)  [M+CH3COOH-H]- 

2078 6.83 HexCer(d42:1)  [M+CH3COOH-H]- 

2532 6.83 HexCer(d42:1)  [M-H]- 

2065 6.41 HexCer(d42:2) [M-H]- 

2522 6.41 HexCer(d42:2)  [M+CH3COOH-H]- 

4260 6.51 HexCer(d42:2) [M-H]- 

2415 6.41 HexCer(d42:2) [M+H2CO2-H]- 

257 2.03 FA(20:4-2OH) [M-H]- 

52 2.02 FA(16:1) [M-H]- 

1870 4.26 PC(16:0_16:0) [M+H2CO2-H]- 

2050 5.45 PC(16:0_18:0) [M+H2CO2-H]- 

2110 3.76 PC(16:0_18:2) [M+CH3COOH-H]- 

1679 4.14 PC(16:0_18:2) [M+H2CO2-H]- 

1751 4.51 PC(16:0_18:2) [M+H2CO2-H]- 

2265 5.90 PC(18:0_18:0) [M+H2CO2-H]- 

2163 3.56 PC(16:0_20:5) [M+H2CO2-H]- 

2225 5.32 PC(17:0_18:2) [M+CH3COOH-H]- 

4126 4.56 PC(18:0_20:4) [2M+H2CO2-H]- 

2725 5.09 PC(18:0_22:4) [M+CH3COOH-H]- 

2626 5.20 PC(20:0_20:4) [M+H2CO2-H]- 

1876 5.18 PC(O-16:0_16:0) [M+CH3COOH-H]- 

1849 2.05 PC(O-17:1_15:1) and PC(O-

16:1_18:1) [M+CH3COOH-H]- 
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2038 2.37 PC(O-16:0_18:1) [M+CH3COOH-H]- 

2205 4.51 PC(O-18:1_18:2) [M+CH3COOH-H]- 

2187 4.50 PC(O-16:1_20:3) [M+CH3COOH-H]- 

2432 5.33 PC(O-18:0_20:3) [M+CH3COOH-H]- 

2411 4.52 PC(O-18:1_20:3) [M+CH3COOH-H]- 

2412 5.04 PC(O-18:1_20:3) [M+CH3COOH-H]- 

2400 4.52 PC(O-18:1_20:4) and PC(O-

16:0_22:5) [M+CH3COOH-H]- 

2587 4.33 PC(O-18:1_22:6) and PC(O-

22:7_18:0) [M+CH3COOH-H]- 

1650 4.36 (16:0_20:4) [M-H]- 

1651 4.17 (16:0_20:4) [M-H]- 

1623 4.35 PE(O-15:1_22:5) [M-H]- 

1699 4.33 PE(O-18:3_20:4) [M-H]- 

1641 4.38 PE(O-22:8_18:0) and PE(O-

18:2_22:6) [M-H]- 

1837 4.36 PE(O-22:8_18:0) and PE(O-

18:2_22:6) [M-H]- 

2631 3.50 PI(18:1_20:4) [M-H]- 

349 2.38 Prostaglandin A1 ethyl ester [M-H]- 

1912 4.00 SM(d36:2) [M+CH3COOH-H]- 

2439 6.14 SM(d41:2) [M+CH3COOH-H]- 

2557 7.17 SM(d42:1) [M+CH3COOH-H]- 

78 2.21 FA(17:1) [M-H]- 

886 2.27 LPE(20:0) [M-H]- 

5443 9.32 DG(40:0) [M+NH4]+ 

10366 7.56 TG(60:12) [M+NH4]+ 

5438 9.29 Campesterol Ester(18:2) [M+NH4]+ 

5439 9.35 Campesterol Ester(18:2) [M+NH4]+ 

5344 6.87 Cer(d18:1_24:1) [M+H]+ 

6813 6.54 HexCer(d18:1_24:1) [M+H]+ 

6573 4.80 PC(37:3) [M+H]+ 

6839 4.95 PC(38:3) [M+H]+ 

7105 5.26 PC(39:4) [M+H]+ 

7357 4.52 PC(40:5) [M+H]+ 

7604 5.05 PC(41:6) [M+H]+ 

7565 5.26 PC(41:7) [M+H]+ 

7815 4.08 PC(42:8) [M+H]+ 

5618 5.22 PC(O-32:0) [M+H]+ 

5604 4.49 PC(O-32:1) [M+H]+ 

6538 5.08 PC(O-38:4) [M+H]+ 

6539 5.09 PC(O-38:4) [M+H]+ 

6493 4.57 PC(O-38:5) [M+H]+ 

7022 5.26 PC(O-40:6) [M+H]+ 

7023 4.63 PC(O-40:6) [M+H]+ 

6983 4.06 PC(O-40:7) [M+H]+ 
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6984 4.40 PC(O-40:7) [M+H]+ 

9401 7.59 TG(56:9) [M+NH4]+ 

8964 7.46 TG(58:11) [2M+K]+ 

9614 7.46 TG(58:11) [2M+NH4]+ 

10101 7.46 TG(58:11) [M+K]+ 

10226 7.65 TG(58:9) [M+NH4]+ 

10227 7.69 TG(58:9) [M+NH4]+ 

10228 7.79 TG(58:9) [M+NH4]+ 

10230 7.99 TG(58:9) [M+NH4]+ 

4512 9.48 cholesterol derivative [M+NH4]+ 

 1061 

 1062 
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Table S2. Statistically significant lipid features for the comparison between DKO and DKO 1064 

control mice that were present in at least three lifetime stages. FA: Fatty acids, PC: 1065 

Phosphatidylcholines, PC-O: Ether phosphatidylcholines, Cer: Ceramides, and SM: 1066 

Sphingomyelins. 1067 

 1068 

ID Retention 

Time [min] 

Lipids 

201 1.13 15-deoxy-D-12,14-Prostaglandin A2 

1111 4.69 Cer(d33:1) 

1454 6.64 Cer(d41:2) 

2163 3.56 PC(16:0_20:5) 

2409 4.77 PC(18:0_20:4) 

2725 5.09 PC(18:0/22:4) 

1849 2.05 PC(O-17:1_15:1) and PC(O-

16:1_18:1) 

2587 4.33 PC(O-18:1_22:6) and PC(O-

22:7_18:0) 

349 2.38 Prostaglandin A1 ethyl ester 

2238 6.32 SM(t39:0) or SM(d39:0-OH) 

4431 1.64 FA(18:3) 

5618 5.22 PC(O-32:0) 

5604 4.49 PC(O-32:1) 

6538 5.08 PC(O-38:4) 

6539 5.09 PC(O-38:4) 

6493 4.57 PC(O-38:5) 

7022 5.26 PC(O-40:6) 

7023 4.63 PC(O-40:6) 

6983 4.06 PC(O-40:7) 

 1069 
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Table S3. Lipids selected via machine learning for each percentage lifetime stage. 1071 

 1072 

ID Retention 

Time 

[min] 

Lipids 

Lifetime Stage I: 0-30% Lifetime 

12 1.04 3-hydroxyphenyl-valerate 

1472 4.67 PE(O-34:3) 

2226 4.51 PC(17:0_18:2) 

1941 3.88 PC(38:6) 

1560 4.16 PE(O-16:1_20:5) 

Lifetime Stage II: 30-45% Lifetime 

452 4.36 FA(26:1) 

2463 6.75 HexCer(d40:0-OH) 

2446 6.37 HexCer(d40:1-OH) 

1679 4.14 PC(16:0_18:2) 

2091 3.76 PC(16:0_18:3) 

2294 3.42 PC(18:2_18:2) 

1789 3.66 PC(16:0_20:5) 

2165 3.41 PC(16:1_20:4) 

4125 4.78 PC(18:0_20:4) 

2143 4.09 PC(18:1_20:4) and PC(16:0_22:5) 

2725 5.09 PC(18:0_22:4) 

1876 5.18 PC(O-16:0_16:0) 

2207 4.65 PC(O-18:1_18:2) 

2187 4.50 PC(O-16:1_20:3) 

2411 4.52 PC(O-18:1_20:3) 

2412 5.04 PC(O-18:1_20:3) 

2384 3.98 PC(O-16:1_22:5) 

2587 4.33 PC(O-18:1_22:6) and PC(O-22:7_18:0) 

1859 4.35 PE(17:0_22:6) 

1765 3.42 SM(d34:2) 

2540 6.23 SM(d42:2) 

2541 6.50 SM(d42:2) 

4431 1.64 FA(18:3) 

6573 4.80 PC(37:3) 

7022 5.26 PC(O-40:6) 

Lifetime Stage III: 45-60% Lifetime 

1111 4.70 Cer(d33:1) 

1454 6.64 Cer(d41:2) 

1726 4.82 Cer(d45:1) 

2246 6.12 HexCer(d38:0-OH) 

2773 7.14 HexCer(d40:0) or HexCer(t42:0-OH) 

2265 5.90 PC(18:0_18:0) 

2443 4.04 PC(16:0_20:4) 
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2409 4.77 PC(18:0_20:4) 

2725 5.09 PC(18:0_22:4) 

1608 5.64 PE(O-18:0_18:2) 

2629 3.56 PI(18:1_20:4) 

2631 3.50 PI(18:1_20:4) 

349 2.38 Prostaglandin A1 ethyl ester 

4450 2.54 6-methyl-1-(2-methylphenyl)-3-propylfuro[3,2-d]pyrimidine-

2,4(1H,3H)-dione 

4434 1.89 FA(18:2) 

6433 4.11 PC(37:6) 

6445 4.44 PC(O-38:6) 

8429 8.52 TG(18:0_18:1_18:2)_and_TG(18:1_18:1_18:1)_and_TG(16:0_18:2_2

0:1) 

Lifetime Stage IV: 60-75% Lifetime 

277 1.32 FA(20:1-2OH) 

229 1.66 FA(20:1-OH) 

270 1.69 FA(20:2-2OH) 

1111 4.69 Cer(d33:1) 

1726 4.82 Cer(d45:1) 

1762 4.32 HexCer(d34:1) 

2725 5.09 PC(18:0_22:4) 

2704 4.81 PC(18:0_22:5) 

1727 4.36 PC(O-15:1_20:4) 

2587 4.33 PC(O-18:1_22:6) and PC(O-22:7_18:0) 

2630 3.35 PI(18:1_20:4) 

2439 6.14 SM(d41:2) 

2238 6.32 SM(t39:0) or SM(d39:0-OH) 

6241 4.40 PC(O-37:5) 

6573 4.80 PC(37:3) 

6156 5.62 PC(37:4) 

6435 4.10 PC(37:6) 

7103 4.73 PC(39:4) 

5618 5.22 PC(O-32:0) 

6538 5.08 PC(O-38:4) 

6539 5.09 PC(O-38:4) 

6983 4.06 PC(O-40:7) 

5593 4.32 SM(d35:1) 

8964 7.46 TG(58:11) 

Lifetime Stage V: 75-100% Lifetime 

772 1.65 LPE(18:1) 

1874 5.52 PE(P-40:4) 

1297 6.79 Cer(d42:2) 

1473 4.33 HexCer(d34:1) 

934 1.74 LPC(20:4_0:0)_and_LPC(0:0_20:4) 

1122 1.50 LPC(20:5_0:0)_and_LPC(0:0_20:5) 
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357 3.63 FA(24:1) 

1790 3.95 PC(14:0_16:0) 

2412 5.04 PC(O-18:1_20:3) 

2384 3.98 PC(O-16:1_22:5) 

2619 6.05 PC(O-18:1_22:4) 

2587 4.33 PC(O-18:1_22:6) and PC(O-22:7_18:0) 

2706 4.48 PC(O-18:1_22:6) and PC(O-22:7_18:0) 

2707 4.33 PC(O-18:1_22:6) and PC(O-22:7_18:0) 

1884 6.07 PE(O-18:0_22:4); PE(O-40:4) 

2063 6.68 PE(O-18:2_24:2) 

2021 5.98 PE(O-20:1_22:6) 

2436 3.31 PI(16:0_20:4) 

1912 4.00 SM(d36:2) 

2029 5.03 SM(d37:1) 

2116 5.45 SM(d38:1) 

2454 6.62 SM(d41:1) 

9666 8.02 TG(58:10) 

9784 8.24 TG(58:8) 

10458 8.55 TG(60:10) 

10366 7.56 TG(60:12) 

6612 4.57 PC(37:2) 

6839 4.95 PC(38:3) 

7402 5.72 PC(40:4) 

7357 4.52 PC(40:5) 

7915 4.65 PC(42:6) 

6539 5.09 PC(O-38:4) 

6493 4.57 PC(O-38:5) 

6983 4.06 PC(O-40:7) 

5652 4.08 SM(d36:2) 

5891 4.69 SM(d38:4) 

7197 8.37 TG(16:0_16:0_18:1) 

10287 8.18 TG(18:0_20:4_20:4) and TG(18:0_18:2_22:6) 

10226 7.65 TG(58:9) 

10227 7.69 TG(58:9) 

10230 7.99 TG(58:9) 

4512 9.48 cholesterol derivative 

 1073 

 1074 

  1075 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 4, 2023. ; https://doi.org/10.1101/2023.01.04.520434doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.04.520434
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Table S4. 1076 

Machine learning results for DKO classification.  k-NN: k-Nearest Neighbors, RF: Random 1077 

Forests, SVM: Support Vector Machine, Voting: Voting Classifier. CV: cross-validation. All 1078 

scores are ROC AUC. 1079 

 1080 

Machine learning 

algorithm 

Training set CV 

scores 

Test set scores 

Lifetime Stage I: 0-30% Lifetime 

Logistic regression 0.78(±0.16) 0.74 

RF 0.82(±0.17) 0.80 

k-NN 0.77(±0.24) 0.80 

SVM 0.73(±0.19) 0.74 

Voting 0.76(±0.20) 0.80 

Lifetime Stage II: 30-45% Lifetime 

Logistic regression 0.76(±0.21) 0.66 

RF 0.87(±0.09) 0.70 

k-NN 0.79(±0.12) 0.66 

SVM 0.80(±0.11) 0.62 

Voting 0.82(±0.13) 0.66 

Lifetime Stage III: 45-60% Lifetime 

Logistic regression 0.66(±0.08) 0.85 

RF 0.76(±0.13) 0.77 

k-NN 0.81(±0.09) 0.80 

SVM 0.80(±0.06) 0.78 

Voting 0.77(±0.09) 0.82 

Lifetime Stage IV: 60-75% Lifetime 

Logistic regression 0.80(±0.08) 0.47 

RF 0.83(±0.13) 0.66 

k-NN 0.76(±0.14) 0.54 

SVM 0.78(±0.07) 0.57 

Voting 0.82(±0.11) 0.54 

Lifetime Stage V: 75-100% Lifetime 

Logistic regression 0.90(±0.06) 0.69 

RF 0.90(±0.04) 0.63 

k-NN 0.90(±0.06) 0.67 

SVM 0.90(±0.05) 0.75 

Voting 0.91(±0.04) 0.74 
 1081 

 1082 

 1083 

 1084 

 1085 

Table S5. 1086 

Composition of stable isotope-labeled chemical standards mixture used in UHPLC-MS.  1087 
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 1088 

Isotopically labeled lipids CAS number Concentration 

in stock solution 

(mg/ml) 

LPC (18:1(d7)) 2097561-13-0 25 

LPE(18:1(d7) 2260669-47-2 5 

PC (15:0/18:1(d7)) 2097561-16-3 160  

PE (15:0/18:1(d7)) 2097561-15-2 5  

PS (15:0/18:1(d7)) 2260669-40-5 10  

PG (15:0/18:1(d7)) 2260669-42-7 30  

PI (15:0/18:1(d7)) 2260669-44-9 20  

CE (18:1(d7)) 1416275-35-8 350  

DG (15:0/18:1(d7)) 2097561-14-1 10 

TG (15:0/18:1(d7)/15:0) 2097561-17-4 55 

SM (18:1(d9)) 2260669-50-7 30  

cholesterol-d7 83199-47-7 100  

 1089 

  1090 
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Table S6. 1091 

Chromatographic gradient for RP UHPLC-MS method. For negative ion mode, mobile phase 1092 

A was 10 mM ammonium acetate with water/acetonitrile (40:60 v/v) and mobile phase B was 10 1093 

mM ammonium acetate with 2-isopropanol/acetonitrile (90:10 v/v). For positive ion mode, 1094 

mobile phase A was 10 mM ammonium formate with water/acetonitrile (40:60 v/v) and 0.1% 1095 

formic acid. Mobile phase B was 10 mM ammonium formate with 2-isopropanol/acetonitrile 1096 

(90:10 v/v) and 0.1% formic acid. 1097 

RP UHPLC Gradient 

Time 

(min) 

Mobile 

phase A 

Mobile phase B Flow rate 

(ml min-1) 

0.0 80% 20% 0.4 

0.0 80% 20% 0.4 

1.0 40% 60% 0.4 

5.0 30% 70% 0.4 

5.5 15% 85% 0.4 

8.0 10% 90% 0.4 

8.2 0% 100% 0.4 

10.5 0% 100% 0.4 

10.7 80% 20% 0.4 

12.0 80% 20% 0.4 
  1098 
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Table S7. 1099 

MS parameters used for RP UHPLC-MS. Arb: Arbitrary units. 1100 

 1101 

MS parameters for RP UHPLC-MS 

MS parameter  Positive 

mode 

Negative  

mode 

Capillary temperature 275 °C 275 °C 

Spray voltage + 3.5kV - 2.5kV 

Sheath gas flow rate  40 Arb. 40 Arb. 

Auxiliary gas flow rate 8 Arb. 8 Arb. 

Sweep gas flow rates 1 Arb. 1 Arb. 

Vaporizer temperature   320 °C 320 °C 

 1102 

 1103 
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