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Spike Code Flow in Cultured Neuronal Networks

Shinichi Tamura,1 Yoshi Nishitani,2 Chie Hosokawa,3

Tomomitsu Miyoshi,4 Hajime Sawai,5 Takuya Kamimura,1 Yasushi Yagi,6

Yuko Mizuno-Matsumoto,7 and Yen-Wei Chen8

1NBL Technovator Co., Ltd., 631 Shindachimakino, Sennan 590-0522, Japan
2Department of Radiology, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan
3Biomedical Research Institute, AIST, Ikeda, Osaka 563-8577, Japan
4Department of Integrative Physiology, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan
5College of Health and Human Sciences, Osaka Prefecture University, Habikino, Osaka 583-8555, Japan
6ISIR, Osaka University, 8-1 Mihogaoka, Ibaraki City, Osaka 567-0047, Japan
7Graduate School of Applied Informatics, University of Hyogo, Kobe 650-0047, Japan
8College of Information Science and Engineering, Ritsumeikan University, Kusatsu 525-8577, Japan

Correspondence should be addressed to Shinichi Tamura; tamuras@nblmt.jp

Received 1 July 2015; Revised 19 September 2015; Accepted 8 October 2015

Academic Editor: Reinoud Maex

Copyright © 2016 Shinichi Tamura et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

We observed spike trains produced by one-shot electrical stimulation with 8 × 8 multielectrodes in cultured neuronal networks.
Each electrode accepted spikes from several neurons.We extracted the short codes from spike trains and obtained a code spectrum
with a nominal time accuracy of 1%.We then constructed code flowmaps asmovies of the electrode array to observe the code flowof
“1101” and “1011,” which are typical pseudorandom sequence such as that we often encountered in a literature and our experiments.
They seemed to flow from one electrode to the neighboring one andmaintained their shape to some extent. To quantify the flow, we
calculated the “maximum cross-correlations” among neighboring electrodes, to find the direction of maximum flow of the codes
with lengths less than 8. Normalized maximum cross-correlations were almost constant irrespective of code. Furthermore, if the
spike trains were shuffled in interval orders or in electrodes, they became significantly small. Thus, the analysis suggested that local
codes of approximately constant shape propagated and conveyed information across the network. Hence, the codes can serve as
visible and trackable marks of propagating spike waves as well as evaluating information flow in the neuronal network.

1. Introduction

Spike trains can be observed in a neuronal network. They
show various aspects of neurons participating in the network.
It is difficult, however, to determine how the spikes are coded.
Furthermore, neurons work slowly and unreliably compared
with artificial transistors, presenting a mystery of how a
neuronal network can work intelligently and reliably.

The present methods of spike-coding analyses of neu-
ronal networks are as follows.

(A) Spike-Coding Metrics. To analyze spike trains, the metrics
between spike trains have been proposed on the basis of
the alignment of the distances and convolution metrics,

including traditional rate coding [1]. However, the coding
scheme of neurons has not been solved by this method.

(B) Spatiotemporal Coding. The extension of signals to
multidimensional space permits the examination of many
spatiotemporal patterns in artificial and natural neural net-
works [2–5]. In the visual system, in particular, directional
receptive fields, which are similar to those observed in
mammalian simple cells, emerge on the basis of a minimum
information criterion [6], and an independent component
analysis [7] of natural and facial images, which is a spatially
independent basis function, is derived by self-organization.
The receptive fields of the visual system are obtained by the
self-organization of the neural circuit with mutual inhibition
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Figure 1: (Upper) Micrograph of cultured hippocampal neurons in a microelectrode array. Black rectangles indicate electrodes. (Lower)
Illustration of a vertical section. Each electrode catches spikes from several neurons. We can observe spike trains containing code such as
“1011.” Each bit (“1” or “0”) is considered from different neuron for short time length (short bit width) code, since it takes more time for the
same neuron to fire twice than the refractory period.

so that only spatially independent components are produced
[8]. Thus, it is reasonable to seek the temporally independent
components of information representation in the brain as a
pair of spatially independent components or seek the spa-
tiotemporal information representation and communication
coding scheme.

(C) Synchronous Action Model. Synchronous actions of in
vivo neuronal networks are often observed. Abeles [9, 10]
proposed a synfire chain, which is a model of neuron groups
firing in a volley. Furthermore, Izhikevich [11] has proposed
a model of neuron networks generating rhythmic actions.
These are simulationmodels that explain the global actions of
neural networks. Also Perc and Zhang et al. [12, 13] analyzed
and showed stable and unstable waves sometimes mixing in
neural network owing to characteristic changes of neurons.

(D) Pseudorandom Code Analysis. From the viewpoint of the
coding scheme of spike trains, we showed that M-sequence-
related codes are detected significantly more often than
those from time-shuffled trains [14]. These may contribute
to communication between neurons from an analogy of
artificial communication systems.

In this study, to clarify the spike-coding mechanism, we
first analyzed the spike trains of cultured neural networks by
examining the code of a multielectrode array. Combination
of relatively homogeneous cultured neuronal network and
multielectrode recording will show relatively fundamental
characteristics of coding scheme in neuronal network. Next,
we visualized the flow of codes that were composed of spike
sequences. We further quantified the flow of the codes that
may reflect the flow of information in the neural network.

2. Code Spectrum of a Cultured
Neural Network

Thecell cultures of hippocampal neuronswere dissected from
18-day-old Wistar rat embryos and implanted on microelec-
trode array dishes (MED-P515A, Alpha MED Scientific Inc.,
Kadoma, Osaka, Japan) with 8 × 8 planar microelectrodes as

shown in Figure 1 [14]. In the present study, the same raster
plot datawere used as [15], which are composed of 0.1ms bins.

Because we did not sort the spikes, the spike train from
each electrode may be composed of spikes from several
neuronal cells. From these spike trains, we confirmed that the
M-sequence family occurred significantly more often than
by chance [14]. In Figure 2, we show the “1101” and “1011”
detected codes of Sample A as the simplest code pair with 1%
nominal time accuracy on the 8× 8 electrode arrangement up
to 18ms after the neurons were stimulated. Codes “1101” and
“1011” are a core part of the reversal sequences “1101000” and
“1011000” of the representative M-sequences of “0010111” and
“0100111,” respectively.

Expanding this to 200ms after stimulation, we obtained
the histogram in Figure 3 of the sum of the “1011” and “1101”
detected codes per trial among the 9 trials of Sample A,
the 23 trials of Sample B, and the 26 trials of Sample C, in
which we decoded spike trains from 63 electrodes excluding
one stimulation electrode with various bit widths within 0.2–
20ms and 1% time accuracy for the inner bit of code. Here,
a bit width is the time interval between “0” (no spike) or
“1” (spike exists) and the next “0” or “1” in an assumed
code (“1011” or “1101”) being detected as shown in Figure 4.
First, two “1”s from the same electrode that were adequately
separated in time were assumed to be the beginning and the
ending “1”s of a code, and then if only one (and no other)
inner “1” corresponding to the inner bit (“1”) of the code
was detected with a 1% time accuracy between the beginning
and ending “1”s, we decide that code “1101” (or “1011”) was
detected. If there is no “1” between the assumed beginning
and the ending “1”s of a code, it is decided not to be a
code. Figure 3 indicates that the numbers for 0.2–0.5ms are
large. Because a bit width of 0.5ms is less than the synaptic
delay, these codes may be mainly composed by independent
processes or appear by chance (e.g., code overlapping as seen
in Figure 2), which does not help circuit analysis around
the electrode. Furthermore, those greater than 2ms are far
less frequent than those of 0.6–2ms. Therefore, we mainly
investigated the codes with bit widths of 0.6–2.0ms in the
following analysis. Because the refractory period of neuronal
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Figure 2: Spike trains on 8 × 8 multielectrodes between 0 and 18ms (horizontal axis) after the stimulation pulse is given at time 0 from the
electrode marked with a star. The red ellipse shows code “1011,” and the green ellipse shows “1101,” with each having a bit width more than
0.6ms.

cells is greater than 2.0ms, the codes may be composed of
spikes from several neuronal cells.

Figure 5 shows a code spectrum from the 63 electrodes as
an average of the 9 trials of Sample A, in which the targeted
and detected codes (sequences) were those having binary “1”s
at both ends of the code and more than three “1”s, including
both ends, with lengths less than 8 bits and the sequence
between the terminal “1”s was an incremental binary number

as [“111”, “1011”, “1101”, “1111”, “10011”, . . ., “11111111”]. Since the
number of “1”s in each code is inconsistent, the order of the
codes was sorted by the number of “1”s in the code. The
total number of codes under investigationwas 120.The length
of the train data was 200ms [2,000 data points/(electrode
× trial)], which was sampled with a 0.1ms bin width, and
the number of spikes (“1”s) on an electrode was an average
per trial of 23.2 ± 9.1 in Sample A. The interval shuffled
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Figure 3: Average number of “1011” and “1101” codes that were observed per trial from 64 electrodes during the first 200ms after stimulation
versus the bit width of the code. We can see the bit width of the codes detected is mainly less than 2-3ms.
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Figure 4: Code “1101” detected with bit width 0.6ms.

trains (Shuf), the electrode shuffled trains (EShuf) among
63 array electrodes, and randomly generated trains (Rand),
in which six different trains were generated by a computer,
were also analyzed. Roughly speaking, there were two types
of codes: high-appearance codes ranked up to code 21 and
low-appearance codes starting at code 22 and beyond. The
former were codes with three bits (“1”), including both end
bits, whereas the latter were codes with four bits or more.

The appearance of codes that were often significant
compared with those with shuffled or random trains was
observed. For example, for code number 3 (“1101”), the
number of appearances in the original (Org) train was
significantly larger than that in the Shuf.Note that some codes
were included within another code such as code number
5 (“10101”) that was also detected as code number 1 (“111”)
if it passed the bit width test of 0.6–2.0ms. Code number
5 (“10101”) was possibly counted twice; therefore, it had a
protuberant peak.

Roughly speaking, we observed that the curve decreased
according to the increase in code length. However, among
the groups of the same code length, there was a mountain-
like shape. This may have been because of the balance of the
inner “1” position. Such codes [e.g., number 8 (“100101”)]with
similar lengths of spaces (“0”) on the right and left appeared
more than the unbalanced ones [e.g., number 7 (“100011”)].

3. Code Flow Map

We can track the appearance of the codes as time-series
images (Figure 2). Figures 6 and 7 show the time-series flow
of “1011” and “1101.” These series are also shown as movies
embedded in Figure 8 with AVI files. We found that the
flow was stronger in the Org train than in the Shuf train.
Although Figures 6(a) and 7 are from the same specimen as
the successive experiments with several-minute intervals, the
flow behaviors were markedly different. Within a short time
range, such as 20ms after stimulation, spikes in the different
trials appeared at similar time instants, generating peaks on
the PSTH [17]. In our case, however, observation time was
too long, for example, more than several ten ms after the
stimulation to show such synchronous or coherent behavior.
That is, we deal with a time epoch where synchronization
function by the stimulation has no effect such that each trial
runs asynchronously and without repeatability. They were
then analyzed statistically.

3.1. Quantitative Analysis of Flow. Let 𝑓(𝐸, 𝐶, 𝐹) be a code-
existing function, which represents in electrode 𝐸 how much
of the time code 𝐶 exists in frame 𝐹. Here, a frame is
composed of 𝑁

𝐹
= 50 bins, that is, 5ms unless otherwise

specified. The existing period is defined as that extending
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Figure 5: Spectrum of the detected codes with bit widths of 0.6–2.0ms. We can see that the major component of the code spectrum is that
of three bits (code number 1-21). Four bits or more codes (code number 22-120) are far less than that. Random train has flat spectrum within
three-bit codes while the original train has its own shape. Interval shuffled and electrode shuffled spike trains show intermediate spectrum
profiles.

from the beginning bin of “1” to the ending bin of “1.” For
example, if a code begins to appear at the middle of a frame
period and continues to the next frame, then 𝑓 = 0.5 (the
code appeared in the half period of frame 𝐹). Thus, 0 ≤
𝑓(𝐸, 𝐶, 𝐹) ≤ 1 is usually true. However, if overlapping codes
are detected, 𝑓(𝐸, 𝐶, 𝐹) may be greater than 1. To avoid this,
we normalized 𝑓 by its effective root mean square (RMS)
value so that

𝑔 (𝐸, 𝐶, 𝐹) =

𝑓 (𝐸, 𝐶, 𝐹)

RMS
𝐹
󸀠
∈{1,2,...,𝑁

𝐹
}
[𝑓 (𝐸, 𝐶, 𝐹

󸀠
)]

. (1)

Next, we calculated a local and instantaneous maximum
cross-correlation in the next frame:

𝜑
𝑁 (
𝐸, 𝐶, 𝐹) = 𝑔 (𝐸, 𝐶, 𝐹) ⋅ 𝑔𝑁

(𝐸Max, 𝐶, 𝐹 + 1) , (2)

where𝐸Max(𝐸, 𝐶, 𝐹) = argmax
𝐸
󸀠
∈𝑁(𝐸)
𝑔(𝐸
󸀠
, 𝐶, 𝐹+1) and𝑁(𝐸)

is a set of 8 neighbors (8N) of𝐸 or a set of 20 neighbors (20N),
where 8N is the 8 pixels around 𝐸 (8 = 3 × 3 − 1) and 20N
includes outside pixels adjacent to 8N, except for the 4 corners
(20 = 5 × 5 − 1 − 4).

Next, we calculated the average Φ
𝑁
(𝐶) of 𝜑

𝑁
over

frame 𝐹, electrode 𝐸, and all the trials conducted for the
same culture (each sample). Φ

𝑁
(𝐶) is the maximum cross-

correlation between the current frame and the next frame,
and𝑁 ∈ {8N, 20N}.

The results of calculating Φ
𝑁
(𝐶) are shown in Figure 9

for Samples A and B with changing bit width. We observe
that codes with a bit width between 0.6 and 2.0ms of “1011”
and “1101” seemed to be flowing most actively. Figure 10
shows Φ

𝑁
(𝐶) for the other major codes with a bit width

between 0.6 and 2.0ms of Sample A. Because such values
of the raw Φ

𝑁
(𝐶) depended on the duration (= length –

1) of the code, we further normalized it by the square of
“code duration/3” so as to make the code “1011” standard, the
duration of which from the beginning “1” to the ending “1”

was code-length – 1 (= 3). Figure 11 shows such a normalized
flowΦ

𝑁
(𝐶) for the major codes with a bit width between 0.6

and 2.0ms in Sample A. We observed that these codes also
flowed actively.Weobserved that the values of the normalized
cross-correlations were almost flat. The jags of the curves
were caused by normalization with the stepwise code length.
Then, the ratios of the EShuf value and the Org value were
calculated for each code, and 𝑝 values were obtained for 14
major codes. These findings suggested that the flow of the
Org codes was significantly higher than that of EShuf, Shuf,
and Rand. Because the maximum values of 20N were sought
from wider ranges of about 3 times (≒20/8) compared to 8N,
20N were also about 3 times larger than that of 8N. That is,
statistically maximum values of random-likeΦ

𝑁
(𝐶) from 20

points (20N) are larger than that of 8 points (8N). However,
since variance of that of 20 points is also larger than that of 8
points, 𝑝 value of 8N was far smaller than that of 20N, and it
showed that the flow of 8N was more significant than 20N
under the assumption that the pseudorandom codes were
almost independent. Further, as a noting parameter, we have
𝑁
𝐹
the time frame length or time difference calculating the

cross-correlation. This should influence the value of cross-
correlation according to the relationship with speed of spike
transmission. That is, if the speed of spikes matches the dis-
tance (𝜇m) to 8N electrodes divided by 𝑁

𝐹
(ms), maximum

cross-correlation of 8N becomes large, and vice versa in case
of 20N. However, it is left to be examined in more detail.

The code can be regarded as a marker to track the flow
of spikes. The codes seemed to move to other neighboring
electrodes, first to 8N and then to 20N, while keeping the
shape of the code. This was a stochastic phenomenon and
therefore should be measured statistically as above.

3.2. Cross Analysis between Codes. To investigate the appear-
ances of the codes, we extended the maximum cross-
correlation in the next frame Φ

𝑁
(𝐶) to Φ

𝑁
(𝐶, 𝐶
󸀠
) from
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Figure 6: Code flowmap for Samples A and B (Org).The serial images are from right to left and top to bottom, and “1011” and “1101” codes are
expressed in red and green, respectively. Yellow indicates a mixed code. These spots are blurred to smoothen the movies. The frame interval
is 5ms and elapsed time is shown at upper right.

code 𝐶 to 𝐶󸀠. Table 1 shows the Φ
𝑁
(𝐶, 𝐶
󸀠
) for Sample A.

Because each entry was obtained by selecting the maximum
direction, some exceeded 1. However, in the Φ

𝑁
(𝐶) case,

it was normalized with the relative code duration itself to
“1101” (i.e., 3), assuming that the same code appeared in the
adjacent electrode at almost the same time coherently. In

the Φ
𝑁
(𝐶, 𝐶
󸀠
) case, we normalized it with the product of

the relative code durations of 𝐶 and 𝐶󸀠 because each code
duration was different and appeared randomly. Φ

𝑁
(𝐶, 𝐶
󸀠
)

had directionality and was therefore nonsymmetric. Next,
we further normalized it so that the first average of each
column became 1 and then each row became 1. We then
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Figure 7: Code flow map, which is the same as that in Figure 6(a), but for a different trial. The appearance is noticeably different from that
in Figure 6(a). The maximum brightness is normalized to 1 in the image.

Original Shuffling Random

Trial 1

Trial 2

Trial 3

Figure 8: Movies in the three trials of code flow of Sample A. The code flows for the original, interval shuffled, and random spike trains in
each trial are shown (http://www.nbl-technovator.jp/NBL Tech/paper/CodeFlowFig8.pdf).

further normalized it with the square root of the product of
the corresponding diagonal components. Then, we obtained
a matrix with diagonal components that were 1, as shown in
Table 2. If each code is generated randomly, the nondiagonal
component will become 1. If the code moves to the adjacent
electrode exclusively, it will become lower than 1. In Sample
A, the number of entries less than 1 was 119 among 182
nondiagonal entries. The 𝑝 value of the hypothesis that the
nondiagonal cross component is less than 1 was 0.00071. For
Sample B, they were 136/182, and 𝑝 = 1.81 × 10−7. For Sample
C, they were 107/182, and 𝑝 = 0.046. Furthermore, for the six
generated Rand trains of Sample A, it was 90/182, and the 𝑝

value of the hypothesis that the nondiagonal cross component
of Sample A is less than that of Rand trains became 0.00092.
This indicated that therewas no bias in deriving andusing this
number of nondiagonal entries. This showed that the code
had a tendency to flow as it was without changing its shape.

4. Discussion and Conclusion

To date, the coding mechanisms of neural networks have not
been solved.

We observed spike trains that were produced by one-
shot electrical stimulation of neuronal networks cultured
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Figure 9: Maximum cross-correlation of a pixel with a 5ms time difference (frame interval). For example, 20N (0.2–0.6) indicates that the
“1011” (or “1101”) code with a 0.2–0.6ms bit width had the maximum cross-correlation with some electrode within 20 neighbors in the next
frame. The results are averages of “1011” and “1101.” From (b), we can see that the original train has clearly the code flow characteristic.

on 8 × 8 multielectrodes. Each electrode accepted spikes
from several neurons. We extracted short codes from each
electrode and obtained a code spectrum. These codes were
considered to be composed of the neuron circuits around
the corresponding electrode. However, some codes may be
observed by chance. To clarify this, we constructed code flow
maps as movies of the electrode array to observe the code
flows of “1101” and “1011.”They seemed to flow from electrode
to neighboring electrode while keeping their shapes to some
extent. We showed that if we shuffled the spike train interval,
they became random with no flow.

To quantify the flow, we calculated the maximum cross-
correlations of the codes with lengths less than 8. We found
that the normalized cross-correlations were almost constant,

irrespective of code. Furthermore, we showed that if we
shuffled the spike trains in interval orders or in electrodes,
they became significantly small.

Thus, the analysis suggested that the local codes around
the electrode flowmaintained the code shape to some extent,
and they transported the information in the neural network.
Since the bit width of the code was taken less than the
refractory period, each spike composing code is considered
from different neurons even without spike sorting. The short
code may have been generated by local circuits, including
feedback loops [14] or various transmission delays [11]. If
so, the result will help to estimate the local circuit shape
around the electrode. The analysis proposed here can also
be regarded as the code decomposition of random-like
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Table 1: Maximum cross-correlation ofΦ
𝑁
(𝐶, 𝐶
󸀠
) to the next frame (𝑁

𝐹
= 20), from the 14 major codes 𝐶 to 𝐶󸀠, and𝑁 = 8N. Bold indicates

the diagonal entry.

Code C →

Code 𝐶󸀠 ↓

1.009 1.251 1.764 1.735 2.122 1.934 2.243 2.426 2.648 2.284 2.45 2.171 2.324 2.398
0.588 0.655 1.018 1.033 1.192 1.093 1.236 1.399 1.568 1.36 1.487 1.391 1.488 1.552
0.561 0.781 1.022 1.069 1.289 1.129 1.307 1.459 1.566 1.316 1.402 1.251 1.343 1.4
0.576 0.711 0.971 0.986 1.167 1.015 1.117 1.181 1.3 1.123 1.199 1.055 1.145 1.189
0.315 0.378 0.551 0.628 0.846 0.755 0.851 0.94 1.059 0.921 0.951 0.873 0.911 0.949
0.255 0.287 0.415 0.512 0.614 0.565 0.628 0.659 0.719 0.622 0.665 0.619 0.665 0.685
0.372 0.456 0.651 0.666 0.783 0.695 0.782 0.857 0.912 0.81 0.878 0.809 0.848 0.868
0.281 0.43 0.653 0.651 0.775 0.695 0.822 0.919 0.976 0.886 0.931 0.854 0.916 0.948
0.219 0.254 0.372 0.377 0.445 0.442 0.476 0.532 0.564 0.481 0.531 0.485 0.501 0.512
0.135 0.211 0.291 0.27 0.331 0.293 0.332 0.391 0.433 0.379 0.406 0.376 0.402 0.425
0.209 0.242 0.263 0.266 0.316 0.327 0.372 0.409 0.443 0.393 0.425 0.38 0.399 0.423
0.117 0.162 0.207 0.191 0.237 0.223 0.269 0.305 0.334 0.302 0.325 0.29 0.304 0.33
0.18 0.206 0.29 0.33 0.386 0.35 0.393 0.428 0.453 0.427 0.463 0.41 0.438 0.455
0.056 0.096 0.161 0.179 0.241 0.222 0.249 0.305 0.316 0.278 0.311 0.278 0.292 0.302

Table 2: Normalized maximum cross-correlation of Φ
𝑁
(𝐶, 𝐶
󸀠
) to the next frame (𝑁

𝐹
= 20) between the different codes 𝐶 and 𝐶󸀠of Table 1.

The italic data shows values less than 1. By the normalizationmaking the diagonal components 1, we can seemore than half of the nondiagonal
components are less than 1, and this means that statistically each code flows independently from other codes.

Code 𝐶 →

Code 𝐶󸀠 ↓

1 1.054 1.001 0.928 0.944 0.946 1.008 0.965 0.986 0.962 0.969 0.932 0.946 0.901
1.056 1 1.047 1.001 0.962 0.969 1.007 1.009 1.058 1.038 1.066 1.082 1.098 1.057
0.959 1.135 1 0.986 0.99 0.952 1.014 1.001 1.006 0.956 0.957 0.926 0.943 0.907
1.083 1.136 1.044 1 0.985 0.942 0.952 0.891 0.918 0.897 0.9 0.858 0.885 0.847
0.83 0.847 0.831 0.892 1 0.981 1.016 0.993 1.048 1.031 0.999 0.996 0.985 0.947
0.914 0.876 0.853 0.992 0.99 1 1.022 0.949 0.969 0.948 0.953 0.962 0.981 0.931
1.05 1.094 1.05 1.013 0.992 0.967 1 0.97 0.966 0.971 0.988 0.988 0.983 0.928
0.762 0.99 1.012 0.952 0.943 0.929 1.011 1 0.994 1.021 1.007 1.001 1.02 0.974
1.033 1.018 1.006 0.961 0.943 1.031 1.02 1.008 1 0.965 1.002 0.992 0.972 0.917
0.837 1.114 1.036 0.905 0.923 0.9 0.937 0.974 1.01 1 1.007 1.011 1.027 1.001
1.233 1.216 0.889 0.848 0.837 0.951 0.996 0.968 0.982 0.985 1 0.97 0.968 0.946
0.934 1.096 0.945 0.824 0.848 0.878 0.975 0.978 1 1.023 1.033 1 0.997 0.997
0.998 0.974 0.921 0.989 0.963 0.959 0.99 0.954 0.944 1.007 1.026 0.984 1 0.958
0.491 0.714 0.805 0.845 0.947 0.96 0.989 1.07 1.039 1.033 1.086 1.053 1.05 1

spike trains with non-fully independent and semiorthogonal
components (codes). Further, the codes can work as visible
and trackable marks of the spike wave.

The problem is that the observed code maps have no
repeatability except for the statistical characteristics as treated
here or within such short term as 20ms where poststimulus
time histogram (PSTH) can be observed with coherency
between neighboring neurons. For example, we can see “1101”
like code shape PSTH in [17–19]. This short term coherency
seems enough for such neuronal network where various
information is flowing.The fluctuation of parameters of each
neuron is inevitable and may work as perturbation element
to define more suitable boundary as support vector machine
[20]. Simulation of the code spectrum shown in this paper
including issue of fluctuations as a macromodel will be
discussed in another papers [16, 21].

The aim of our research is to challenge to elucidate com-
munication function between remote positions of the brain
[22, 23] with keeping correspondence between experimental
findings and simulations, though there are difficulties of
technological gaps between them. Information flow shown in
this paper will give a base of communication function which
needs identification or pattern classification function of spike
waves and will give important base of brain intelligence [16].

Note that, in the communication, each neuron can receive
not whole spike wave but spike train including the codes.
Though depending on the perturbation level (SN ratio), we
have already obtained recognition rate of more than 98%
via partial spatiotemporal patterns of spike wave or spatially
combined codes which are also spatiotemporal patterns. The
results shown in this paper are preliminary step toward the
final aim of elucidating mechanism of natural intelligence



10 Computational Intelligence and Neuroscience

20
18
16
14
12
10
8
6
4
2
0

1 2 3 4 6 7 8 9 10 11 15 16 17 21

M
ax

. c
ro

ss
-c

or
re

lat
io

n
Φ
N

(C
)

8N Org
8N EShuf
8N Shuf
8N Rand

20N Org
20N EShuf
20N Shuf
20N Rand

Code number C

Figure 10: Maximum cross-correlation Φ
𝑁
(𝐶) in 8 neighbors (8N)

and 20 neighbors (20N) for 14 major codes of Sample A. The frame
width is 2ms, and the bit width is between 0.6 and 2.0ms.
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Figure 11: Maximum cross-correlationΦ
𝑁
(𝐶) that is normalized by

the code duration for 14 major codes of Sample A. The 𝑝 values are
calculated from the EShuf/Org ratios of each code. This graph can
be considered as another spectrum concerning the flow property
of major codes. We can see that the normalized spectrum has flat
(white) characteristic. That is, each major code can be considered
as relatively independent. Though the values of 20N itself are larger
than 8N, flow property difference between the original train and
shuffled one of 8N is significantly larger than that of 20N as seen
from 𝑝 value.

via communication link. These will be shown in our coming
papers with still keeping correspondence between experi-
mental findings and simulations.

In short, the aim of our research is to elucidate com-
putationally the natural intelligence based on neuroscience
experiments which is along by title of this journal and also
should be the core target of it.
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